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Abstract

Subspace iteration for computing several eigenpairs (i.e. eigenvalues and eigen-
vectors) of an eigenvalue problem is an alternative to the deflation technique
whereby the eigenpairs are computed successively by projecting the problem onto
the subspace orthogonal to the already found eigenvectors. The main advantage
of the subspace iteration over the deflation is its ‘cluster robustness’: even if some
of the computed eigenvalues form a cluster (i.e. are very close to each other), the
convergence does not deteriorate. For standard subspace iteration eigensolvers the
above fact is well-known, and it is supported by convergence estimates. This pa-
per tackles the so-called preconditioned gradient subspace iteration eigensolvers –
a relatively new class of methods designed to efficiently compute several extreme
eigenpairs of large-scale eigenvalue problems. Using a new approach to the conver-
gence analysis of subspace iterations, based on dealing with eigenvalue sums rather
than individual eigenvalues, the paper presents new convergence results for a class
of preconditioned gradient subspace iteration eigensolvers which are fully cluster
robust, i.e. involve the distances between the eigenvalues in a cluster neither in
the assumptions nor in the estimates themselves.

1 Introduction

This paper is concerned with the convergence of numerical methods for computing
several smallest eigenvalues and corresponding eigenvectors of the problem

Lu = λMu (1)

where L and M are symmetric positive definite operators in a Euclidean space E . The
paper’s focus is on methods which can be applied efficiently to large-scale problems
resulting from the discretization (e.g. finite element one) of partial differential ones,
i.e. problems where L is a discretization of a partial differential (unbounded) operator
and M of a non-differential (bounded) one.

The large scale of targeted problems rules out the use of matrix transformation
methods (QZ-algorithm and the like), which work with full matrix representations of
L and M and, hence, require N 2 storage, where N is the dimension of E . Hence, such
problems are tackled by vector iterations, i.e. iterative methods in which L and M are
only used to compute Lv and Mv (or a linear combination thereof) for a given vector v.
This paper studies the convergence of a class of such methods known as ‘preconditioned
gradient methods’ [14, 13].

Preconditioned gradient methods are the oldest among iterative methods for eigen-
value problems which use preconditioning – the first (asymptotic) convergence result
for such methods was obtained as early as in 1958 [25].1 They are also among the best

∗ Presented at the mini-simpozium “Iterative Methods”, University of Utrecht, 12 June 2002
† Harrow School of Computer Science, University of Westminster, London UK.

1It is quite remarkable that the asymptotic convergence factor given in [25] (see (5)) still remains
the smallest proven for the method studied there, and that it was not until recent paper [20] that the
corresponding non-asymptotic estimate had been obtained.



studied, especially as far as computing the smallest eigenvalue of (1) is concerned, as
demonstrated by the extensive list of references in [13]. The idea behind these meth-
ods is quite simple and natural: the minimization of (or just reducing) the Rayleigh
quotient in the direction of its gradient taken in some auxiliary scalar product. Their
implementation is also fairly simple compared to various two-level methods built around
the powerful shift-and-invert technique, such as Rayleigh quotient iterations, Jacobi-
Davidson method etc.2 (see e.g. [1] and the references therein), which invariably involve
complicated stopping criteria for the inner iterations (see e.g. [18]). One of the most
promising methods of the class, the so-called locally optimal block preconditioned conju-
gate gradient (LOBPCG) method [9] is shown numerically to outperform many of the
preconditioned eigensolvers used nowadays (see [11, 12]).

The application of the preconditioned gradient technique to computing several
smallest eigenvalues of (1) brings about quite a few theoretical and practical difficul-
ties. The straightforward deflation technique whereby the orthogonalization to already
computed eigenvectors is used (see e.g. [1]) may lead to slow convergence when eigen-
values form a cluster, i.e. a close group. This situation is adequately described by
the theoretical convergence estimates (see e.g. (9) below) which show that, assuming
that λj < λj+1 (throughout the paper the eigenvalues λj of (1) are enumerated in
increasing order with each one counted as many times as its multiplicity) the asymp-
totic convergence factor qj for λj is controlled by the ratio λj/λj+1 with qj → 1 as
λj+1 → λj .

An efficient remedy in dealing with clusters is to use subspace iterations rather than
vector ones. Indeed, this technique coupled e.g. with the inverse iterations leads to the
reduction of the error in computing λj by a factor of O

(

(λj/λn)2i
)

after i iterations,
where n is the dimension of the iterated subspace (see e.g. [24]). This estimate is
an obvious improvement over O

(

(λj/λj+1)
2i
)

estimate for the inverse iterations with
deflation, and it shows that subspace iterations are ‘cluster robust’, i.e. even in the
presence of a cluster (a one which does not include λn) the convergence to clustered
eigenvalues does not depend on the distances between them3.

A similar improved convergence estimate for a particular preconditioned gradient
subspace iteration method was obtained in [3]. However, the assumptions on the prob-
lem and the initial subspace in [3] are quite strong: the eigenvalues are assumed to
be simple and the distance between the initial subspace and the corresponding invari-
ant subspace of (1) (measured in a certain metric) is assumed to be not greater than a
rather small quantity depending strongly on the distances between the computed eigen-
values. Furthermore, this estimate is not recursive – the errors on the i-th iteration are
estimated in terms of the initial errors rather than previous ones, and the reduction in
the errors on each iteration is not guaranteed, which prevents applying this estimate to
other practically important preconditioned gradient methods such as LOBPCG. The
most recent estimate for preconditioned gradient subspace iteration methods given in
[12] is recursive and, moreover, sharp but, according to this estimate, the reduction in
the error for λj is determined by λj/λj+1 – just like for the deflation technique. Apart
from (seemingly) being in contradiction with the results of [3] such an estimate does

2Actually, some of these two-level methods can also be interpreted as preconditioned gradient ones
with a different (more complicated) kind of preconditioning (see [20]) – the true distinction between the
two approaches compared lies in whether or not the preconditioning used involves some inner iterations,
i.e. is the method in hand one-level or two-level one.

3In more precise terms, there is an upper bound for the asymptotic convergence factor (cf. left-hand
side of (5)) which is less than 1 and does not depend on the distances between the eigenvalues in the
cluster.
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not explain the numerical results in [12] itself (see also [13]), which clearly demonstrate
cluster robustness of preconditioned gradient subspace iterations.

The main goal of this paper is to establish convergence estimates for (a class of)
preconditioned gradient subspace iteration methods which would be truly cluster ro-
bust, i.e. would not involve the distances between the eigenvalues in a cluster at all –
neither in the assumptions nor in the estimates themselves. The convergence results
in [22] (for a special kind of preconditioned gradient subspace iterations) suggest that
cluster robustness can be achieved by working with eigenvalue sums rather than in-
dividual eigenvalues, and the present paper follows this approach. The convergence
analysis for eigenvalue sums is, however, rather complicated and involves quite a lot of
technicalities, which are presented in the appendices.

2 Preconditioned gradient methods

Let us denote by λ(u) the Rayleigh quotient for (1) on the vector u and by r(u) the
corresponding residual vector, i.e.

λ(u) =
(Lu, u)

(Mu, u)
, r(u) = (L− λ(u)M)u (2)

The minimal eigenvalue λ0 of (1) is the minimum of λ(u), therefore it can be found
by applying to λ(u) one of the methods for the minimization of a functional, e.g. the
steepest descent method

ui+1 = ui − τi∇λ(ui) (3)

where τi are parameters which have to be chosen in such way that λi ≡ λ(ui) converges
to λ0. One possible choice for τi is the value which minimizes ui+1, and it is this choice
that has become associated with the term ‘steepest descent method’.4

The gradient direction ∇λ(u) depends on the scalar (inner) product used. In the
standard steepest descent method the usual scalar product (·, ·) in E is used, which
leads to a very slow convergence of the iterations (3) when the ratio (λ1 − λ0)/λN−1 is
small. In the preconditioned steepest descent the scalar product (·, ·)K−1 ≡ (K−1·, ·)
is used where K is a symmetric positive definite operator which will be specified later
on. The gradient of λ(u) in this scalar product becomes

∇Kλ(u) =
2

(Mu, u)
Kr(u)

and (3) becomes

ui+1 = ui − τiKr(u
i) (4)

The above iterative scheme was first studied in [25] where the following estimate for
the asymptotic convergence factor has been obtained:5

q∞ ≡ limi→∞

(

λi − λ0

λ0 − λ0

) 1

i

≤
(

b0 − a0

b0 + a0

)2

(5)

4In fact, this association is rather confusing: ‘steepest’ actually refers to the direction of descent
rather than to the particular point in that direction where λ(u) reaches its (locally) minimal value.
It would be more proper to call iterations (3) with the (locally) optimal choice of τi ‘locally optimal
steepest descent’.

5The very same asymptotic result was later reproduced (apparently independently and in a some-
what different context) in [19]
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where a0 and b0 are resp. the minimal positive and the maximal eigenvalue of K(L−
λ0M). Subsequently, various non-asymptotic convergence estimates for (4) have been
obtained (see e.g. [8] or Chapter 9 in the monograph [6] and the references therein)
– however, all of them, apart from that in the recent paper [20], lead to asymptotic
constants which are greater than q∞ above in the general case, i.e. for K that does not
commute with L−1.

In [16] the iterative scheme (4) is interpreted in a different manner. In the simplest
version of the well-known inverse iteration method for (1) (see e.g. [5]) ui+1 is found by
solving Lui+1 = λiMui. The last equation can be solved using the iterative scheme6

vk+1 = vk − τK(Lvk − λiMui) (6)

where K is a preconditioner for L, i.e. an operator ‘similar’ to L−1 in the following
sense:

aL−1 ≤ K ≤ bL−1 (7)

If only one iteration (6) is performed, we obtain the iterative scheme which is called in
[16] preconditioned inverse iteration (PINVIT):

ui+1 = ui − τKr(ui) (8)

We observe that PINVIT is a particular case of (4) with τi = τ . Further, we observe
that K in (4) can be interpreted as a preconditioner. Hence, it is natural to call (4) a
preconditioned gradient method.

In [17] a sharp convergence estimate for PINVIT is given. In its simplified form
presented in [12] it reads:

λi+1 − λj

λj+1 − λi+1
≤ q2

λi − λj

λj+1 − λi
, q = γ + (1 − γ)

λj

λj+1

(9)

where γ = (b−a)/(b+a) and j is such that λj ≤ λi < λj+1. According to (9) the upper
estimate for the asymptotic convergence factor is q2 and it is somewhat greater than
that in [25],[19] and [20] (for j = 0, which is the case considered in the latter papers).
This is quite expectable, as the value of τ in PINVIT is not optimal neither locally nor
globally (cf. [12, 13]).

Just like in the case of solving linear systems, the convergence of the preconditioned
steepest descent can be accelerated by using data from previous iterations. The simplest
approach, underpinning a group of methods known as preconditioned conjugate gradient
methods, is to use an iterative scheme of the form

ui+1 = ui − τiKr(u
i) − υiu

i−1 (10)

Particular methods of this group differ by the choice of the parameters τi and υi. In
the so-called locally optimal preconditioned conjugate gradient method (LOPCG) [9]
τi and υi are such that λ(ui+1) is minimal possible (hence, the above convergence
estimates apply to LOPCG as well). Some other choices are considered e.g. in [7]:
respective convergence estimates for the general case a < b are not yet available7,
but the numerical experiments demonstrate essentially the same convergence as with
LOPCG [21].

