LOCAL EXTINCTION VERSUS LOCAL EXPONENTIAL
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?Let X be either the branching diffusion corresponding to the operator
Lu + B(u? —u) on D C R< (where 3(x) > 0 and § Z 0 is bounded from
above), or the superprocess corresponding to the operator Lu+pBu—ou? on
D C R4 (with a > 0 and 3 is bounded from above but no restriction on its
sign). Let A. denote the generalized principal eigenvalue for the operator
L + 3 on D. We prove the following dichotomy: either A\ < 0 and X
exhibits local extinction, or A. > 0 and there is exponential growth of
mass on compacts of D with rate A.. For superdiffusions, this completes
the local extinction criterion obtained by Pinsky (1996) and a recent
result on the local growth of mass under a spectral assumption given
in Englinder and Turaev (2002). The proofs in the above two papers are
based on PDE techniques, however the proofs we offer are probabilistically
conceptual. For the most part they are based on ‘spine’ decompositions or
‘immortal particle representations’ (c.f. Lyons (1997), Evans (1993)) along
with martingale convergence and the law of large numbers. Further they
are generic in the sense that they work for both types of processes.

1. Introduction.

1.1. Model. Write C*7(D) to denote the space of i times (i = 1, 2) continuously
differentiable functions with all their ith order derivatives belonging to C" (D). [Here
C"(D) denotes the usual Holder space.] Let D C R? be a domain and consider Y =
{Y(¢) : t > 0}, the diffusion process with probabilities {P,, 2 € D} corresponding
to the operator

(1.1) I = %v.av + bV on RY

where the coefficients a; ; and b; belong to C17, i,j = 1, ...,d, for some 7 in (0, 1],
and the symmetric matrix a = {a; ;} is positive definite for all € D. We do not
assume that Y is conservative, i.e. Y may get killed at the Euclidean boundary of
D or run out to infinity in finite time. Furthermore let 0 < 3 € C7(D) be bounded
from above on D and § # 0. The (binary) (L, ; D)-branching diffusion is the
Markov process with motion component Y and with spatially dependent rate 3,
replacing particles by precisely two offspring when branching. At each time ¢ > 0,
the process consists of a point process X; defined on Borel sets of D.
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Another closely related process is the (L, 3, a; D)-superprocess. Here L and D are
as before and a, § € C"(D) with @ > 0 and 3 bounded above. This finite measure-
valued process arises as a high density limit of certain, appropriately rescaled spatial
branching processes (with random offspring numbers though). See Dawson (1993)
or Etheridge (2000) for superprocesses in general and Englander and Pinsky (1999)
for this particular setting. The spatial dependence of 3 allows local (sub)criticality
(8 < 0) in certain regions and local supercriticality (£ > 0) in others; a is related
to the variance of the offspring distribution.

In the sequel and unless otherwise stated, X will denote both the (L, 3; D)-
branching diffusion and the (L, a; D)-superprocess with probabilities and ex-
pectations P,, E,. Here the startng measure y is a finite measure with support
compactly embedded in D if X is a superprocess and given by a finite collection of
points in D if X is a branching process. Also, unless otherwise stated, B will always
denote an open set with B CC D (meaning the closure of B is a bounded subset
of D) having smooth boundary.

1.2. Motwation.

DEFINITION 1 ((WEAK) LOCAL EXTINCTION). Fix a finite g with suppy CC
D.

(1) Wesay that X under P, exhibits local extinction if for every Borel set B CC D,
there exists a random time 7 such that

P,(tp < o0) =1 and P,(X:(B) =0forallt > 7p) = 1.

(i1) We say that X under P, ezhibits weak local extinction if for every Borel set

If there is no weak local extinction, we shall say that X exzhibits re-charge.

For the (L, §; D)-branching diffusion, note that local extinction and weak local
extinction coincide.

For the (L, 3, a; D) -superprocess, local extinction has been studied by Pinsky
(1996). (Note that in Pinsky (1996) and Englander and Pinsky (1999) the termi-
nology is slightly different: it is said that the support of the superprocess exhibits
local extinction.) To explain his result, let

Ae = A(L+ B,D) :=inf{A € R : Ju > 0 satisfying (L + 3 — A)u =0 in D}

denote the generalized principal eigenvalue for L 4+ 8 on D (The boundedness of /3
ensures that A, < co — see section 4.4 in Pinsky (1995)). Pinsky proved that the
process exhibits local extinction if and only if A, < 0. Note in particular that local
extinction does not depend on the coefficient a. His proof uses quite a bit of PDE
machinery. To prove local extinction for A, < 0 turned out to be the harder part.
The proof that there is no local extinction when A, > 0 is based on the proof of
the existence of a nonzero stationary solution for the equation Lu + fu — au? =0
on a large smooth domain B CC D with Dirichlet boundary condition (the domain
must be so large that A = A;(L + 4, B), the principal Dirichlet eigenvalue on B is
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positive; this is possible because A, > 0). Using this, one can show that even the
(L, B, a; B)-superprocess survives and, with positive probability, its total mass does
not tend to zero thus implying re-charge. The question about the behavior of the
mass for small balls however is left open. On the other hand, it shows that local
extinction is in fact equivalent to weak local extinction for superprocesses too.