6In [16] K is scaled so that τ = 1.
7In the case a = b = 1 (i.e. K = L

−1) asymptotical convergence results are given in [2].
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A straightforward generalization of (10) is to introduce more previous approximate
eigenvectors (i.e. ui−2, ui−3 etc.) into the right-hand side. However, as the numer-
ical experiments in [13] show, this approach does not lead to any noticeable further
acceleration of the convergence. Furthermore, numerical experiments in [21] show that
the same is true for the generalized Davidson method [23, 24, 1, 20] where all previous
ui are used. Some insights on why this might be so are provided in [9, 11], where
locally optimal preconditioned conjugate gradient iterations for the eigenvalue problem
(1) are compared with those for the linear system (L− λ0M)u = 0. In the latter case
the preconditioned conjugate gradient methods mentioned above are equivalent, since
they all produce the best (in the semi-norm induced by L− λ0M) approximation to u
in the Krylov subspace for K(L − λ0M). Consequently, invoking ui−2 etc. does not
affect the convergence at all (in exact arithmetic), as the approximate solution remains
in the same subspace. While the same does not hold for the eigenvalue problem (1),
the two cases at hand are closely related because the functionals minimized on each
preconditioned conjugate gradient iteration for (1) and for the above linear system are
asymptotically close to each other, as indicated in [9].

3 Preconditioned gradient subspace iterations

Preconditioned gradient subspace iteration eigensolvers combine the preconditioned
gradient descent technique (4) with the Rayleigh-Ritz method. A straightforward sub-
space generalization of (4), known as the block preconditioned steepest descent (see
e.g. [12]), defines new approximations {λi+1

j , ui+1
j } to the eigenpairs {λj , uj} of (1) as

the Rayleigh-Ritz eigenpairs in the subspace

Ii+1 ≡ span{ui+ 1

2

j }j=0,n−1, u
i+ 1

2

j = ui
j − τijKr(u

i
j) (11)

The use of the above scheme raises the issue of the choice of parameters τij. In [4] locally

optimal ones for each vector are chosen, i.e. τij minimizes λ(u
i+ 1

2

j ). No convergence
proof for this scheme is available at present, but the numerical results in [4] demonstrate
that it is working. The paper [3] assumes that

(1 − γ)L−1 ≤ K ≤ (1 + γ)L−1 (12)

where γ < 1, and suggests τij = 1, which leads to the following convergence result:
assuming that

n−1
∑

j=0

‖(1 − P0)uj‖2
L ≤ (1 − γ)2

1999∆2

(

λ0

λn−1

(

1 − λn−1

λn

))4

(13)

where

∆ = max
0≤j<n

λj+1 + λj

λj+1 − λj

and P0 is the (·, ·)L-orthogonal projection onto I0, one has:

1 − λj

λi
j

≤ 1.03
λn

λn − λj
δ̄2i
j ‖(1 − P0)uj‖2

L (14)

5



where

δ̄j = δj +
1 − δn−1

2

λj

λn−1

√

λn − λn−1

λn − λj
, δj = γ + (1 − γ)

λj

λn

We note that although the estimates (14) are asymptotically cluster robust, the same
cannot be said about the above convergence result as a whole because of the condi-
tion (13) on the initial subspace I0, where the distances between eigenvalues feature
prominently.

The same choice of τij under the same condition on K is also considered in [15],
where the following sharp recursive convergence estimates are given:

λi+1
j − λkj

λkj+1 − λi+1
j

≤ q

(

γ,
λkj

λkj+1

)2
λi

j − λkj

λkj+1 − λi
j

, q(u, v) = u+ (1 − u)v (15)

where kj is such that λkj
≤ λi

j < λkj+1.
A radical solution to the problem of optimal choice of τij is the use of the subspace

8

Ii+ 1

2 = span{ui
j ,Kr(u

i
j)}j=0,n−1 (16)

instead of I i+1 given by (11). The new subspace I i+1 is then defined as the one spanning

the Ritz eigenvectors in I i+ 1

2 corresponding to n smallest Ritz eigenvalues. It turns out,
that, just like in computing a single eigenvalue, adding the previous approximations
ui−1

j to I i+ 1

2 dramatically improves the convergence. A group of methods built around
this idea is known under the collective name of locally optimal block preconditioned
conjugate gradient (LOBPCG) method [11]. Again, a surprising fact is that increasing

Ii+ 1

2 any further does not have any tangible effect [11, 13].
Due to their recursiveness and in view of the minimax principle, estimates (15)

apply to any iterative scheme which uses the Rayleigh-Ritz method in a subspace
containing I i+ 1

2 given by (16), in particular, to LOBPCG (although they, of course,
do not explain the remarkable convergence features of the latter). As admitted in
[12], a serious disadvantage of estimates (15) is that they are not ‘cluster robust’ in
the sense specified in Introduction, whereas there is at least numerical evidence that
methods using the subspace given by (16) are (see [12, 13]). Furthermore, assuming
that kj = j, the (upper estimate of the) asymptotic convergence factor according to
(15) is the square of γ+(1−γ)λj/λj+1, whereas according to [3] it should be the square
of γ + (1 − γ)λj/λn. Given that (15) are claimed to be sharp, there may seem to be
a contradiction. However, there is none, because estimates (15) are sharp in a very
specific sense: (15) for a given j covers any subspace I i with the same Ritz eigenvalue
λi

j and any preconditioner K satisfying 7 with a given ratio b/a. But if I i happened to
be a very ‘bad’ subspace as far as the convergence to some eigenvalue is concerned, the
subsequently calculated subspaces I i+k may improve in this respect, as can be seen e.g.
from [3] or from the new estimates below. Finally, the preconditioner K remains the
same throughout the iterations, and if I i and K happened to be a ‘bad’ pair, this does
not necessarily apply to I i+k and K. In short, estimates (15), despite being ‘sharp and
short’, are somewhat ‘too pessimistic’ and certainly not ‘cluster robust’.

The new estimates presented in the next section achieve ‘cluster robustness’ by
dealing with eigenvalue sums rather than individual eigenvalues. It should be noted

8This version of the block preconditioned steepest descent might also be called ‘locally optimal’

6



that the same idea was used in [22]; however, the method suggested there proved to
be less efficient than LOBPCG. The convergence results of the present paper produce
smaller estimates for the asymptotic convergence factor than that in [22] and, moreover,
they apply to a class of preconditioned gradient methods which includes LOBPCG.

4 New convergence estimates

The new estimates below apply to a class of preconditioned gradient subspace iteration
methods based on iterative schemes of the following form:

Ii+1 = span{uj(X i)}j=0,n−1, X i ⊃ Ii + span{Krj(Ii)}j=0,n−1 (17)

where I i is the iterated subspace, rj(X ) ≡ r(uj(X )) and uj(X ) are the Ritz eigenvectors
in the subspace X , i.e.

(r(uj(X )), v) = 0 ∀v ∈ X

enumerated in the increasing order of λ(uj(X )) starting from 0. We observe that the
above class of methods includes e.g. (locally optimal) block preconditioned steepest
descent (cf. (16)), the original version of LOBPCG and the block version of the gener-
alized Davidson method in [11]. It is important to note, however, that with regard to
the last two methods the estimates of this paper can only be considered as preliminary
ones, as the methods themselves demonstrate much better convergence in practical
calculations (see [11, 12, 13]).

The estimates below are given in terms of the inverses µj = λ−1
j of the eigenvalues

of (1) and those of the Ritz eigenvalues λi
j , i.e. µi

j = (λi
j)

−1, which proved to be
more convenient for the convergence analysis. This is equivalent to rewriting (1) as
Mu = µLu. Accordingly, we denote the Rayleigh quotient for the latter problem by
µ(u), i.e. µ(u) = λ(u)−1, and use the notation s(u) = (µ(u)L−M)u and si

j = s(ui
j) for

the residuals. The enumeration of µj and µi
j starts from 0 and is in decreasing order.

The gap between subspaces X and Y measured in the scalar product 〈·, ·〉 is denoted
by θ〈·, ·〉. Further, we denote

Im ≡ span{uj}j=0,m−1, Ii
m ≡ span{ui

j}j=0,m−1

θi,m ≡ θ(I i
m, Im)L, ti,m ≡ tan(I i

m, Im)L ≡ θi,m
√

1 − θ2
i,m

ρi,m ≡
m−1
∑

j=0

‖si
j‖2

L−1

µi
j

αi
j,k ≡

µi
j−1

µi
j−1 − µk

, αi
j ≡ αi

j,j, βi
j ≡

µj

µi
j−1 − µj

We start with two preliminary results. The first one relates to the convergence of
a group of approximate eigenvalues µi

j , j = 0, . . . ,m − 1, where m ≤ n is such that
µ0

m−1 > µm.
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Theorem 1 If K satisfies (7) and µ0
m−1 > µm for some 0 < m ≤ n then µi

j converges
to µj, j = 0, . . . ,m− 1, and, furthermore, the following convergence estimate holds for
the iterative scheme (17):

m−1
∑

j=0

(µj − µi+1
j ) ≤

q2i,0 + ε0i
1 + ε0i

m−1
∑

j=0

(µj − µi
j) (18)

where

qi,0 =
κi,0 − 1

κi,0 + 1
, κi,0 = (1 + t2i,m)2αi

m

b

a

ε0i =
b

a
(1 + ρi,m)(a0

i ρi,m + b0i t
2
i,m)

and a0
i and b0i depend on αi

m, µ0

µm
, m and ti,m only, in a continuous and monotonically

increasing way.

Proof. First, we transform the problem (1) into the one with L = I as described in
Appendix A.1 (note that the reverse transformation turns θ(I i

m, Im) into θ(I i
m, Im)L,

tan(I i
m, Im) into tan(I i

m, Im)L and ‖si
j‖ into ‖si

j‖L−1). The convergence of I i
m to Im

(and, hence, µi
j to µj) follows from the minimax principle, lemma 23 and lemma 10.

Applying lemma 33 with k = m and l = 0, we obtain the estimate of this theorem with
a0

i = c4 and b0i = c5/(1 + t2i,m) + c6. 2

The second preliminary result improves the asymptotic convergence factor in theo-
rem 1 for rightmost eigenvalues µj in the above group.

Theorem 2 Assuming that K satisfies (7) and that µ0
m−1 > µm and µ0

k−1
> µk for

some 0 < k < m ≤ n, the following convergence estimate holds for the iterative scheme
(17):

k−1
∑

j=0

(µj − µi+1
j ) ≤ q2i + ε∗i

1 + ε∗i

k−1
∑

j=0

(µj − µi
j) (19)

where

qi =
κi − 1

κi + 1
, κi = (1 + t2i,m)2αi

k,m

b

a

ε∗i =
b

a
(1 + ρi,k)(a

∗
i ρi,k + b∗i t

2
i,m + c∗i t

2
i,k)

and a∗i , b
∗
i and c∗i depend on αi

k,m, αi
k,

µ0

µk
, k, ti,m and ti,k only, in a continuous and

monotonically increasing way.

Proof. Just like with theorem 1 we apply lemma 33 (with l = 0) to obtain the estimate
of this theorem with a∗i = c4, b

∗
i = c5/(1 + t2i,m) and c∗i = c6. 2

For the main result below some more notation is needed:

Il,k ≡ span{uj}j=l,k−1, Ii
l,k ≡ span{ui

j}j=l,k−1

ti,l,k =
θ(Il,k, Ii

l,k)L
√

1 − θ(Il,k, Ii
l,k)

2
L

8



Theorem 3 Assume that K satisfies (7) and that µi0
m−1 > µm, µi0

k−1
> µk and µi0

l−1
>

µl for some i0 and some 0 < l < k < m ≤ n. If

1

µ0

l−1
∑

j=0

(µj − µi0
j ) ≤ 1

2(k − l)2
a

b

((

2 +
µ0

µk

)

βi0
l

)−2 (µk

µ0

)2

(20)

and

1

µ0

l−1
∑

j=0

(µj − µi0
j ) ≤ 1

8

((

2 +
µm + µ0

µl

)(

1 +mβi0
l

µ0

µl

)

βi0
l

)−1 µl

µ0

(21)

then the following convergence estimate for (17) holds for i ≥ i0:

k−1
∑

j=l

(µj − µi+1
j ) ≤ q2i + εi

1 + εi

k−1
∑

j=l

(µj − µi
j) (22)

where qi is defined in theorem 2,

εi = 2
b

a
(1 + ρi,k)(aiρi,k + bit

2
i,m + cit

2
i,l,k)

and ai, bi and ci depend on αi
k,m, αi

k, α
i
l, β

i
l ,

µ0

µl
, µl

µk
, k − l, ti,m and ti,l,k only, in a

continuous and monotonically increasing way.

Proof. Again, it is enough to apply lemma 33 (with ξ = ζ = 0.5) and to notice that if
(20) and (21) are valid for a given i0 then they remain so for i > i0. 2

Remark 1 The (fairly technical) results of § A.5 can be used to derive explicit for-
mulas for the coefficients in theorems 1-3. Those, however, are bound to be extremely
cumbersome, which is the only reason why they are not presented in the paper.

Remark 2 The above results remain valid if the left-hand side inequality in (7) is
replaced with

K ≥ a(I − π)L−1

where π is the spectral projection onto Im (cf. remarks 3 and 4).

Taking a closer look at the above convergence result one observes that it involves
four groups of parameters:

1. The (spectral) condition number b/a of KL and the ‘cluster depth’ parameter
αi

k,m. These two parameters might be called ‘essential’ as they determine the
asymptotic convergence factor (cf. (23) below).

2. Parameters related to ‘eigenvalue macrostructure’ or ‘cluster parameters’ (here
and below ‘cluster’ refers to µj, j = l, . . . , k− 1): k− l, µ0/µl, µ0/µk and µl/µm.

3. Those related to the ‘cluster resolution’: αi
k, α

i
l , β

i
l . We observe that these

parameters are monotonically decreasing in i, and their upper bounds (at i = 0)
depend on the ‘quality’ of the initial guess I0 measured by µ0

j , whereas their lower
bounds, which they approach as one proceeds with the subspace iterations (17),
are relative distances between the cluster limits and the rest of the spectrum.

9



4. ‘Asymptotically insignificant’ parameters ρi,k, ti,m and ti,l,k. We observe that
ρi,k, ti,m and ti,l,k can be estimated, using corollaries 4, 3 and lemma 19, in terms
of the parameters of the previous two groups. Furthermore, from lemmas 10, 23
and 24 one can obtain the upper bounds for t2i,m proportional to the total error

of µi
j, j = 0, . . . ,m − 1, for ρi,k to that of µi

j, j = 0, . . . , k − 1, and for t2i,l,k to

that of µi
j , j = l, . . . , k − 1, all the constants involved again depending only on

the parameters of the previous two groups.

It is important to emphasize that the ‘eigenvalue microstructure’ parameters (i.e.
the distances between the eigenvalues in a cluster) never appear in the convergence
estimates of theorems 1-3. Furthermore, even the ‘macrostructure’ parameters and
‘cluster resolution’ parameters only appear in asymptotically insignificant terms.

We observe further that theorem 1 implies that conditions (20) and (21) are satisfied
after a number of iterations which depend only on the parameters of the above first
three groups. Finally, we observe that the asymptotic convergence factor for µi

j, j =
l, . . . , k − 1, is estimated by

q∞ =

(

1 − ξ

1 + ξ

)2

, ξ =
a

b

(

1 − µm

µk−1

)

(23)

Thus, by taking a = b = 1, k = l + 1 and m = n one can obtain from (23) the
well-known convergence result for inverse iterations (see e.g. [5]).

The above considerations show how the convergence estimates of theorems 1-3 can
be used in order to ascertain the robustness of a particular application of (17) with
respect to a certain parameter t on which the problem (1) depends (e.g. a discretization
parameter). If a preconditioner is used for which b/a can be estimated from above
uniformly with respect to t, and if similar estimates can be obtained for the parameters
describing ‘eigenvalue macrostructure’ in the above sense, then starting with an initial
guess of a sufficient quality (i.e. with µ0

m−1 > µm and with α0
m not exceeding a given

arbitrary value independent of t) one has convergence rate estimates (18), (19) and,
eventually, (22) which are independent of t.

Let us now turn to the comparison between the above new convergence results and
(15).

Estimates (15) are certainly impressive: they are explicit, sharp, take minimal as-
sumptions on the preconditioner K and no assumptions at all on the current subspace
Ii. However, they do not adequately reflect some convergence aspects of the precon-
ditioned gradient subspace iterations. Firstly, they are not cluster robust. A closely
related issue is that of the asymptotic convergence factor: the esimate for this factor
that can be derived from (15) is larger than that given by (23); furthermore, it is deter-
mined by µkj+1/µkj

, and, hence, (15) does not demonstrate any advantage of subspace
iterations compared to the deflation technique. Yet another limitation of (15) is even
more serious.

From the minimax principle and from lemma 23 it follows that the Ritz eigenvalues
µi

j converge to eigenvalues of (1) for any initial subspace I 0. However, unless some
assumptions on I0 are taken, it is impossible to identify to which eigenvalues they
will have converged. An assumption which is often taken is µ0

m−1 > µm for some
m ≤ n (see e.g. [6, 8]): it appears to be the weakest possible in terms of eigenvalues
only which guarantees the convergence of µi

j to µj, j = 0, . . . ,m − 1, and it is used
in the above new results. By estimating qi,0 and ε0i from above it is not difficult
to obtain from (18) an estimate of the number of iterations needed to compute µj,
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j = 0, . . . ,m− 1, to a given accuracy (such estimates are important in ascertaining the
robustness of the convergence for parameter-dependent problems – cf. the discussion
above), and theorems 2 and 3 allow one to improve this estimate for the respective
groups of eigenvalues. Based on (15), however, such an estimate can only be obtained
for those µj for which the interval [µj , µj+1] contains at least one µi

k. Hence, to estimate
the number of iterations needed to compute all µj , j = 0, . . . ,m − 1, to a given
accuracy one has to assume that each interval [µj , µj+1] contains precisely as many Ritz
eigenvalues as the multiplicity of µj. This assumption is obviously much stronger than
the assumption µ0

m−1 > µm, especially in the presence of closely situated eigenvalues.

A Proofs

A.1 Notation

All the vectors and matrices featuring below are real-valued.
Below E denotes a Euclidean space. As usual, (·, ·) denotes the scalar (inner) product

and ‖·‖ the associated norm in E , and L(E) denotes the space of linear operators acting
from E into E . The norm of A ∈ L(E) subordinated to ‖ · ‖ (the square root of the
maximal eigenvalue of ATA) is denoted by ‖A‖. The unit operator in L(E) is denoted
by I (or, where the dimension N of E matters, by IN ), and the null operator by 0. The
trace of A ∈ L(E) (i.e. the sum of the eigenvalues of A) is denoted by Tr(A), and ‖A‖F

denotes the Frobenius norm of A, i.e. ‖A‖2
F = Tr(ATA).

If P ∈ L(E) is a projection (i.e. P 2 = P ) then P̄ ≡ I−P . The orthogonal projection
onto X ⊂ E is denoted by PX . Since PX P̄Y = PX (PX −PY) and P̄XPY = (PX −PY)PX

we have

‖PX P̄Y‖ ≤ θ(X ,Y), ‖P̄XPY‖ ≤ θ(X ,Y), ‖P̄XPY P̄X ‖ ≤ θ(X ,Y)2 (24)

If θ(X ,Y) < 1 then

tan(X ,Y) ≡ θ(X ,Y)
√

1 − θ(X ,Y)2

For 0 ≤ A = AT ∈ L(E) the notation (u, v)A ≡ (Au, v) and ‖u‖A ≡
√

(u, u)A

is used. If 0 < A = AT ∈ L(E) then (·, ·)A is a scalar product in E , and PH,A

denotes the projection onto H ⊂ E which is orthogonal in this scalar product, i.e.
((1 − PH,A)u, v)A = 0 for any u ∈ E and v ∈ H.

In order to simplify notation, we rewrite the problem (1) and the iterative scheme
(17) as follows. Let us denote (in this paragraph only) M̃ = L−1/2ML−1/2, K̃ =
L−1/2KL−1/2 and ũ = L1/2u for any u ∈ E . Then (1) becomes

ũ = λM̃ũ (25)

or else M̃ũ = µũ, and the subspace X i in (17) becomes

X i ⊃ Ii + span{K̃r̃i
j}j=0,n−1 (26)

where r̃i
j = (I−λi

jM̃)ũi
j and {λi

j , ũ
i
j} are the Ritz eigenpairs for (25) in X i. Comparing

(25) with (1) and (26) with (17) we observe that in (1) and (17) one can assume

L = I (27)
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without any loss of generality. Below we take this assumption and, accordingly, assume
that

aI ≤ K ≤ bI (28)

If I is an invariant subspace of M then πI ≡ PI = PI,M and Ī = π̄E . The invariant
subspace ofM corresponding to a part σ of its spectrum is denoted by Iσ, and πσ ≡ πIσ .
Conversely, the part of the spectrum of M corresponding to an invariant subspace I is
denoted by σI . For any X ,Y ⊂ E and any non-zero u ∈ E

δµ(u,X ) ≡ min
v∈X

|µ(u) − µ(v)|

Finally, we denote

ρX =
m−1
∑

i=0

‖si(X )‖2

µi(X )

where m is the dimension of X ⊂ E , µi(X ) ≡ µ(ui(X )), si(X ) ≡ s(ui(X )), and ui(X )
are the Ritz eigenvectors of M in X . Ritz eigenvalues for M are normalized in ‖ · ‖M ,
and the enumeration is in decreasing order of µi(X ).

A fundamental result frequently used below is the so-called minimax (Courant-
Fisher) principle:

λi = min
X ⊂ E

dimX = i + 1

max
06=u∈X

λ(u)

from which, in particular, it follows that λi ≤ λi(X ) ≤ λi(Y) for any Y ⊂ X ⊂ E .

A.2 General auxiliary results

Lemmas 1–3 below are elementary, hence, the proofs are omitted.

Lemma 1 For any A = AT ∈ L(E) and any 0 ≤ B = BT ∈ L(E) one has

TrAB ≤ ‖A‖TrB (29)

Lemma 2 Let A = AT ∈ L(E). If A < I then (I −A)−1 ≥ I +A.

Corollary 1 Let 0 < A = AT ∈ L(E) and B = BT ∈ L(E). If B < A then (A−B)−1 ≥
A−1 +A−1BA−1.

Lemma 3 Let A = AT ∈ L(E) and 0 < B = BT ∈ L(E). If −αB ≤ A ≤ αB for some
α > 0 then |(Au, v)| ≤ α‖u‖B‖v‖B for any u, v ∈ E.

Lemma 4 Let A0 and B0 be symmetric positive definite operators in L(E) and let
A = A0 + δA and B = B0 + δB, where δA and δB are symmetric. Let λ0

i and λi be
the eigenvalues of B−1

0 A0 and B−1A resp. enumerated in the same order. If

−αA0 ≤ δA ≤ αA0, −βB0 ≤ δB ≤ βB0, B ≥ γB0 (30)

then

|λi − λ0
i | ≤

α+ β

γ
λ0

i (31)
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Proof. For any non-zero u we have

(Au, u)

(Bu, u)
=

(A0u, u)

(B0u, u)
+

1

(Bu, u)

(

(δAu, u) − (A0u, u)

(B0u, u)
(δBu, u)

)

Hence, using (30) and the minimax principle we obtain (31). 2

Lemma 5 Let A = Λ − δA be a symmetric and B = I − δB a symmetric positive
definite matrix, where Λ is a diagonal matrix. Then

Tr(B−1A) = Tr(DB
−1DA) − Tr(A1) + Tr(A2) + Tr(A3) (32)

where

A1 = DB
−1δBDB

−1(δA +D), A2 = DB
−1DδBDB

−1(DδA +D),

A3 = DB
−1D̄BB

−1D̄BDB
−1A,

DX ≡ DiagX, D̄X = DX −X

and D is any diagonal matrix.