REMARK 2. It turns out that using the technology developed in Englander and
Pinsky (1999), one can give an alternative proof of the re-charge part (A, > 0)
for superprocesses, which we sketch here for completeness. Let ¢ € C?7(B) be
the eigenfunction corresponding to A which is zero on 9B (see Subsection 2.1).
Then a (non-linear) h-transform (with h = ¢) takes the (L, 3, a; B)-superprocess X
into the (Lg, A, a¢; B)-superprocess X? := ¢ X (with a changed starting measure),
where Lg =L + a2 -V. It can be shown that Lg corresponds to a conservative
(positive recurrent) diffusion on B (see again Subsection 2.1) . Using this and the
boundedness of a¢, it is easy to conclude that X¢ survives and, with positive
probability, its total mass tends to infinity (see the proof of Proposition § in Section
3). Since ¢ is bounded, the same holds for X too.

With some extra work one can show that small balls too are charged for ar-
bitrarily large times with positive probability as follows. First, use a comparison
argument and replace a¢ by its supremum (note that using PDE representations
found in Englander and Pinsky (1999) and the elliptic maximum principle, it can
be shown that the new process has a smaller or equal probability of ever charging a
given compactly embedded domain). Then use the result that for recurrent motion
and constant supercritical branching, the process conditioned on survival charges
all nonempty balls for arbitrarily large times almost surely (see Def 1.4, Prop 3.1
and Thrm 4.5(a) of Englander and Pinsky (1999) for further elaboration.)

Note however that these arguments only work for superprocesses as they are
based on the analytical tools of Englander and Pinsky (1999), and that they do
not give any information about the growth of mass on (small) compacts. (The
previous reasoning for small balls for example does not rule out that the mass of
the ball tends to zero a.s.) <&

For superprocesses, as far as the A. > 0 regime is concerned, local exponential
growth of mass in law has been established in the recent paper Englander and
Turaev (2002); the rate is shown to be A.. Note, however, that in that paper only
a particular class of superdiffusions is considered satisfying a spectral theoretical

assumption.
In this paper we have three main goals.

e To prove that the same condition on A, holds for the (L, 3; D)-branching
diffusion with regard to local extinction versus re-charge.

e To give a proof which is generic and conceptual. That is, it works for both
class of process and also provides an intuitive explanation of the result.

e To give new results on the growth rates of mass on small balls when A, > 0.
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As far as the first goal is concerned, a natural idea is trying to use some kind of con-
nection between the two types of processes along with the result for superprocesses.
In particular, it may first seem to be easy to argue by a “Poissonization” argument
and by exploiting Pinsky’s result. That is, to use the well known fact that for fixed
time, the distribution of a branching diffusion started from a Poisson number of
particles at 2 is the same as that of a Poisson point process whose intensity is given
by the superdiffusion. A second thought however shows that knowing the distribu-
tions for fixed times is not sufficient for investigating the large time behavior of the
process. (Note that we do not know anything quantitative about those distributions
for the superprocess, so for example it is not clear how to use Borel-Cantelli along
a sequence of times.)

The other possibility is to express local extinction using PDE conditions and to
try to compare those conditions for the two processes. It is indeed possible to follow
this track by using certain stochastic representation theorems proven by Evans-
O’ Connell (1994) and Iscoe (1988). The proof is not too long but quite technical
(using analytic and PDE tools) and does not give any insight into the origin of the
criterion on A.. We will provide this proof in the appendix for completeness.

As far as the second goal is concerned, we will present a proof which uses a “spine-
decomposition” for X. There are several similar spine (sometimes called backbone,
immortal particle or immortal backbone) decomposition results in the literature
which we shall discuss later. For our purposes we will need to add to this collection
of decompositions with the proof of yet another theorem of that type. The novelty
of this approach will be that it provides us with the following intuitive picture: for
every nonempty bounded domain B CC D with a smooth boundary there exists
a change of probability such that under the new probability there is a particle
(the spine or immortal particle) whose trajectory is that of an ergodic diffusion
(different from (Y,P.)) confined to B almost surely and along which copies of the
original process under P. immigrate at a certain rate. Then the sign of A\, determines
whether or not this is a null-event under the original probability for large B’s. If not,
since the spine visits every region of B for arbitrarily large times and since B can
be chosen arbitrarily large, it follows that there is no local extinction. Regarding
superprocesses, we will only prove weak local extinction for A, < 0.

As far as the third goal is concerned; we get new results on the local growth rate
for the case when A, > 0 (for both processes).

Finally we mention that is also possible to find older but weaker results for a
special class of Markov branching diffusions in Ogura (1983).

1.3. Results. In the sequel we will use the notation (f, u) := [}, f(x) p(dz). Our
main theorem is as follows.

THEOREM 3 (WEAK LOCAL EXTINCTION VS. LOCAL EXPONENTIAL GROWTH).
Let 0 # p be a finite measure with supp p CC D.

(i) X under P, exhibits weak local extinction if and only if there exists a function
h > 0 satisfying (L+F)h = 0 on D, that is, if and only if \c < 0. In particular,
the weak local extinction property does not depend on the starting measure p.
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(ii) When X. > 0, there exist functions exp{—p1} and ps in [0,1), such that

(1.2)
(=p1, 1) if X is the superprocess

log P, (hm X:(B) = 0> = _ , , o
ttoo (log pa, 1) if X is the branching diffusion,

for all nonempty open B CC D. Furthermore, py solves Lp + Bp — ap? = 0

and ps solves Lp + B(p?> —p) =0 on D .