Proof. We have

B−1 = (DB − D̄B)−1 = DB
−1(I − D̄BDB

−1)−1

= DB
−1(I + D̄BDB

−1 + D̄BB
−1D̄BDB

−1)

= DB
−1 +DB

−1D̄BDB
−1 +DB

−1D̄BB
−1D̄BDB

−1

B−1A = (DB
−1 +DB

−1D̄BDB
−1 +DB

−1D̄BB
−1D̄BDB

−1)(DA − D̄A)

= DB
−1DA +DB

−1D̄BDB
−1DA −DB

−1D̄A −DB
−1D̄BDB

−1D̄A

+DB
−1D̄BB

−1D̄BDB
−1A

Since Tr(DXD̄YDZ) = 0 for any X, Y and Z we have

Tr(DB
−1D̄BDB

−1DA) = 0, Tr(DB
−1D̄A) = 0

and since δX = DδX − D̄δX = DδX + D̄X , X = A or B, we obtain

Tr(DB
−1D̄BDB

−1D̄A) = Tr(DB
−1δBDB

−1D̄A)

= Tr(DB
−1δBDB

−1(δA +D)) − Tr(DB
−1δBDB

−1(DδA +D))

= Tr(DB
−1δBDB

−1(δA +D)) − Tr(DB
−1DδBDB

−1(DδA +D))

which leads to (32). 2

Lemma 6 In the notation of lemma 5, let δA = δA− +δA+, where Tr(δA−−D−) ≤ 0
and Tr(δA+−D+) ≥ 0 for some diagonal matrices D− and D+, and let δB ≥ 0. Then

−(α− + α+) ≤ Tr(B−1A) − Tr(DB
−1DA) ≤ α− + α+ + β (33)

where

α− ≡ ‖δB‖Tr(D− − δA−)

(1 − ‖δB‖)2 , α+ ≡ ‖δB‖Tr(δA+ −D+)

(1 − ‖δB‖)2 , β ≡ ‖A‖‖δB‖2
F

(1 − ‖δB‖)3
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Proof. By lemma 5 we have

Tr(B−1A) − Tr(DB
−1DA) = −Tr(A1) + Tr(A2) + Tr(A3)

= Tr(A1−) − Tr(A2−) − Tr(A1+) + Tr(A2+) + Tr(A3)

where

A1− = DB
−1δBDB

−1(D− − δA−), A1+ = DB
−1δBDB

−1(δA+ −D+),

A2− = DB
−1DδBDB

−1(D− −DδA), A2+ = DB
−1DδBDB

−1(DδA −D+)

Since δB ≥ 0, D− − δA− ≥ 0 and δA+ −D+ ≥ 0, the matrices A1−, A1+, A2−, A2+,
and A3 are positive semi-definite. Using the first inequality in (29) and the fact that
‖DB‖ = ‖I −DδB‖ ≥ 1 − ‖DδB‖ ≥ 1 − ‖δB‖ we obtain for any Z = ZT ≥ 0

Tr(DB
−1δBDB

−1Z) ≤ ‖DB
−1δBDB

−1‖TrZ

≤ ‖DB‖−2‖δB‖TrZ ≤ ‖δB‖
(1 − ‖δB‖)2 TrZ

and, thus, Tr(A1−) ≤ α− and Tr(A1+) ≤ α+. Since ‖DδB‖ ≤ ‖δB‖, in a similar
way we obtain Tr(A2−) ≤ α− and Tr(A2+) ≤ α+. Finally, for A3 we use the second
inequality in (29) to obtain

Tr(A3) ≤ Tr(DB
−1D̄BB

−1D̄BDB
−1)‖A‖ = ‖DB

−1D̄BB
−1/2‖2

F ‖A‖

≤ ‖DB‖−2‖B−1‖‖A‖‖D̄B‖2
F ≤ ‖A‖‖δB‖2

F

(1 − ‖δB‖)3

2

Lemma 7 If, in the notation of lemma 5, A ≥ 0, DδA ≤ 0 and δB ≤ 0 then

Tr(B−1A) ≥ Tr(DB
−1DA) − Tr(δB)‖δA‖ (34)

Proof. By lemma 5 we have (32), whereA2 ≥ 0 and A3 ≥ 0. Hence, using lemma 1, we
obtain

Tr(B−1A) ≥ Tr(DB
−1DA) − Tr(DB

−1δBDB
−1)‖δA‖

Since B = I − δB ≥ I we have DB ≥ I, and, thus, the above inequality leads to (34).2

Lemma 8 Let A = AT > 0 and B = BT ≥ In be matrices of the size n represented
as 2-by-2 symmetric block matrices with the blocks Aij and Bij resp. Denote by νi the

eigenvalues of B−1A and by νj
i the eigenvalues of B−1

jj Ajj enumerated in ascending

order starting from 1. If ν0
m < νm+1, where m is the size of the block A00, then

0 ≤ 1 − ν1
k

νm+k
≤

n
∑

i=m+1

‖A01 − νiB01‖2

(νi − ν0
m)2

, k = 1, . . . , n−m (35)

If νm < ν1
1 then

0 ≤ ν0
k

νk
− 1 ≤

m
∑

i=1

‖A10 − νiB10‖2

(νi − ν1
1)2

, k = 1, . . . ,m (36)
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Proof. Denote by xk the eigenvector of B−1A corresponding to νk and normalized
by ‖xk‖B = 1. Let uk and vk be vectors of dimension m and n−m incorporating the
first m and the last n−m components of xk resp. For k > m we have

Lkuk = Rkvk (37)

where Lk ≡ −A00 + νkB00 and Rk ≡ A01 − νkB01. Since νk > ν0
m we have Lk ≥

(νk − ν0
m)B00 ≥ νk − ν0

m, and, hence, from (37) we obtain

‖uk‖2
Lk

= ‖Rkvk‖2

L−1

k

≤ ‖Rkvk‖2

νk − ν0
m

≤ ‖Rk‖2‖vk‖2

νk − ν0
m

≤ ‖Rk‖2‖xk‖2

νk − ν0
m

≤ ‖Rk‖2‖xk‖2
B

νk − ν0
m

=
‖Rk‖2

νk − ν0
m

and

‖uk‖2
B00

≤ ‖Rk‖2

(νk − ν0
m)2

(38)

Let

x =
n
∑

i=m+1

aixi

and let u be the vector of dimension m incorporating first m components of x. We have

‖u‖2
B00

≤
n
∑

i=m+1

a2
i

n
∑

i=m+1

‖ui‖2
B00

≤ ‖x‖2
B

n
∑

i=m+1

‖Ri‖2

(νi − ν0
m)2

from which it follows that

θ2
B ≤

n
∑

i=m+1

‖Ri‖2

(νi − ν0
m)2

where θB is the gap in the norm ‖ · ‖B between the invariant subspace of B−1A cor-
responding to n − m largest eigenvalues and the subspace of vectors of dimension n
with the first m components equal to 0. Since ν1

i are the Ritz eigenvalues of the prob-
lem A11v = ν1B11v in the subspace Ĩ, applying lemma 3.1 from [3] to the matrix

B
−1/2

11 A11B
−1/2

11 we arrive at (35). Similar calculations lead to (36). 2

A.3 Auxiliary results for the Rayleigh-Ritz approximation

A.3.1 General results

Lemma 9 Let π ≡ πI , where I is an invariant subspace of M . For any non-zero u ∈ E

((M − µ(u)I)π̄u, π̄u) = (µ(u) − µ(πu))‖πu‖2

Proof. We have

0 = ((µ(u)I −M)u, u) = ((µ(u)I −M)πu, πu) + ((µ(u)I −M)π̄u, π̄u)

= (µ(u) − µ(πu))‖πu‖2 − ((M − µ(u)I)π̄u, π̄u)

2
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Corollary 2

‖π̄u‖2

‖u‖2
=

µ(πu) − µ(u)

µ(πu) − µ(π̄u)

Lemma 10 Let I be an invariant subspace of M . For any non-zero u ∈ E

δµ(u, I)‖πIu‖ ≤ ‖s(u)‖

Proof. Denote Mu = (M − µ(u)I)2. The eigenvalues of Muv are νi = (µi − µ(u))2,
the eigenvectors being the same as for M . Therefore, ‖s(u)‖2 = ‖u‖2

Mu
≥ ‖πIu‖2

Mu
≥

δµ(u, I)2‖πIu‖2. 2

Lemma 11 Let I be an invariant subspace of M and let u ∈ E be a non-zero vector.
If δµ(u, I) > 0 then

− ‖s(u)‖2

δµ(u, I−)
≤ ((M − µ(u)I)πIu, πIu) ≤

‖s(u)‖2

δµ(u, I+)
(39)

where I± = Iσ± and σ− = {µ ∈ σI : µ < µ(u)}, σ+ = {µ ∈ σI : µ > µ(u)}.

Proof. Consider the eigenvalue problem

πI(M − µ(u)I)πIv = νMuv

where Mu is defined in the proof of lemma 10. Non-zero eigenvalues of this problem
are νi = (µ(u) − µi)

−1, and, thus, δµ(u, I−)−1 ≤ νi ≤ δµ(u, I+)−1 which leads to (39)
since ‖s(u)‖2 = ‖u‖2

Mu
. 2

A.3.2 Results related to extreme eigenpairs

In what follows I is the invariant subspace of M corresponding to m largest eigenvalues
µ0 ≥ µ1 ≥ . . . ≥ µm−1 > µm, π ≡ πI and Ĩ ⊂ E is a subspace of dimension m. For
the gaps between Ĩ and I the notation θ ≡ θ(Ĩ, I) and θM ≡ θ(Ĩ, I)M is used, and we
denote t ≡ tan(Ĩ, I). We also denote

µ̃i ≡ µi(Ĩ), ũi ≡ ui(Ĩ), ri ≡ r(ũi), si ≡ s(ũi), δ ≡ δµ(Ĩ, Ī)

Lemma 12 If µ̃m−1 > µm then

θ2 ≤ µ0 − µ̃m−1

µ0 − µm
< 1

Proof. See corollary 2. 2

Corollary 3 If µ̃m−1 > µm then

t2 ≤ µ0

µ̃m−1 − µm
θ2
L

Lemma 13 Let

Mµ ≡ µπ + (µI −M)π̄ (40)

If µ > µm then

(µ− µm)I ≤Mµ ≤ µI (41)
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Proof. The eigenvalues νi ofMµv are, obviously, νi = µ, i = 0, . . . ,m−1, and νi = µ−µi,
i ≥ m. Since νm ≤ νi ≤ µ, we arrive at (41). 2

Lemma 14 Let I ′ ⊂ I be an invariant subspace of M , and denote π ′ ≡ πI′. For any
non-zero u ∈ Ĩ

δµ(u, I ′)‖π′u‖ ≤ θ‖s(u)‖ (42)

Proof.9 We have

(µ(π′u) − µ(u))‖π′u‖2 = ((M − µ(u)I)π′u, π′u)

= (s(u), π′u) = (s(u), (π − PĨ)π′u)

Hence, |µ(u) − µ(π′u)|‖π′u‖2 ≤ θ‖s(u)‖‖π′u‖, leading to (42) 2

Lemma 15 In the notation of lemma 14, let u ∈ Ĩ be a non-zero vector for which
δµ(u, I ′) > 0. Then

−θ
2‖s(u)‖2

δµ(u, I−)
≤ ((M − µ(u)I)π′u, π′u) ≤ θ2‖s(u)‖2

δµ(u, I+)
(43)

where I± = Iσ± and σ− = {µ ∈ σI′ : µ < µ(u)}, σ+ = {µ ∈ σI′ : µ > µ(u)}.

Proof. Denoting π+ ≡ πI+ and using (42) we have

((M − µ(u)I)π+u, π+u) = (s(u), π+u) = (s(u), (π − PĨ)π+u)

≤ θ‖s(u)‖‖π+u‖ ≤ θ2‖s(u)‖2

δµ(u, I+)

which leads to the right-hand side inequality in (43). The left-hand one is obtained in
a similar way. 2

Lemma 16

‖(I − PĨ,M )u‖2 ≤ (1 + ρ
Ĩ
)‖u‖2 ∀u ∈ E

Proof. We have

‖(I − PĨ,M )u‖2 = ‖u−
m−1
∑

i=0

(Mu, ũi)ũi‖2

= ‖u‖2 − 2
m−1
∑

i=0

(Mu, ũi)(u, ũi) +
m−1
∑

i=0

1

µ̃i
(Mu, ũi)

2

= ‖u‖2 − 2
m−1
∑

i=0

1

µ̃i
(Mu, ũi)(u, si) −

m−1
∑

i=0

1

µ̃i
(Mu, ũi)

2

≤ ‖u‖2 +
m−1
∑

i=0

1

µ̃i

(

(Mu, ũi)
2 + (u, si)

2
)

−
m−1
∑

i=0

1

µ̃i
(Mu, ũi)

2

= ‖u‖2 +
m−1
∑

i=0

1

µ̃i
(u, si)

2 ≤ ‖u‖2 + ‖u‖2

m−1
∑

i=0

1

µ̃i
‖si‖2

2

9Cf. also [10].
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Lemma 17 If θ < 1 then ‖si‖2 ≤ ‖π̄si‖2/(1 − θ2).

Proof. Let P = PĨ . Since Psi = 0, we have

‖si‖2 = ‖πsi‖2 + ‖π̄si‖2 = ‖(π − P )si‖2 + ‖π̄si‖2 ≤ θ2‖si‖2 + ‖π̄si‖2

2

Lemma 18 If θ < 1 then ‖si‖2 ≤ µ̃it
2.

Proof. Denoting Mi ≡ Mµ̃i
, where Mµ is given by (40), we have π̄si = Miπ̄ũi, and,

using (41) and lemma 17, we obtain

‖si‖2 ≤ ‖Miπ̄ũi‖2

1 − θ2
≤ µ̃2

i

‖π̄ũi‖2

1 − θ2
≤ θ2

1 − θ2
µ̃2

i ‖ũi‖2 = t2µ̃i

2

Corollary 4 If θ < 1 then

ρ
Ĩ
≤ mt2 ≤ mµ0

µ̃m−1 − µm

A.3.3 Results related to internal eigenpairs

Let 0 ≤ l < k ≤ m. In the sequel we use the following notation

I− ≡ span{ui}i=0,l−1, I0 ≡ span{ui}i=l,k−1,

I+ ≡ span{ui}i=k,m−1, I∗ ≡ I− + I0

m− ≡ l, m0 ≡ k − l, m+ ≡ m− k,

πs ≡ πIs , s ∈ {−, 0,+, ∗}

χs =

{

0, ms = 0
1, ms > 0

s ∈ {−,+}, χ± = max{χ−, χ+}

Accordingly, we denote Ĩ− = span{ũi}i=0,l−1 etc., and

θs ≡ θ(Ĩs, Is), ts ≡ tan(Ĩs, Is), ρs ≡ ρ
Ĩs
, s ∈ {−, 0,+, ∗}

Further,

η0 ≡ µ̃k−1

µ̃k−1 − µm

For l > 0 we denote

η− ≡ µ̃l

µl−1 − µ̃l
, η̃− =

µl

µ̃l−1 − µl

and for l = 0 we set η− = 0 and η̃− = 0. For k < m we denote

η+ ≡ µ̃k−1

µ̃k−1 − µk

and for k = m we set η+ = 0. Finally, η± = max{η−, η+}.
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Lemma 19 If µ̃l−1 ≥ µl and µ̃k−1 ≥ µk, 0 < l < k < m, then

θ2
0 ≤ µl − µ̃k−1

µ̃l−1 − µ̃k−1

µ̃l−1 − µk

µl − µk
(44)

Proof. See [8]; cf. also [26]. 2

Lemma 20 If µ̃l−1 > µl and µ̃k−1 > µk then

−α0t
2
0

k−1
∑

i=l

‖si‖2 ≤
k−1
∑

i=l

(µi − µ(π0ũi)) ≤ (α0 + β0)t
2
0

k−1
∑

i=l

‖si‖2 (45)

where

α0 = (1 + t20)(η0 + (η− + η+)θ2)

β0 = (k − l)(1 + t20)
2

(

µl

µk
η2
0 + (η2

− +
µl

µk
η2
+)θ2

)

Proof. Denote ṽi =
√
µ̃iũi. By lemma 19 we have θ0 < 1 and hence the vectors

ṽ0
i ≡ π0ṽi, i = l, . . . , k − 1, form a basis of I0. Using these vectors as the basis for the

Rayleigh-Ritz method for M we obtain the generalized eigenvalue problem

Ax = µBx (46)

whereA andB arem0-by-m0 matrices with the entries aij = (ṽ0
i , ṽ

0
j )M and bij = (ṽ0

i , ṽ
0
j )

resp. Obviously, µi, i = l, . . . , k − 1, are the eigenvalues of (46), and µ(πṽi) = aii/bii.
This suggests using lemma 6 for obtaining the estimates (45). Since

δij = (ṽi, ṽj) = (ṽ0
i , ṽ

0
j ) + (π̄0ṽi, π̄0ṽj)

and
δijµ̃i = (ṽi, ṽj)M = (ṽ0

i , ṽ
0
j )M + (π−ṽi, π−ṽj)M + (π′ṽi, π

′ṽj)M

where π′ ≡ π+ + π̄, we have: A = Λ − δA− − δA+ and B = I − δB where Λ =
Diag{µ̃i}i=l,k−1 and the matrices δA−, δA+ and δB have the entries (π−ṽi, π−ṽj)M ,
(π′ṽi, π

′ṽj)M and (π̄0ṽi, π̄0ṽj)M resp. Obviously, δA− +δA+ ≥ 0, and, hence, ‖A‖ ≤ µ̃l.
Further,

‖δB‖ = max
x

(δBx, x)

‖x‖2
= max

v∈Ĩ

‖π̄0v‖2

‖v‖2
= θ2

0

Let D− andD+ be diagonal m0-by-m0 matrices with the diagonal entries µ̃i(π−ṽi, π−ṽi)
and µ̃i(π

′ṽi, π
′ṽi) resp. We have: Tr(δA− −D−) ≥ 0 and Tr(δA+ −D+) ≤ 0. Further-

more, using lemmas 15 and 11 we obtain

Tr(δA− −D−) =
k−1
∑

i=l

((M − µ̃iI)π−ṽi, π−ṽi)

≤ χ−θ
2

δµ(Ĩ0, I−)

k−1
∑

i=l

µ̃i‖si‖2 ≤ η−θ
2

k−1
∑

i=l

‖si‖2
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and

Tr(D+ − δA+) =
k−1
∑

i=l

((µ̃iI −M)π′ṽi, π
′ṽi)

=
k−1
∑

i=l

((µ̃iI −M)π+ṽi, π+ṽi) +
k−1
∑

i=l

((µ̃iI −M)π̄ṽi, π̄ṽi)

≤ χ+θ
2

δµ(Ĩ0, I+)

k−1
∑

i=l

µ̃i‖si‖2 +
1

δµ(Ĩ0, Ī)

k−1
∑

i=l

µ̃i‖si‖2

≤ η+θ
2

k−1
∑

i=l

‖si‖2 + η0

k−1
∑

i=l

‖si‖2

Finally, using lemmas 10 and 14 we obtain

‖δB‖F ≤
k−1
∑

i=l

‖π̄0ṽi‖2 =
k−1
∑

i=l

‖π−ṽi‖2 +
k−1
∑

i=l

‖π+ṽi‖2 +
k−1
∑

i=l

‖π̄ṽi‖2

≤
(

χ−θ
2

δµ(Ĩ0, I−)2
+

χ+θ
2

δµ(Ĩ0, I+)2
+

1

δµ(Ĩ0, Ī)2

)

k−1
∑

i=l

µ̃i‖si‖2

≤
(

χ−θ
2

δµ(Ĩ0, I−)2
+

χ+θ
2

δµ(Ĩ0, I+)2
+

1

δµ(Ĩ0, Ī)2

)

µ̃l

k−1
∑

i=l

‖si‖2

which leads to (45). 2

Lemma 21 If µ̃l−1 > µl and µ̃k−1 > µk then for l ≤ i < k

|µ(π0ũi) − µ̃i| ≤ (1 + η±t)(1 + t20)
√

µ̃iθ‖si‖ (47)

µ(π0ũi) − µ̃i ≤ (1 + η+t
2)(1 + t20)µ̃iθ

2 (48)

µ(π0ũi) − µ̃i ≤ (η0 + η+θ
2)(1 + t20)‖si‖2 (49)

Proof. Using lemmas 14 and 18 we obtain

|((µ̃iI −M)π̄0ũi, π̄0ũi)| ≤ |((µ̃iI −M)π̄ũi, π̄ũi)|
+ |((µ̃iI −M)π±ũi, π±ũi)|

= |(si, π̄ũi)| + |(si, π±ũi)| ≤ (‖π̄ũi‖ + ‖π±ũi‖)‖si‖

≤
(

θ√
µ̃i

+
χ±θ‖si‖
δµ(ũi, Ī0)

)

‖si‖ ≤
(

1√
µ̃i

+
χ±t

√
µ̃i

δµ(ũi, Ī0)

)

θ‖si‖

≤
(

1 +
χ±µ̃it

δµ(ũi, Ī0)

)

θ‖si‖√
µ̃i

≤ (1 + η±t)
θ‖si‖√
µ̃i

Further,

((µ̃iI −M)π̄0ũi, π̄0ũi) ≤ ((µ̃iI −M)π̄ũi, π̄ũi)

+ ((µ̃iI −M)π+ũi, π+ũi)
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Therefore, using lemmas 10 and 15 we obtain

((µ̃iI −M)π̄0ũi, π̄0ũi) ≤
‖si‖2

δµ(ũi, Ī)
+
χ+θ

2‖si‖2

δµ(ũi, I+)

≤
(

µ̃i

δµ(ũi, Ī)
+

χ+µ̃i

δµ(ũi, I+)
θ2

)

‖si‖2

µ̃i
≤ (η0 + η+θ

2)
‖si‖2

µ̃i
(50)

and

((µ̃iI −M)π̄0ũi, π̄0ũi) ≤ θ2 +
χ+θ

2‖si‖2

δµ(ũi, I+)

≤
(

1 +
χ+µ̃i

δµ(ũi, I+)
t2
)

θ2 ≤ (1 + η+t
2)θ2

Using lemma 9 and the inequality

‖π0ũi‖2 ≥ (1 − θ2)‖ũi‖2 =
1

µ̃i(1 + t20)

we arrive at (47) – (49). 2

A.4 Auxiliary results for gradient type eigensolvers

Lemma 22 Let A be an k-by-k matrix with the entries aij = (ûi, ûj) where 0 < k ≤ m
and

ûi = ũi − τ(I − P )Kri, P ≡ PĨ∗,M , τ =
1

(1 + ρ∗)b

If K = KT ∈ L(E) satisfies (28) then

A ≤ A0 − τA1 (51)

where A0 = Diag{λ̃i}i=0,k−1 and A1 is an k-by-k matrix with the entries (ri, rj)K.