(i11) When X > 0, for any A < A. and ) # B CC D,

P, (lim supe M X, (B) = 00) > 0 and P, (lim supe X, (B) < oo) =1.

ttoo ttoo

REMARK 4 (ToTAL MAss). In Theorem 3 we are concerned with the local be-
haviour of the population size. When considering the total mass process || X:|| :=
X:(D), the growth rate may actually exceed A.. Indeed, take for example the
(L, B; D)-branching diffusion with a conservative diffusion corresponding to L on
D and with Ag := A.(L, D) < 0, and let 8 > 0 be constant. Then A.(L + 3, D) =
B+ Xy < 3, but — since the branching rate is spatially constant — a classical theorem
on Yule’s processes tells us that e=?t||X;|| tends to a nontrivial random variable as
t — oo, that is, that the growth rate of the total massis g > A.. <&

1.4. Outline. The rest of this article is organized as follows. Section two con-
cerns certain spine or immortal particle decomposition theorems which are needed
for our probabilistic proofs, while section three presents the proofs themselves. The
results then are illustrated with examples in section four. Finally, the appendix
provides the promised alternative proofs for part of the results along the lines of
Iscoe (1988) and the original proofs in Pinsky (1996).

2. Martingales, spines and immortal particles

2.1. A decomposition result We begin this subsection by recalling some facts
about changes of measure for both diffusions and Poisson processes. As before B
will always denote a nonempty open set compactly embedded in D with a smooth
boundary.

Girsanov change of measure. Let A = A, (L + #,B). It can be found in
Pinsky (1995), for example, that there exists a ¢ € C>"(B) such that

(L+B8—-X)¢=0in B with ¢ =0 on JB.

Let 7B = inf{t > 0 : Y; ¢ B} and assume that the diffusion (Y, P,) is adapted to
some filtration {G; : ¢+ > 0} . Then under the change of measure

dpf o ¢ (S/t/\TB) ox . AT
dPylg, = 6 (x) p{ /

B

A—[)’(Ys)ds}
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the process (Y, Pf) corresponds to the h-transformed (h = ¢ )generator (L + 3 —
N =L+4+ap~'Veé- V.

For further reference we point out that the process (Y, Pﬁ) is ergodic on B (i.e.
it is positive recurrent). This follows from the following three facts (see Pinsky
(1995)). A diffusion is positive recurrent if and only if it corresponds to a so-called
“product L'-critical operator”; this latter property of operators is invariant under
h-transforms and finally, the operator L 4+ 8 — A on B possesses this property.

Change of measure for Poisson point processes. Suppose now that given a
nonnegative bounded continuous function g(¢), ¢ > 0, the Poisson process (n,I.9)
where n = {{oy : ¢ = 1,...,n;} : t > 0} has instantaneous rate g(t). Further, assume
that n is adapted to {G; : ¢ > 0} . Then under the change of measure

2g t
dL. = 2"t exp {—/ g(s)ds}
G 0

di.g
the process (n,1.29) is also a Poisson process with rate 2g (cf. Chapter 3, Jacod and
Shiryayev (1987)).
Let us assume for simplicity that p is finite and supppu C B. Let {F; :t > 0}
denote the natural filtration up to time ¢ and let X*? denote the exit measure from

B x [0,t) — note that the exit measure is defined for both types of processes (see
Dynkin (2001) for the definition of an exit measure). Let X, denote the (L,B; B)
branching process, respectively the (L, 3, a; B)-superprocess. Recall from the defi-
nition in the introduction that by changing the domain from D to B it is implicit
that mass is killed when it meets the boundary 0B on account of the restriction of
L to B.

On account of the fact that ¢ solves (L + 3 — A)¢ = 0 on B, one can apply
Kolmogorov’s backwards equations to show that e_)‘t<q5,)?t> 2t >0, is a mar-
tingale; cf. Dynkin (1993, Thrm 3.1). With a small abuse of notation we will write
{e‘”(cﬁ, XtBYy 1 > 0} instead. Fundamental to the calculations associated with
the next theorem are the following facts (“log-Laplace equations”) which we recall
for superprocess and branching processes. Let g € C';', where Cl;" denotes the cone
of nonnegative, bounded continuous functions. When X is a superprocess, we have
E, (exp{—(g, X1)}) = exp{—(uy(-, 1), )} where u, is the minimal non-negative so-
lution to ¥ = Lv + fv — av? in D with v (2,0) = g (z). When X is a branching
process, E, (exp{—(g, X;)}) = exp{—(logu,(-, 1), u)} where uy is the minimal non-
negative solution to v = Lv + 8 (v? — v) in D with v (z,0) = exp{—g(z)}.

THEOREM 5. Suppose that p is finite measure with supp p C B. Define ﬁu by
the martingale change of measure

dPy - M® = e—MM
dPH F, ' <¢aﬂ>

Define

¢ _ ¢ (z) p (dz) ¢
qu_/B (¢, 1) Fo
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that is the measure under which Y has a randomized starting position. Note in
particular that when p = §, qu = P¢.

(1) Suppose that g € C;f (D) and uy is as specified for either a superprocess or
branching process above. Then

(2.3)
E, (e—wn) _ {Eﬁu (eXP {—fé ds 200 (Y;) ug (Vs t — s)}) B, (e~(9.X0)

S, L2070 (e= 900 [T g (Y, £ — 03))

where the first equation applies for the case when X is a superprocess, and the
second for the case when X 1is a branching process.

(ii) With the same order of cases, we have

(6, 1) B (qu) I RCANE (f(fdse—*wa(ysm(ys))
y M) Py t ) EﬁpLQﬁ(Y) (E_M(ﬁ (}/t) + Z:l:tl 6_)‘0’¢ (Yo,)) )

2.2. Discussion For superprocesses, the decompositions suggests that (X, ﬁu)
is equal in law to the sum of two independent processes. The first is a copy of
(X, P,) and the second is a process of immigration; at every time ¢ > 0, a copy of
the (L, B, a; D)-superprocess is initiated at Y;, where Y = {Y; : ¢t > 0} is a copy of
(v, qu) and further, the “rate” of immigration is 2« (Y3) . For branching processes
we have a very similar construction. The decompositions suggest that (X, ﬁu) is
the result of a single particle, undergoing a (Y, qu)—motion, along which (L, g; D)-
branching diffusions immigrate at space time points {(0;,Y,,) : ¢ = 1,...,n;} where
(n,ILw(Y)_) is a Poisson process. Both cases relate to a spectrum of similar results
that exist for both super and branching processes.

For two different classes of critical superprocesses, Evans (1993) and Etheridge
and Williams (2000) consider a change of measure based on the martingale asso-
ciated with the total mass process ||X||. They find a decomposition consisting of
a copy of the original process together with an independent immigration process
along the path of a (Y,Pgﬂ_) diffusion. One sees (cf. Roelly and Rouault (1989))
that their change of measure is equivalent to conditioning the process on survival.
This decomposition is known as the Evans immortal particle picture. For supercrit-
ical superprocess, Evans and O’Connell (1994) and Engléander and Pinsky (1999)
have demonstrated a decomposition in which a given superprocess is equal in law
to a process consisting of two independent components: the first being a copy of
the process conditioned on extinction, the second is an immigration process, where
immigration is initiated along the trajectory of a “backbone” branching Markov
diffusion that starts with a random set of points.

In the branching particle process literature, conditioning the process on survival,
its equivalence with the martingale associated with total mass and a representa-
tion of a single randomly chosen genealogical line of descent with size biasing of
the offspring distribution along it is the result of Lyons et al. (1995) for Galton-
Watson processes. Changes of measure using martingales of an innerproduct form
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for supercritical spatial and typed branching processes have also been considered
by Athreya (2000), Lyons (1997) and Biggins and Kyprianou (2001) for example.
These authors found that the change of measure again induced a randomly chosen
genealogical line of decent, known as a spine, along which the spatial reproductive
distribution is size biased. The size biased behaviour along the spine is analogous
to Evan’s immortal particle picture. It is worth noting that whilst in the super-
process literature the decompositions are mostly proved in law, in the branching
process literature the results are established in the stronger context of path-wise
constructions.

Some other decompositions are as follows. Geiger and Kersting (1999) produce
a ‘spine-like” decomposition for finite Galton-Watson trees (different from those of
the previous paragraph) by conditioning on the height of the tree being at gen-
eration n. By taking limits as n tends to infinity they produce a Galton-Watson
process conditioned on survival. Overbeck (1993) considers changing measure of
critical super-Brownian motion using martingales constructed from innerproducts
of the process with space-time harmonic functions; again, a decomposition appears
in which the immortal particle has an h-transformed Brownian motion. Salisbury
and Verzani (1999) show for critical super-Brownian motion that a backbone de-
composition appears when conditioning the process to hit n specified points when
exiting a bounded smooth domain. See also the citations contained in all the afore-
mentioned publications for yet more examples. The fundamental concepts for all
these decompositions can be routed back to ideas found in the paper Kallenberg
(1977).

Theorem 5 offers decompositions in law with the new feature that the immortal
particle or spine is represented by a diffusion conditioned to stay in the compactly
embedded domain B.

2.3. Proof of Theorem 5 We will only prove part (i), the proof of part (ii) follows
by similar reasoning.

Superprocesses. In this proof we will work with “backward” solutions of the
log-Laplace equation for convenience. Thus we will work with the function u; =
ug (-, — ) where ¢t is fixed instead of ugy. Also, we will need a stronger form of
the log-Laplace equation as follows. Recall that X%® is a measure with support
on J[B x [0,t)]. For any function f : d[B x [0,t)] — R* which is bounded and
continuous, and for X%® = 4 we have Eu(e_<f’Xi’B)) = e~ C08) where vy
solves — = Lv+ v —av? in B x (0,t) with v = f on d[B x [0,¢)] (Dynkin (2001)).
Starting with the left hand side of (2.3), and applying the Markov property of exit
measures (Dynkin (2001), or Dynkin (1993), Theorem 1.3.), one has

(2.4)

o aXt7B —At— 1 ¢ A—(ul XbEB
B (+=000) = by (e 07 ) = b (o XMyt

Tt now follows that

Eu (e‘(th)) — _LEEN (6—)\t—(u;+g¢7xt,3))

=0
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(The differentation and the expectation has been interchanged using bounded con-
vergence). Note however that F, (e_<“tg+0¢1Xt’B)) = e~ X"} where v* is the

unique solution to the system, —¢® = Lv® + v — o (vg)z in B x (0,t) and
o = utg + 0¢ on J[B x [0,t)]. (Here we suppressed the dependence of v’ on t).
Us.ing that v* = ug, X0.B =H and hence that (ug,X()) = (ug(-,t), u) we obtain
using the log-Laplace equation that

)

(2.5) E, (e—<gth)) = E, (6—(97Xt)) EEY E@G,m .

(6m) 00
thus leaving us the job of proving that —(¢, u)~te=*d(v?, 1) /00— is equal to the
first factor on the right hand side of (2.3). A simple calculation, using again the
fact that v0 = u, shows that 7 := Ov? /00y=¢ is the unique solution to the system
—n = Ly+pAn—2aulnin Bx(0,t) and n = ¢ on 9[Bx[0,t)]. Note that the boundary
condition (that is the smoothness of 1 up to the boundary 9[B x [0, t)]) follows by
comparing the righthand sides of (2.4) and (2.5). Taking the aforementioned first
factor, use the Girsanov density for P¢ to write it as

/((;_mEf (6_ % d.s2oz(Ys)U3(Y57s)> é (x) p (dz)

B
(2.6) :e—”/—1 E, <¢ (YVprs) e Jo™ s P"“””“““’”‘”“”) p(de).
(¢, 1)
Consider now the righthand side of (2.6) and observe that the expectation is pre-
cisely the “Feynman-Kac type” probabilistic representation for 5. This observation
together with (2.5) yield (2.3).