Proof. Denoting gi = P̄Kri, we have:

aij = (ûi, ûj) = λ̃iδij − 2τ(ũi, gj) + τ2(gi, gj)

= λ̃iδij − 2τ(ũi − λ̃iMũi, gj) + τ2(gi, gj)

= λ̃iδij − 2τ(ri,Krj) + τ2(P̄Kri, P̄Krj)

that is, A = A0 − 2τA1 + τ2A2, where A2 has the entries (P̄Kri, P̄Krj). Let

u =
k−1
∑

i=0

xiri

Using (28) and lemma 16 we have

(A2x, x) = ‖P̄Ku‖2 ≤ (1 + ρ∗)‖Ku‖2 ≤ (1 + ρ∗)b‖u‖2
K = τ−1(A1x, x)

and, hence, A ≤ A0 − τA1. 2
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Lemma 23 Let Ĩ ′ = span{ûi}i=0,k−1, where ûi are given in lemma 22 and 0 < k ≤ m.
If K = KT satisfies (28) then µ̃′

i ≡ µi(Ĩ ′) ≥ µ̃i, i = 0, . . . , k − 1, and

k−1
∑

i=0

(µ̃′i − µ̃i) ≥
1

1 + ρ∗

a

b

k−1
∑

i=0

‖si‖2 (52)

Proof. Denoting gi = P̄Kri, and using linear independent vectors ûi = ũi − τgi as
the basis for the Rayleigh-Ritz method in Ĩ ′ we see that µ̃′i are the eigenvalues of the
problem

Bx = µ̃′Ax

where A and B are k-by-k matrices with entries aij = (ûi, ûj) and bij = (ûi, ûj)M resp.
We have:

bij = δij + τ2(gi, gj)M

that is, B ≥ I, which, together with (51), implies that µ̃′
i ≥ µ̃i. Further, A0 − τA1 ≥

A ≥ λ0B > 0, and, hence, by corollary 1 we have A−1 ≥ A−1
0 + τA−1

0 A1A
−1
0 , which

yields

k−1
∑

i=0

µ̃′i ≥ Tr(A−1) ≥ Tr(A−1
0 ) + τ Tr(A−1

0 A1A
−1
0 ) =

k−1
∑

i=0

(µ̃i + τµ̃2
i ‖ri‖2

K)

=
k−1
∑

i=0

µ̃i + τ
k−1
∑

i=0

‖si‖2
K ≥

k−1
∑

i=0

µ̃i +
1

1 + ρ∗

a

b

k−1
∑

i=0

‖si‖2

2

Corollary 5

k−1
∑

i=0

‖si‖2 ≤ (1 + ρ∗)
k−1
∑

i=0

(µi − µ̃i)

Lemma 24 Let µ̃′i be as in lemma 23. If µ̃l−1 > µl and

l−1
∑

j=0

(µj − µ̃j) ≤
a

b

(

3 +

(

µ0

µk
− 1

)

θ2
M,∗

)−2 µ̃2
k−1

µ0η̃2
−

ξ

(k − l)2
(53)

where ξ < 1 and θM,∗ = θ(Ĩ∗, I∗)M , then

k−1
∑

i=l

(µ̃′i − µ̃i) ≥ (1 − ξ)
1

1 + ρ∗

a

b

k−1
∑

i=l

‖si‖2

Proof. In the notation of the proof of lemma 23, let us split both A and B into the
blocks Aij and Bij, i = 0, 1, j = 0, 1, resp., where A00 and B00 incorporate the entries
aij and bij resp. with 0 ≤ i < l and 0 ≤ j < l etc. For the entries rij of the matrix
Rn = A01 − λ̃′nB01, where l ≤ n < k and λ̃′n = (µ̃′n)−1, we have

rij = ((I − λ̃′nM)ûi, ûj) = −((I − λ̃′nM)ũi, gj) − ((I − λ̃′nM)ũj , gi)

+ ((I − λ̃′nM)gi, gj) = −((I − λ̃iM)ũi, gj) − ((I − λ̃iM)ũj , gi)

+ ((I − λ̃′nM)gi, gj) = −2τ(ri,Krj) + τ2((I − λ̃′nM)gi, gj)
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((I − λ̃′nM)gi, gj) = ((I − λ̃′nM)π∗gi, π∗gj) + ((I − λ̃′nM)π̄∗gi, π̄∗gj)

≤ τ2(λk − λ0)‖π∗P̄Kri‖M‖π∗P̄Krj‖M + τ2‖π̄∗P̄Kri‖‖π̄∗P̄Krj‖
≤ τ2(λk − λ0)θ

2
M,∗‖Kri‖M‖Krj‖M + τ2(1 + ρ∗)‖Kri‖‖Krj‖

≤ τ2

(

λk − λ0

λ0

θ2
M,∗ + 1 + ρ∗

)

‖Kri‖‖Krj‖

≤ b2τ2

(

λk − λ0

λ0

θ2
M,∗ + 1 + ρ∗

)

‖ri‖‖rj‖

Thus

|rij | ≤ (2 + (1 + ρ∗ +
λk − λ0

λ0

θ2
M)bτ)bτ‖ri‖‖rj‖ ≤ ψ

1 + ρ∗
‖ri‖‖rj‖

where

ψ = 3 +
λk − λ0

λ0

θ2
M,∗

and, hence,

‖Rn‖2 ≤ ‖Rn‖2
F ≤ ψ2

(1 + ρ∗)2

k−1
∑

i=l

‖ri‖2

l−1
∑

j=0

‖rj‖2

≤ ψ2λ̃2
k−1

(1 + ρ∗)2

k−1
∑

i=l

‖si‖2

l−1
∑

j=0

‖rj‖2

Denote by µ̂i, i = 0, . . . , l−1, the eigenvalues of A−1
00 B00 and by µ̂i, i = l, . . . , k−1, the

eigenvalues of A−1
11 B11 enumerated in ascending order. From A ≤ A0 − τA1 and from

Bii ≥ I it follows that µ̂i ≥ µ̃i and, furthermore,

k−1
∑

i=0

(µ̂i − µ̃i) ≥
1

1 + ρ∗

a

b

k−1
∑

i=l

‖si‖2

(cf. the proof of lemma 23). Since λ̃′l ≥ λl > λ̃l−1 ≥ λ̂l−1 ≡ (µ̂l−1)
−1, we can apply

lemma 8 (with n = k, m = l, νi = λ̃′i+1, ν
0
i = λ̂i+1 and ν1

i = λ̂i+l−1) to obtain for
l ≤ p < k

1 −
µ̃′p
µ̂p

= 1 − λ̂p

λ̃′p
≤

k−1
∑

j=l

‖Rj‖2

(λ̃′j − λ̃l−1)2
≤ 1

(λl − λ̃l−1)2

k−1
∑

j=l

‖Rj‖2

≤ (k − l)
λ̃2

k−1
λ̃2

l−1

(λl − λ̃l−1)2
ψ2

(1 + ρ∗)2

k−1
∑

i=l

‖si‖2

l−1
∑

j=0

‖sj‖2

= (k − l)
η̃2
−

µ̃2
k−1

ψ2

(1 + ρ∗)2

k−1
∑

i=l

‖si‖2

l−1
∑

j=0

‖sj‖2

Thus,

k−1
∑

i=l

(µ̃′i − µ̃i) =
k−1
∑

i=l

(µ̂i − µ̃i) −
k−1
∑

i=l

(µ̂i − µ̃′i) ≥
1

1 + ρ∗

a

b

k−1
∑

i=l

‖si‖2

− (k − l)2
µ0η̃

2
−

µ̃2
k−1

ψ2

(1 + ρ∗)2

k−1
∑

i=l

‖si‖2

l−1
∑

j=0

‖sj‖2
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≥


1 − ψ2 b

a
(k − l)2

µ0η̃
2
−

µ̃2
k−1

l−1
∑

j=0

(µj − µ̃j)





1

1 + ρ∗

a

b

k−1
∑

i=l

‖si‖2

= (1 − ξ)
1

1 + ρ∗

a

b

k−1
∑

i=l

‖si‖2

2

Remark 3 From lemma 17 it follows that if we replace the left-hand side inequality in
(28) with K ≥ aπ̄ then (52) becomes (cf. the last step in the proof of lemma 23)

k−1
∑

i=0

(µ̃′i − µ̃i) ≥
1 − θ2

1 + ρ∗

a

b

k−1
∑

i=0

‖si‖2

and, consequently, the right-hand side of (53) becomes multiplied by 1 − θ2.

A.5 Auxiliary results related to theorems 1–3

Lemma 25 Let P ≡ PĨ , Mi ≡Mµ̃i
, where Mµ is given by (40), and let

Ti = π̄P̄KP̄ π̄(µ̃iI −M)

If µ̃m−1 > µm and K = KT satisfies (28) then for any u ∈ E

ai‖π̄u‖2
Mi

≤ (Tiu, u)Mi
≤ bi‖π̄u‖2

Mi
(54)

where ai = a(µ̃i − µm)(1 − θ2)2 and bi = bµ̃i.

Proof. Since Ti = π̄P̄KP̄ π̄Mi, we have

(Tiu, u)Mi
= (π̄P̄KP̄ π̄Miu,Miu) = ‖P̄Miπ̄u‖2

K

and, in view of (28),

a‖P̄Miπ̄u‖2 ≤ (Tiu, u)Mi
≤ b‖P̄Miπ̄u‖2

For ‖P̄Miπ̄u‖ we easily obtain the estimates (cf. (24) for ‖π̄P π̄‖)

‖Miπ̄u‖ ≥ ‖P̄Miπ̄u‖ ≥ ‖π̄P̄Miπ̄u‖ ≥ ‖Miπ̄u‖ − ‖π̄P π̄Miπ̄u‖
≥ ‖Miπ̄u‖ − θ2‖Miπ̄u‖ = (1 − θ2)‖Miπ̄u‖

and from (41) we have

(µ̃i − µm)‖π̄u‖2
Mi

≤ ‖Miπ̄u‖2 ≤ µ̃i‖π̄u‖2
Mi

which leads to (54). 2

Corollary 6 In the notation and under the assumptions of lemma 25, for

τi =
2

ai + bi

we have

‖I − τiTi‖Mi
≤ qi ≡

bi − ai

bi + ai
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Remark 4 From the proof of lemma 25 we observe that the above results for Ti remain
valid if the left-hand side inequality in (28) is replaced with K ≥ aπ̄.

Lemma 26 In the notation and under the assumptions of corollary 6, for

ûi = ũi − τiP̄Ksi

we have

‖π̄ûi‖Mi
≤ qi‖π̄ũi‖Mi

+ 2θ2 ‖si‖√
µ̃i

(55)

Proof. We have

π̄ûi = π̄ũi − τiπ̄P̄Ksi = π̄ũi − τiπ̄P̄KP̄ si = π̄ũi − τiπ̄P̄KP̄ (π̄ + π)si

= π̄ũi − τiπ̄P̄KP̄ π̄Miũi − τiπ̄P̄KP̄πsi = (I − τiTi)π̄ũi − vi

where vi = τiπ̄P̄KP̄πsi = τiπ̄P̄KP̄πP̄ si. Using (41), (28) and (24) we obtain

‖vi‖Mi
≤
√

µ̃i‖vi‖ ≤ τib
√

µ̃i‖P̄ πP̄ si‖ ≤ 2√
µ̃i
θ2‖si‖

which leads to (55). 2

Lemma 27 Let µ̃l−1 > µl, µ̃k−1 > µk and µ̃m−1 > µm. In the notation and under the
assumptions of lemma 26 the following inequality is valid for l ≤ i < k

((µ̃iI −M)π̄0ûi, π̄0ûi) ≤ q2
i ((µ̃iI −M)π̄0ũi, π̄0ũi) + c0

θ2‖si‖2

µ̃i
(56)

where c0 = 4
√
η0 + η− + η+ + 8χ+ + 4θ2.