Branching processes. We shall only consider the case p = J, where z € B.
The adjustments that are necessary for the case that p is finite can be seen in
(2.6) of the above proof for superprocesses. Write & (z,t) for the left hand side of
(2.3) and note by conditioning on the first time of fission we have after a routine
application of the Markov property

¢ (1) = B, LAY (1(tATB<01)¢(Yf7/\TB)6—At—g(Yt)

¢ (x)
+ 1(“\.,.13201) ¢¢(?‘;3) 6_>‘01£ (Yal,t — 0'1) Ug (Yal,t — 0’1))

_ rint? ¢ (Yt/\rB) —Xt—g(VY;
=FE, <e 0 ﬂ(Ys)dsie g(Yt)
¢ (x)

(2.7) +/0 ' 5(3@)e—f;ﬁ<Yu)du‘i((’;S))@-*sg(ys,t_S)ug(ys,t_s)ds)

Now let p (z,t) be the right hand side of (2.3). Condition on o3 to produce

p (Z,t) = EfLQﬁ(V) (1(01>t)(3_9(Y1) + 1(01§t)ug (Yol,t — 0'1) p (Yal;t — 0'1)) .
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By changing measure back to P, in the last expression, one produces a second
solution to the functional equation (2.7). Let IT := | — p|. Our goal is to show that
IT = 0. Suppose to the contrary that TI(zqg,t0) > 0 for some zq € B and t5 > 0. On
account of continuity on [0,#] x B, there exist ¢, a > 0 such that f(¢) := Il(zo,t) > a
on I := [tg,to+¢]. Then, by the boundedness of 3, ¢ and II, f(¢t) < C’fot f(s)ds on
I, where C' is an appropriate positive constant. Gronwall’s inequality now implies
that f = 0; contradiction. Therefore IT = 0 must hold. d

2.4. Mean convergence for the martingale Before finishing this section, we make
one immediate application of the previous theorem to the martingale limit M2, .

LEMMA 6.  Suppose that p is finite and supppu C B and A=A (L+3,B) >0
then M? converges to its almost sure limit M% in I! (Pyu) .

Proof. We shall make use of the fundamental measure theoretic result (cf Durrett
(1995) p242) which says that E, (M%) = 1 if and only if P, < P, if and only
if lim supypo, My < 00 ﬁu—almost surely. It is clear from part (ii) of Theorem 5
together with Fatou’s Lemma that because ¢, # and « are all bounded on B, A > 0,
and Y is Piﬂ—ergodic,

B, <h?% info’> <liminf B, (M) < 0.

It follows that liminfiy. M? < oo ﬁu—almost surely. Since (M2)™! is a ﬁu‘
martingale, it has a P,-limit and hence lim sup,4, Mf < 0o Py-almost surely. The
statement now follows. O

3. Proof of Theorem 3
3.1. Two preparatory propositions

PROPOSITION 7 (BRANCHING PROCESS). For any Borel set B CC D and finite
K,

Py, (limsupXt(B) € {0,00}) =1.

ttoo

Proof: 1t suffices to prove the proposition for the case p = d,. Let Qg denote
the event that lim SUDyp oo Xt (B) > 0. Let mp = inf{t > 0 : X;(B) > 1} and
Tnt1 = inf{t > 7 +1: Xy (B) > 1}. Fix K >0, let A, .= {X-,41(B) > K} and let
Q) == {w : w € A, infinitely often}. Using elementary properties of the diffusion
Y along with the fact that 8 is assumed to be bounded away from zero in some
region, it is straightforward to prove that (K, B) := inf,¢p Ps, (X1 (B) > K) > 0.
Thus, by the strong Markov property |,

n
Z P(An | X5, , ..., X7,) = 00 a.s. on Q.
n=1
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By the extended Borel-Cantelli lemma (see Corollary 5.29 in Breiman (1992)),
almost every w € Qo belongs to Qy. Therefore limsupy, X¢(B) > K a.s. on Qo,
and since K can be arbitrarily large, the result follows. d

PROPOSITION 8 (SUPERPROCESS). Let § # B' CC B CC D and let pi be a
finite measure. Then

(3.8) P, ({lim sup X¢(B) = oo} U {l%m Xi(B') = 0}) =1.
ttoo ttoo

Proof: Let 0 < € and let M. denote the following set of measures: p € M. <
supp u C B’ and ¢ < ||¢|| < co. The proof essentially requires us to show that all
K >0,

(3.9) inf P,(X1(B) > K)>0.

HEM,
For once we are in possesion of (3.9), a very similar argument to the one given for
the branching process in Proposition 7 yields the statement of the proposition.