Proof. Using lemma 11, we have

‖π̄ũi‖2
Mi

= ((µ̃iI −M)π̄ũi, π̄ũi) ≤
‖si‖2

δµ(ũi, Ī)
≤ η0

‖si‖2

µ̃i

and, using lemma 15, we have

((µ̃iI −M)π−ũi, π−ũi) ≥ − χ−θ
2‖si‖2

δµ(ũi, I−)
≥ − η−

θ2‖si‖2

µ̃i
(57)

and, hence,

‖π̄ũi‖2
Mi

= ((µ̃iI −M)π̄ũi, π̄ũi) = ((µ̃iI −M)π̄0ũi, π̄0ũi)

−((µ̃iI −M)π−ũi, π−ũi) − ((µ̃iI −M)π+ũi, π+ũi)

≤ ((µ̃iI −M)π̄0ũi, π̄0ũi) + η−
θ2‖si‖2

µ̃i

Therefore, using lemma 26, we obtain

‖π̄ûi‖2
Mi

≤
(

qi‖π̄ũi‖Mi
+ 2

θ2‖si‖√
µ̃i

)2

= q2i ‖π̄ũi‖2
Mi

+ 4qi‖π̄ũi‖Mi

θ2‖si‖√
µ̃i

+ 4
θ4‖si‖2

µ̃i

≤ q2i ((µ̃iI −M)π̄0ũi, π̄0ũi) + η−
θ2‖si‖2

µ̃i

+ 4
√
η0

θ2‖si‖2

µ̃i
+ 4

θ4‖si‖2

µ̃i
(58)
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Further,

‖π̄ûi‖2
Mi

= ((µ̃iI −M)π̄ûi, π̄ûi) = ((µ̃iI −M)π̄0ûi, π̄0ûi)

−((µ̃iI −M)π−ûi, π−ûi) − ((µ̃iI −M)π+ûi, π+ûi)

≥ ((µ̃iI −M)π̄0ûi, π̄0ûi) − ((µ̃iI −M)π+ûi, π+ûi)

that is,

((µ̃iI −M)π̄0ûi, π̄0ûi) ≤ ‖π̄ûi‖2
Mi

+ ((µ̃iI −M)π+ûi, π+ûi)

Since π+ûi = π+ũi − τiπ+P̄Ksi ≡ π+ũi − wi, we have:

((µ̃iI −M)π+ûi, π+ûi) ≤ ((µ̃iI −M)π+ũi, π+ũi)

+2|((µ̃iI −M)π+ũi, wi)| + ((µ̃iI −M)wi, wi)

From lemma 15 it follows that (cf. (57))

((µ̃iI −M)π+ũi, π+ũi) ≤ η+

θ2‖si‖2

µ̃i

Further,

|((µ̃iI −M)π+ũi, wi)| = τi|((µ̃iI −M)π+ũi, π+P̄Ksi)|
= τi|(π+ri, π+P̄Ksi)| = τi|(π+P̄ si, π+P̄Ksi)|
≤ τi‖π+P̄ si‖‖π+P̄Ksi‖ ≤ τi‖πP̄ si‖‖πP̄Ksi‖

≤ τiθ
2‖si‖‖Ksi‖

and, using (28), we obtain

|((µ̃iI −M)π+ũi, wi)| ≤ τibθ
2‖si‖2 ≤ 2

θ2‖si‖2

µ̃i

Finally,

((µ̃iI −M)wi, wi) = τ2
i ((µ̃iI −M)π+P̄Ksi, π+P̄Ksi)

≤ τ2
i µ̃i‖π+P̄Ksi‖2 ≤ τ2

i µ̃i‖πP̄Ksi‖2 ≤ τ2
i µ̃iθ

2‖Ksi‖2

≤ b2τ2
i µ̃iθ

2‖si‖2 ≤ 4
θ2‖si‖2

µ̃i

that is

((µ̃iI −M)π̄0ûi, π̄0ûi) ≤ ‖π̄ũi‖2
Mi

+ χ+ (η+ + 8)
θ2‖si‖2

µ̃i

which, together with (58) leads to (56). 2

Lemma 28 In the notation and under the assumptions of lemma 27 the following
inequality is valid

(µ(π0ũi) − µ(π0ûi))‖π0ûi‖2 ≤ c1
θ2‖si‖2

µ̃i
(59)

where c1 = 4(2 + (1 + η±t+ (1 + η+t
2)θ2)(1 + t20)).
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Proof. We have

(µ(π0ũi) − µ(π0ûi))‖π0ûi‖2 = µ(π0ũi)‖π0ûi‖2 − ‖π0ûi‖2
M

π0ûi = π0ũi − τiπ0P̄Ksi

‖π0ûi‖2
M = ‖π0ũi‖2

M − 2τi(ũi, π0P̄Ksi)M + τ2
i ‖π0P̄Ksi‖2

M

‖π0ûi‖2 = ‖π0ũi‖2 − 2τi(ũi, π0P̄Ksi) + τ2
i ‖π0P̄Ksi‖2

Hence, (µ(π0ũi) − µ(π0ûi))‖π0ûi‖2 = −2τiα+ τ2
i β, where

α = ((µ(π0ũi)I −M)ũi, π0P̄Ksi) = α1 + α2

α1 = ((µ̃iI −M)ũi, π0P̄Ksi), α2 = (µ(π0ũi) − µ̃i)(ũi, π0P̄Ksi)

β = µ(π0ũi)‖π0P̄Ksi‖2 − ‖π0P̄Ksi‖2
M

For α1 we have

|α1| = |(si, π0P̄Ksi)| = |(π0P̄ si, π0P̄Ksi)| ≤ ‖π0P̄ si‖‖π0P̄Ksi‖
≤ ‖πP̄ si‖‖πP̄Ksi‖ ≤ θ2‖si‖‖Ksi‖ ≤ bθ2‖si‖2

The second factor in α2 can be estimated as follows

|(ũi, π0P̄Ksi)| ≤
‖π0P̄Ksi‖√

µ̃i
≤ ‖πP̄Ksi‖√

µ̃i
≤ θ‖Ksi‖√

µ̃i
≤ bθ

‖si‖√
µ̃i

and for the first factor we can apply (47) to obtain

|α2| ≤ b(1 + η±t)(1 + t20)θ
2‖si‖2

Finally, β is easily estimated, with the help of (48), as

β ≤ µ(π0ũi)‖π0P̄Ksi‖2 ≤ µ(π0ũi)‖πP̄Ksi‖2 ≤ b2µ(π0ũi)θ
2‖si‖2

= b2(µ̃i + µ(π0ũi) − µ̃i)θ
2‖si‖2 ≤ b2(1 + (1 + η+t

2)(1 + t20)θ
2)µ̃iθ

2‖si‖2

which, together with the above estimates for α1 and α2, leads to (59). 2

Lemma 29 In the notation and under the assumptions of lemma 27 the following
inequality is valid

(µ(π0ũi) − µ̃i)‖π̄0ûi‖2 ≤ (c2t
2
0 + c3θ

2)
‖si‖2

µ̃i
(60)

where c2 = 2(η0 + η+θ
2) and c3 = 8(1 + η+t

2)(1 + t20)(1 + θ2).
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Proof. We have

‖π̄0ûi‖2 ≤ 2‖π̄0ũi‖2 + 2τ2
i ‖π̄0P̄Ksi‖2

and

‖π̄0P̄Ksi‖2 = ‖π̄P̄Ksi‖2 + ‖π̄±P̄Ksi‖2 ≤ ‖Ksi‖2 + ‖πP̄Ksi‖2

≤ (1 + θ2)b2‖si‖2

Thus,

(µ(π0ũi) − µ̃i)‖π̄0ûi‖2 ≤ 2(µ(π0ũi) − µ̃i)(‖π̄0ũi‖2 + τ2
i b

2(1 + θ2)‖si‖2)

= 2(µ(π0ũi) − µ̃i)(t
2
0‖π0ũi‖2 + τ2

i b
2(1 + θ2)‖si‖2)

and, using (48) and (50), we arrive at (60). 2

Lemma 30 Let Î = span{ûi}i=p,q, where ûi are given in lemma 26 and 0 ≤ p < q <
m, and denote µ̂i = µi−p(Î). If K satisfies (28) then

q
∑

i=p

(µ(ûi) − µ̂i) ≤ 16
µp + µm + µ0θ

2

µ̃q
ρ
Î

q
∑

i=p

‖si‖2 (61)

Proof. Let A and B be (q−p+1)-by-(q−p+1) matrices with the entries aij = (vi, vj)M
and bij = (vi, vj), i, j = p, . . . , q, resp., where vi =

√
µ̃iûi. Using the fact that P̄Mũi =

P̄ (M − µ̃iI)ũi = −P̄ si = −si we have

(ûi, v̂j) = δij − τi(P̄Ksi,Mũj) − τj(P̄Ksj,Mũi) + τiτj(P̄Ksi, P̄Ksj)M

= δij + τi(Ksi, sj) + τj(Ksj, si) + τiτj(P̄Ksi, P̄Ksj)M

Hence, aij = µ̃iδij + a1
ij + a2

ij + a3
ij, where

a1
ij = a2

ji = τi
√

µ̃iµ̃j(Ksi, sj), a3
ij = τiτj

√

µ̃iµ̃j(P̄Ksi, P̄Ksj)M

Using (28) and the fact that bτiµ̃i < 2 we easily obtain the following estimate

|a1
ij | ≤ τi

√

µ̃iµ̃j‖Ksi‖‖sj‖ ≤ 2

√

µ̃j

µ̃i
‖si‖‖sj‖

Further,

|(P̄Ksi, P̄Ksj)M | ≤ |(πP̄Ksi, πP̄Ksj)M | + |(π̄P̄Ksi, π̄P̄Ksj)M |
≤ ‖πP̄Ksi‖M‖πP̄Ksj‖M + ‖π̄P̄Ksi‖M‖π̄P̄Ksj‖M

≤ µ0‖πP̄Ksi‖‖πP̄Ksj‖ + µm‖π̄P̄Ksi‖‖π̄P̄Ksj‖
≤ µ0θ

2‖Ksi‖‖Ksj‖ + µm‖Ksi‖‖Ksj‖ ≤ (µ0θ
2 + µm)b2‖si‖‖sj‖

and, hence, |a3
ij | ≤ 4(µ0θ

2 + µm)(µ̃iµ̃j)
−1‖si‖‖sj‖. For bij we have

bij = δij + τiτj
√

µ̃iµ̃j(P̄Ksi, P̄Ksj) = δij + b1ij

28



Let An and δB be (q − p+ 1)-by-(q − p+ 1) matrices with the entries an
ij , n = 1, 2, 3,

and b1ij resp. and let A0 = Diag{µ̃i}i=p,q. For δA = A1 +A2 +A3 = A1 +AT
1 +A3 we

easily obtain the following estimate

‖δA‖ ≤ ‖δA‖F ≤ ‖δA1‖F + ‖δA2‖F + ‖δA3‖F = 2‖δA1‖F + ‖δA3‖F

≤ 4





q
∑

i=p

µ̃i‖si‖2





1

2




q
∑

i=p

‖si‖2

µ̃i





1

2

+ 4(µm + µ0θ
2)

q
∑

i=p

‖si‖2

µ̃i

≤ 4(µp + µm + µ0θ
2)

q
∑

i=p

‖si‖2

µ̃i

and for δB we have: δB ≥ 0 and

Tr(δB) =
q
∑

i=p

b1ii =
q
∑

i=p

µ̃iτ
2
i ‖P̄Ksi‖2 ≤ 4

q
∑

i=p

‖si‖2

µ̃i
≤ 4

µ̃q

q
∑

i=p

‖si‖2

It remains to apply lemma 7. 2

Lemma 31 Let Ĩ ′′ = span{ûi}i=0,k−1, where ûi are given in lemma 26, and denote
µ̃′′i = µi(Ĩ ′′). If K satisfies (28) and µ̃k−1 > µk and either l = 0 or

l−1
∑

i=0

(µi − µ̃i) ≤
ζ

4

(

2 +
µm + µ0θ

2

µl

)−1
µ̃l−1 − µl

1 + ρ−
(62)

where ζ < 1, then

k−1
∑

i=l

(µ(ûi) − µ̃′′i ) ≤ c4ρ∗

k−1
∑

i=l

‖si‖2 (63)

where

c4 = 4
µl

µk

(

8 + 4
µ0

µl
θ2 +

(

(k − l)η̃−
1 − ζ

(

1 + 3
µ0

µl

))2
)

Proof. For l = 0 we have η̃− = 0 and (63) follows directly from (61). Thus, it remains
to consider the case l > 0.