We continue then with the proof of (3.9). By comparison, it is enough to prove
it when X replaced by X corresponding to the quadruple (L, #, a; B). Let A and
¢ denote the principal Dirichlet eigenvalue of L 4+ 8 on B and the corresponding
(positive) Dirichlet eigenfunction, respectively. (The sign of A plays no role in the
following argument.) Since ¢ is only determined up to constant multiples, we may
assume that ¢ < 1 on B. Then

PRl > K) > Pul(R1,8) > K) = Pou(IR11 > ),
where X¢ = d))? denotes the superprocess corresponding to the quadruple

(Lg, A, a¢; B). [Here Lg =L+ a% -V.] Let X* be the superprocess corresponding
to the quadruple (Lg, A, ¢; B), where ¢ :=sup,cp a¢. Then

(3.10) Poul|IXT]| > K) > Pyu(|[X7]| > K),

because the log-Laplace equation and the parabolic maximum principle (see
Englander and Pinsky (1999)) imply that for g € C;f (B),

Eguexp(—g, X{) < Eyyexp(—g, X7),

and consequently )A(f is stochastically larger than X7 .
In light of (3.10), the lower bound (3.9) will immediately follow if we show that

3.11 inf P X > K 0.
(3.11) Jinf Pau(IX1] > K) >

Recall from Subsection 2.1 that Lg corresponds to a conservative diffusion on B.
Since X* has conservative motion part and spatially constant branching, it is well
known that ||X*|| is a non-degenerate diffusion process on [0, 00) (“Feller’s diffu-
sion”). On the left hand side of (3.11), the starting point for this one-dimensional
diffusion process is ||¢y|| and thus (3.11) follows from the fact that ||¢ || is uniformly
bounded from below by ¢infg: ¢ for p € M.. O



12 J. ENGLANDER & A. E. KYPRIANOU

3.2. Proof of Theorem 3 (i) Assume that A, < 0; then there exists a h > 0
solving (L + f)h = 0. Kolmogorov’s backwards equation (cf. Dynkin 1993) implies
that (h, X;) is a positive local martingale, and hence a supermartingale, for all
suppu CC D. It follows that

(3.12) limsup X; (B) < C'limsup(h, X;) < oo

ttoo ttoo
P,-almost surely where C' is a constant. For branching processes by Proposition 7
it follows that limsup;;., Xt (B) = 0 Py-almost surely. If X is the superprocess,
then let ) # B’ CC B. Proposition 8 then implies “weak local extinction on B'”.
Since B and B’ can be chosen arbitrarily, weak local extinction follows.

Assume now that A, > 0. Since it is assumed suppy CC D, we can choose a large
enough B for which suppy C B and A = A, (L + §, B) > 0. Change measure using
M;p as in the previous section and choose g € C} so that g < 1p. From Theorem 5
and that for A > 0, P, < P, (Lemma 6) we have that P, (lim SUDipoo Xt(B) > 0) >
0if P, (lim SUDPpteo (9, Xt) > 0) >~0 which happens if E, (1 (jim sup”w(gyxtbg)Mg)) >
0 which happens if and only if P, (lim SUPyt oo (9, X¢) > 0) > 0 which, once again,
happens if and only if Eu (exp{— lim sup, 4., (9, Xt)}) < 1. Note now that for suffi-
ciently small ¢ > 0 we have (for the two classes of process)

E (e“hmsquTm(g’Xt)> < liminfE (6_(Q’X’))
o < B

< lim inf Ep (eXP {— S ds2a (V) ug (Vs t - 5)})
= ttoo Eﬁ,u (e—g(Yt))

by Fatou’s Lemma and the fact that u, < 1. Ergodicity of (Y,Pgu) and strict
positivity of ug on (0,g) x B implies that the right hand side of the inequality is
strictly less than one. Intuitively speaking, the spine or immortal particle visits
every part of B infinitely often because it is an ergodic diffusion. This forces the
process itself to do the same. d

3.3. Proof of Theorem 3 (i) We prove the case for superprocesses, the case for
branching processes is virtually identical. For any Borel B CC D note that the
strong Markov property implies that for any finite g such that suppy CC D and
t>0,

P, (hstupXu (B) = 0) = E,Px, (hrr#supXu (B) = 0) .
With py (z) = — log Ps, (limsuptToo X, (B) = 0) < 0 it follows that exp{—(p1, X;)}
is a martingale. An application of Kolmogorov’s backwards equations (cf. Dynkin
(1993)) together with part (i) shows that pi is a non-trivial solution to the pre-
scribed equation on D. d

3.4. Proof of Theorem 3 (iit) We may assume that A > 0. By standard theory,
there exists a B* CC D with a smooth boundary so that A* := A, (L + 3, B*) > A.
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We first claim that if Qg := {lim4eo e M X, (B*) = oo}, then P, (€0) > 0. Indeed,
if X is defined as the (L, 3; B*) branching process or the (L, #, a; B*) superprocess
respectively then

P, (Q0) > P, <lim infe=*"t X, (B*) > 0) > P, (hnTl infe "X, || > 0)
ttoo

tfToo

(3.13) > P, <1ime—”<¢*,)?t> > o) :

ttoo
where (L 4+ f — A*)¢* = 0 in B* and ¢* = 0 on 0B* . Since A\* > 0, Lemma 6
implies that the last term in (3.13) is positive.

Now let ) # B CC D. From this point we consider two cases separately. Let X
be the branching diffusion first. Let p := infze¢p p(1, 2, B) > 0, where {p(¢, ., dy) :
t > 0} is the transition measure for (Y, P). Let 0 < ¢ < p and A, = {X,41(B) >
qXn(B*)}, and let Q1 := {w : w € A, infinitely often}. It follows from the law of
large numbers and the Markov property that on Qq, limptee P(An | Xn, ..., X1) = 1.
Using the extended Borel-Cantelli lemma just like in the proof of Proposition 7, it
follows that lim SUPt1oo e_MXt(B) = 00 a.s. on Q.