Let A and B be k-by-k matrices with the entries aij = (v̂i, v̂j)M and bij = (v̂i, v̂j)
resp., i, j = 0, . . . , k−1, where v̂i =

√
µ̃iui, and let A and B be split into blocks Aij and

Bij , i, j = 0, 1, where the size of A00 and B00 is l-by-l. Denote by µ̂i, i = 0, . . . , l−1, the
eigenvalues of B−1

00 A00 and by µ̂i, i = l, . . . , k−1, the eigenvalues of B−1
11 A11 enumerated

in descending order. We have: aij = µ̃ijδij + a1
ij + a2

ij + a3
ij and bij = δij + b1ij where

an
ij and b1ij are defined in the proof of lemma 30. Hence, A00 = D00 + δA00, where
D00 = Diag{µ̃i}i=0,l−1, and B00 = I + δB00. Using the estimates for an

ij in the proof
of lemma 30 and the fact that A00 ≥ µ̃l−1, we easily obtain

− α00

µ̃l−1

A00 ≤ δA00 ≤ α00

µ̃l−1

A00

where

α00 = 4(µl + µm + µ0θ
2)ρ− ≤ 4

(

1 +
µm + µ0θ

2

µl

)

l−1
∑

i=0

‖si‖2
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Further,

|b1ij | ≤ τiτjb
2
√

µ̃iµ̃j‖si‖‖sj‖ ≤ 4
‖si‖‖sj‖
√

µ̃iµ̃j

and, hence, 0 ≤ δB00 ≤ β00 ≤ β00B00, where

β00 = 4
l−1
∑

i=0

‖si‖2

µ̃i
≤ 4

µ̃l−1

l−1
∑

i=0

‖si‖2

Using lemma 4, we obtain

µ̂l−1 ≥ µ̃l−1

(

1 − 4

µ̃l−1

(

2 +
µm + µ0θ

2

µl

)

l−1
∑

i=0

‖si‖2

)

= µ̃l−1 − 4

(

2 +
µm + µ0θ

2

µl

)

l−1
∑

i=0

‖si‖2

and, using lemma 23 and (62),

µ̂l−1 ≥ µ̃l−1 − 4

(

2 +
µm + µ0θ

2

µl

)

(1 + ρ−)
l−1
∑

i=0

(µi − µ̃i)

≥ µ̃l−1 − ζ(µ̃l−1 − µl)

that is, µ̂l−1 − µl ≥ (1 − ζ)(µ̃l−1 − µl). Now, let µ = µ̃′′n, where n ≥ l, and denote
rij = aij − µbij. We have

rij = ((M − µI)v̂i, v̂j) =
√

µ̃iµ̃j((M − µI)ûi, ûj)

=
√

µ̃iµ̃j(−τi(P̄Ksi, (M − µI)ũj) − τj((M − µI)ũi, P̄Ksj)

+ τiτj((M − µI)P̄Ksi, P̄Ksj))

and, since P̄ ũ = 0 for any ũ ∈ Ĩ,

rij =
√

µ̃iµ̃j(τi(Ksi, sj) + τj(si,Ksj) + τiτj((M − µL)P̄Ksi, P̄Ksj))

= a1
ij + a2

ij + r3ij

We have

|a1
ij | = |a2

ji| ≤
√

µ̃iµ̃jτi‖Ksi‖‖sj‖ ≤
√

µ̃iµ̃jτib‖si‖‖sj‖ ≤ 2

√

µ̃j

µ̃i
‖si‖‖sj‖

Since −µ0I ≤M − µI ≤ µ0I, applying lemma 3, we obtain

|((M − µI)P̄Ksi, P̄Ksj)| ≤ µ0‖P̄Ksi‖‖P̄Ksj‖
≤ µ0‖Ksi‖‖PKsj‖ ≤ µ0‖Ksi‖‖Ksj‖ ≤ µ0b

2‖si‖‖sj‖

and, thus,

|r3ij| = τiτj
√

µ̃iµ̃j|((M − µI)P̄Ksi, P̄Ksj)| ≤ 4µ0

‖si‖‖sj‖
√

µ̃iµ̃j
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For l ≤ i < k and 0 ≤ j < l we have

|rij| ≤ 2(µ̃i + µ̃j + 2µ0)
‖si‖‖sj‖
√

µ̃iµ̃j
≤ 2√

µ̃k−1

(µl + 3µ0)‖si‖
‖sj‖
√

µ̃j

that is

‖A10 − µR10‖2
F ≤ 4µ2

l

µ̃k−1

(

1 + 3
µ0

µl

)2

ρ−

k−1
∑

i=l

‖si‖2

By the minimax principle µ̃′′
i ≤ µi and, hence, µ̂l−1−µ̃′′l ≥ µ̂l−1−µl ≥ (1−ζ)(µ̃l−1−µl).

Applying lemma 8, we obtain

µ̂i − µ̃′′i ≤ µ̃′′i (k − l)

(1 − ζ)2(µ̃l−1 − µl)2
4µ2

l

µ̃k−1

(

1 + 3
µ0

µl

)2

ρ−

k−1
∑

i=l

‖si‖2

= 4(k − l)
µ̃′′i
µ̃k−1

η̃2
−

(1 − ζ)2

(

1 + 3
µ0

µl

)2

ρ−

k−1
∑

i=l

‖si‖2

and, thus,

k−1
∑

i=l

(µ̂i − µ̃′′i ) ≤ 4(k − l)2
µl

µk

η̃2
−

(1 − ζ)2

(

1 + 3
µ0

µl

)2

ρ−

k−1
∑

i=l

‖si‖2

Finally, using lemma 30, we obtain

k−1
∑

i=l

(µ(ûi) − µ̂i) ≤ 16
2µl + µ0θ

2

µk
ρ0

k−1
∑

i=l

‖si‖2

and we arrive at (63). 2

Lemma 32 In the notation and under the assumptions of lemma 31

k−1
∑

i=l

(µi − µ̃′′i ) ≤ q2
k−1

k−1
∑

i=l

(µi − µ̃i) + (c4ρ∗ + c5θ
2 + c6t

2
0)

k−1
∑

i=l

‖si‖2 (64)

where c5 = c0 + c1 + c3, c6 = c2 +(1−q2
k−1

)(α0 +β0), α0 and β0 are given in lemma 20,
and c0, . . . , c4 are given in lemmas 27, 28, 29 and 31.

Proof. It is easy to verify that

((µ̃iI −M)π̄0ûi, π̄0ûi) = (µ(π0ũi) − µ(ûi))‖ûi‖2

+ (µ(π0ûi) − µ(π0ũi)‖π0ûi‖2 + (µ̃i − µ(π0ũi)‖π̄0ûi‖2

≥ (µ(π0ũi) − µ(ûi))‖ũi‖2 + (µ(π0ûi) − µ(π0ũi)‖π0ûi‖2

+ (µ̃i − µ(π0ũi)‖π̄0ûi‖2

Thus,

µ(π0ũi) − µ(ûi) ≤ µ̃i((µ̃iI −M)π̄0ûi, π̄0ûi)

+ µ̃i(µ(π0ũi) − µ(π0ûi))‖π0ûi‖2 + µ̃i(µ(π0ũi) − µ̃i)‖π̄0ûi‖2
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and, using lemmas 27, 28 and 29, we obtain

µ(π0ũi) − µ(ûi) ≤ q2
i µ̃i((µ̃iI −M)π̄0ũi, π̄0ũi) + c0θ

2‖si‖2

+ c1θ
2
L‖si‖2 + (c2t

2
0 + c3θ

2)‖si‖2

= q2i (µ(π0ũi) − µ̃i) + (c5θ
2 + c2t

2
0)‖si‖2

Using the above inequality together with lemmas 31 and 20, we finally obtain

k−1
∑

i=l

(µi − µ̃′′i ) =
k−1
∑

i=l

(µi − µ(π0ũi)) +
k−1
∑

i=l

(µ(π0ũi) − µ(ûi)) +
k−1
∑

i=l

(µ(ûi) − µ̃′′i )

≤
k−1
∑

i=l

(µi − µ(π0ũi)) + q2
k−1

(

k−1
∑

i=l

(µi − µ̃i) +
k−1
∑

i=l

(µ(π0ũi) − µi)

)

+ (c5θ
2 + c2t

2
0)‖si‖2 + c4ρ∗‖si‖2

≤ q2k−1

k−1
∑

i=l

(µi − µ̃i) + (((1 − q2
k−1)(α0 + β0) + c2)t

2
0 + c5θ

2 + c4ρ∗)‖si‖2

2

Lemma 33 Assuming that K satisfies (28) and µ̃k−1 > µk and either l = 0 or the
conditions (53) and (62) are satisfied, for any X ⊃ Ĩ∗ + span{Ksi}i=0,k−1

k−1
∑

i=l

(µi − µi(X )) ≤ γ
k−1
∑

i=l

(µi − µ̃i) (65)

where

γ =
q2k−1 + ε

1 + ε
, ε =

b

a

1 + ρ∗
1 − χ−ξ

(c4ρ∗ + c5θ
2 + c6t

2
0) (66)

and ξ is given in lemma 24, c4 in lemma 31 and c5 and c6 in lemma 32.

Proof. Denote µXi ≡ µi(X ). Since X ⊃ Ĩ ′ and X ⊃ Ĩ ′′, where Ĩ ′ and Ĩ ′′ are defined in
lemmas 23 and 31 resp., by the minimax principle µX

i ≥ µ̃′i and µXi ≥ µ̃′′i . Hence, using
lemma 32 and either lemma 23 (for l = 0) or lemma 24 (for l > 0), we obtain

k−1
∑

i=l

(µi − µXi ) ≤ q2
k−1

k−1
∑

i=l

(µi − µ̃i) + (c4ρ∗ + c5θ
2 + c6t

2
0)

k−1
∑

i=l

‖si‖2

≤ q2k−1

k−1
∑

i=l

(µi − µ̃i) + ε
k−1
∑

i=l

(µXi − µ̃i)

= (q2
k−1 + ε)

k−1
∑

i=l

(µi − µ̃i) − ε
k−1
∑

i=l

(µi − µXi )

which leads to (65). 2
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