If X is the superprocess, the proof goes through with minor modifications as
follows. Use the branching property (i.e. the property that P,y, is the convolution
of P, and P,) and split the mass in B* into unit masses (with some possible
leftover). Then, to imitate the previous proof, one only needs to know that for

some € > 0,

(3.14) Pu(X1(B) >¢) > 0.

inf
w: supp pCB* [|ul|>1
Indeed, replace 15 by a nonnegative smooth continuous function g, such that g <
15. Recall the log-Laplace equation: E, (exp{—(g, X¢)}) = exp{—(ug, u)} where u,,
is the minimal non-negative solution to vy = Lv + fv — av” in D with v (2,0) =
g (z) . Note that 0 < infps ug(-,1) =: 2¢. Thus (3.14) follows from the Markov-
inequality:

Pu({g, X¢) < &) = P, (exp{—(g, X¢)} > e77) < exp{—(ug, p)}e* < e™*.

This completes the proof of the first statement.

For the remaining statement, note that there exists an h > 0 such that
exp (=Act)(h, X;) is a supermartingale converging almost surely. Since X;(B) is
bounded above by a constant times (h, X;), a.s. finiteness of the lim sup follows. O

4. Examples In this section we will present four examples for branching dif-
fusions which will illustrate the general results of this paper.

4.1. Branching Brownian motion (with drift). TLet L = 1/2(d?/dz?)+¢ (d/dx)
and let 8 be a positive constant. Then, for a small enough ¢, the reproduction “wins”
against the transient motion, where € being small is expressed by the condition
Ae > 0 of Theorem 3.
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Indeed, a standard computation shows that A. = 8 — (1/2)¢?, which is positive
if and only if |¢| < v/28. According to Theorem 3 (ii), p2 € [0, 1] satisfies

Ld’  dp 5
sz te t8(P*—p) =0

Kolmogorov et al. (1937) proved that there are no non-trivial solutions bounded
in [0, 1] to this, the travelling wave K-P-P equation, for |¢| < /27 and otherwise
there is a unique non-trivial solution. We see that the probability that balls with
positive radius become empty is either zero or one (i.e. p» = 0 or ps = 1) according
to whether A. > 0 or A, < 0 respectively.

4.2. Transient L and compactly supported § Let L correspond to a transient
diffusion on D C R? and let # be a smooth nonnegative compactly supported func-
tion. Since the generalized principal eigenvalue coincides with the classical princi-
pal eigenvalue for smooth bounded domains, it follows that for any nonempty ball
B CC D one can pick such a g with B = supp(8) and so that L+ 3 is supercritical
on D, that is A > 0 (all one has to do is to ensure that the infimum of § on a
somewhat smaller ball B’ CC B is larger then the absolute value of the principal
eigenvalue on B’. Then, a fortiori, L+ is supercritical on D as well). On the other
hand, by the transience assumption, it is clear that the initial L-particle wanders
out to infinity (or gets killed at the Euclidean boundary) with positive probability
without ever visiting B (and thus without ever branching), when starting from a
point in D\ B. This now shows that there exists a non-trivial travelling wave so-
lution to Lu+ (u2 — u) = 0 for such an I and /. To the best of our knowledge,
this is a new result concerning generalized K-P-P travelling wave equations.

4.3. Branching Ornstein-Uhlenbeck process and generalization Tet L = %A —
kx-VonR? d > 1, where k > 0. Then L corresponds to the d-dimensional Ornstein-
Uhlenbeck process with drift parameter k. Note that it is a (positive) recurrent
process. Furthermore let 8 be a positive constant. Consider now the (I, 3;R%)-
branching diffusion X. We call X a branching Ornstein-Uhlenbeck process. By re-
currence it follows that I is a critical operator, and thus A. = A.(,R%) = 0. Con-
sequently A.(L + 3,R%) = 3. Obviously (by comparison with a single L-particle),
the process does not exhibit local extinction. By Theorem 3(iii), X exhibits local
exponential growth with rate 8. In fact, as Theorem 4.6.3(i) in Pinsky (1996) shows,
Ae(L + B, D) > 0, whenever L corresponds to a recurrent diffusion on D and the
branching rate # > 0 is not identically zero. Therefore, X exhibits local exponential
growth for any recurrent motion and any not identically zero branching rate.

4.4. Branching outward Ornstein- Uhlenbeck process Let L = %A—i—km-v on R?,
d > 1, where k > 0. Then L corresponds to the d-dimensional “outward” Ornstein-
Uhlenbeck process with drift parameter k. This process is transient. Furthermore
let B be a positive constant, and consider the (L, 3;R%-branching diffusion X.
Following Example 2 in Pinsky (1996), we have that A.(7 + 3, R?) = g — kd. From
Theorem 3(i) we conclude that if § > kd then X exhibits local exponential growth
(with rate 3 — kd). However if § < kd then X exhibits local extinction.
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It is easy to see that h(z) = exp{—k|z|?} satisfies (L + 8 — A¢c)h = 0, and that
making an h-transform with this h, I + 8 — A; transforms into

(4.15) (L+5-N"= %A—k:p-v.

Now the operator in (4.15) corresponds to an (inward) Ornstein-Uhlenbeck process
which is (positive) recurrent.

Using the associated inner-product martingale (which can again be shown to be
a martingale exploiting Kolmogorov’s backwards equations together with bound-
edness) we can follow the arguments of the proof of Theorem 5 to produce (under
a changed probability measure) a spine with a doubled rate of reproduction. This
spine is precisely the Ornstein-Uhlenbeck process corresponding to the operator
(4.15). In order to transfer statements of local survival back to the process un-
der the original measure, we would need mean convergence of the inner-product
martingale, or equivalently, the condition § — kd > 0.

5. Appendix A: Local extinction criterion: analytical arguments In
this section we present an analytical proof of the local extinction for the (L, §; D)-
branching diffusion. As far as the proof of the condition for local extinction is
concerned, we will show how to derive this from the result of Pinsky (discussed in
the introduction of this paper) using a comparison argument between branching
diffusions and superdiffusions. Our proof of the condition for local non-extinction
will be essentially the same as his proof for superdiffusions.

Regarding the comparison mentioned above, it is likely that the deeper reason for
it is hidden in the Evans-O’Connell (1994) “immigration picture” (see the comments
after Theorem 5). For the rigorous proof we will utilize a result on the “weighted
occupation time” for branching particle systems obtained by Evans and O’Connell
(1994) (also used for proving the immigration picture in the same paper). In this
section Z will denote the (L, 8; D)-branching diffusion.

Proof of the criterion on local extinction.

(1) Assume that A\, < 0. Let (2,s) — (s, z) be jointly measurable in (z,s)
and let ¢(s) = (s, ) be nonnegative and bounded for each s > 0. By Evans and
O’Connell (1994, Theorem 2.2), E, {exp (— fg(l/)(s),Zst)} = u(t, z), where u is

the so-called mild solution of the evolution equation

u(s) = Lu(s) — fu(s) + Pu’(s) — (t — s)u(s), 0 < s < t,
(5.16) lil(rnzwu(s)(:)l. (5) (5) = %t — s)u(s

[Here we used the notation u(s) = u(s,-) and @ denotes the time-derivative of u].
Pick a ¢ € CF(D) satisfying ¢(z) > 0, for z € B and ¢(z) = 0, for z € D\ B. Let
u= ug) be the mild solution of the evolution equation

u(s) = Lu(s) — Bu(s) + Bu’(s) — 011 00) (T = s)u(s), 0 < s < T,

(5.17) limg g u(s) = 1.

For the rest of the proof of part (i), let the starting point € D be fixed. Using the
argument given in Iscoe (1988, p.207), we have that Z exhibits local extinction if
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and only if

(5.18) lim lim lim u( )(T z)=1.
ttoo 8toco Ttoo

Let X be the (L, 8, 8, D)-superdiffusion and let U = Ut(? be the mild solution
of the evolution equation
Ul(s) = LU(s) + BU(s) — BU*(5) + 0%1 00y (T —5), 0< s < T,
lim o U(s) = 0.
Again, the argument given in Iscoe (1988,p. 207) shows that X exhibits local ex-
tinction if and only if

(5.20) Jim Jim Jim v, ) = 0.

(5.19)

In light of Pinsky’s result, (5.20) follows from A, < 0. We now show that (5.20)
implies (5.18), which will complete the proof of this part. Making the substitution

v := 1 — u, we have that v is the mild solution of the evolution equation
0(s) =
(5.21) Lu(s) + Po(s) — Bv*(s) + 001 00y (T — ) (1 —v(s)), 0< s < T,

lim, o v(s) = 0.

By Iscoe (1988, pp. 204), U and v (with ¢, § fixed) have the following probabilistic
representations:

T
U(T,z) = —log E; exp (—/0 ds (91#1[,3700)(5),)(5)) ,

v(T,2) = —log Ey exp (— fOT ds (0Y1t,00) () (1 — v(T" — 5)),Xs)) .

(5.22)

From (5.22) it is clear that v < U. Hence lim;4oo limgpos limp oo vt(?‘;) (T,z) =0.

(ii) Assume now that A; > 0. The proof of this part is almost the same as the
proof of the analogous statement for superdiffusions Pinsky (1996, p.262-263). In
that proof it is shown that the assumption A. > 0 guarantees the existence of a
(large) subdomain Dy CC D, and a function v > 0 defined on Dy which is not
identically zero and which satisfies

Lv + Bv — fv? =0 in Dy
(5.23) limg—5p, v(z) =0,
v > 01n Dy.

(The proof of the existence of such a v relies on finding so-called lower and upper
solutions for (5.23). The assumption A, > 0 enters the stage when a positive lower
solution is constructed.) Since f = 1 also solves Lf + Bf — Bf* = 0 in Dy, the
elliptic maximum principle (see Pinsky (1996, Proposition 3) and Englander and
Pinsky (1999, Proposition 7.1)) implies that v < 1. Let w := 1 — v. Then w > 0
and furthermore w satisfies

Lw — Bw + Bw? = 0in Dy

(5.24) limg_5p, w(z) =1,
w < 11n Dy.
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Let P denote the probability for the branching diffusion 7 obtained from Z by
killing the particles upon exiting 0 Dg. Obviously P (Z survives) < Py(Z(t, Dg) >
0 for arbitrary large t's), and thus, it is enough to show that

(5.25) 0 < P,(Z survives).
We now need the fact that w > 0 on Dg. This follows from the equation
(L—B(1 —w))w=0in Dqy

and the strong maximum principle (Theorem 3.2.6 in Pinsky (1995)) applied to the
linear operator L — 3(1 — w). (Indeed, w is a nonnegative harmonic function for the
operator, and thus, by the strong maximum principle it must be either everywhere
zero (i.e. v = 1) or everywhere positive; however the first case is ruled out by the
second equation of (5.23).)

Since w is a positive solution to the elliptic equation and is one at the boundary,
it is standard to prove that exp{—(logw, Z)} is a martingale and thus

~

(5.26) Ey (e-“"gw@) = w(z), t>0.

Suppose that (5.25) is not true. Then the left-hand side of (5.26) converges to 1 as
t 1 0co. On the other hand, the right-hand side of (5.26) is independent of ¢ and is
smaller than 1, which is a contradiction. Consequently, (5.25) is true. d
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