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Abstract. In this paper we present an analysis of a system of coupled oscillators suggested
by atmospheric dynamics. We make two assumptions for our system. The first assumption is
that the frequencies of the characteristic oscillations are widely separated and the second is
that the nonlinear part of the vector field preserves the distance to the origin. Using the first
assumption, we prove that the reduced normal form of our system has an invariant manifold
which exists for all values of the parameters. This invariant manifold cannot be perturbed
away by including higher order terms in the normal form. Using the second assumption,
we view the normal form as an energy-preserving three-dimensional system which is linearly
perturbed. Restricting ourselves to a small perturbation, the flow of the energy-preserving
system is used to study the flow in general. We present a complete study of the flow of the
energy-preserving system and its bifurcations. Using these results, we provide the condition
for having a Hopf bifurcation of one of the two equilibria of the perturbed system. We also
numerically follow the periodic solution created via the Hopf bifurcation and find a sequence
of Period-Doubling and Fold bifurcations, also a Torus bifurcation.
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1. Introduction

High-order resonances in a system of coupled oscillators tend to get less attention rather
than the lower-order ones. In fact, as noticed in [10], the tradition in engineering is to neglect
the effect of high-order resonances in a system. However, the results of Broer et.al. [1, 2],
Langford and Zhan [14, 15], Nayfeh et.al [16, 17], Tuwankotta and Verhulst [20]. etc., show
that in the case of widely separated frequencies, which can be seen as an extreme type of
high-order resonances, the behavior of the system is different from the expectation.

Think of a system
ẍ + ωxx = f(ẋ, x, y, t)
ÿ + ωyy = g(ẏ, x, y, t),

where ωx and ωy are assume to be positive real numbers, and f and g are sufficiently smooth
functions. If there exists k1, k2 ∈ N such that k1ωx − k2ωy = 0, we called the situation
resonance. If k1 and k2 are relatively prime and k1 + k2 < 5 we call this low-order resonance
(or, also called genuine or strong resonances).

One of the phenomena of interest in a system of coupled oscillators is the energy exchanges
between the oscillators. It is well known that in low-order resonances, this happens rather
dramatically compared to in higher-order ones. For systems with widely separated frequencies,
the behavior is different from the usual high-order resonances in the following sense. In
[10, 16, 17], the authors observed a large scale of energy exchanges between the oscillators. In
the Hamiltonian case, the results in [1, 2, 20] show that although there is no energy exchange
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between the oscillators, there are important phase interactions occurring on a relatively short
time-scale.

1.1. Motivations. In this paper we study a system of coupled oscillators with widely sep-
arated frequencies. This system is comparable with the systems which are considered in
[10, 14, 15, 16, 17]. However, we are mainly concerned with the internal dynamics. Thus,
in comparison with [10, 16, 17], there is no time-dependent forcing term in our system. Our
goal is to describe the dynamics of the model using normal form theory. This analysis can be
considered as a supplement to [14, 15] which are concentrated on the unfolding of the trivial
equilibrium and its bifurcation.

Another motivation for studying this system comes from the applications in atmospheric
research. In [4], a model for ultra-low-frequency variability in the atmosphere is studied. In
such a study, one usually encounters a system with a large number of degrees of freedom,
which is a projection of the Navier-Stokes equation to a finite-dimensional space. The pro-
jected system in [4] is ten-dimensional and the projection is done using so-called Empirical
Orthogonal Functions (see the reference in [4] for introduction to the EOF). In that projected
system, the linearized system around an equilibrium has two among five pairs of eigenval-
ues of λ1 = −0.00272154 ± i0.438839 and λ5 = 0.00165548 ± i0.0353438. One can see that
Im(λ1)/Im(λ2) = 12.4163 . . ., which is clearly not a strong resonance.

In fluid dynamics, the model usually has a special property, namely the nonlinear part of
the vector field (the advection term) preserves the energy. We assume the same holds in our
system. We take the simplest representation of the energy, that is the distance to the origin,
and assume that the flow of the nonlinear part of our system preserves the distance to the
origin.

The relation between a ten-dimensional, or even worse, an infinite-dimensional system of
differential equations and a system consisting of only two special modes is an important ques-
tion. However, it falls beyond the scope of this paper. In this paper we want to provide, as
completely as possible, the information of the dynamics of a two coupled oscillators system
having widely separated frequencies and an energy-preserving nonlinearity.

1.2. Summary of the results. Let us consider a system of first-order ordinary differential
equations in R

4 with coordinate z = (z1, z2, z3, z4). We add the following assumptions to our
system.

(A1) The system has an equilibrium: z◦ ∈ R
4 such that the linearized vector field around

z◦ has four simple eigenvalues λ1, λ1, λ2, and λ2, where λ1, λ2 ∈ C. Furthermore, we
assume that Im(λ1) is much larger in size compared to Im(λ2), Re(λ1) and Re(λ2).

(A2) The nonlinear part of the vector field preserves the energy which is represented by the
distance to the origin.

In section 2, we will re-state these assumptions in a more mathematically precise manner.

We use normal form theory to construct an approximation for our system. In Theorem
3.1, we show that the normal form, truncated up to any finite degree, exhibits an invariant
manifold which exists for all values of parameters. This invariant manifold coincides with the
linear eigenspace corresponding to the pair of eigenvalues λ2 and λ2.
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We simplify the system even more by looking only at the situation where Re(λ1) and
Re(λ2) are small. In fact, if Re(λ1) = Re(λ2) = 0, the system preserves the energy. The
phase space of such a system is fibered by the energy manifolds, which are spheres in our
case. By restricting the flow of the normal form to each of these spheres, we reduce the normal
form to a two-dimensional system of differential equations parameterized by the value of the
energy, which is the radius of the sphere. As a consequence, each equilibrium that we find on
a particular sphere can be continued to some neighboring spheres. This gives us a continuous
set of equilibria of the normal form for Re(λ1) = Re(λ2) = 0. In fact we have two of such sets
in our system. This analysis is presented in sections 5 and 6.

For small values of Re(λ1) and Re(λ2), the normal form can be considered as an energy-
preserving three-dimensional system which is linearly perturbed. The dynamics consists of
slow-fast dynamics. The fast dynamics corresponds to the motion on two-spheres described
in the above paragraph. The slow dynamics is the motion from one sphere to another along
the direction of the curves of critical points.

In [7], Fenichel proved the existence of an invariant manifold where the slow dynamics
takes place. This slow manifold is actually a perturbation of the manifold of equilibria which
exists for the unperturbed case. The conditions that have to be satisfied are the unperturbed
manifold should be normally hyperbolic and compact. Since both of such curves in our
system, fail to satisfy these condition, we cannot conclude that there exists an invariant slow
manifold. This situation is already realized in [12, 10]. We illustrate this in a simple example
below.

Example 1.1. Consider a system of differential equations

ẋ = x2

εẏ = −y,

with ε � 1. This system has an invariant manifold y = 0. The solutions of the system live
in an integral curve defined by

y(x) = y◦ exp
(

1
ε

x◦−x
x◦x

)

where (x◦, y◦) is the initial condition. For x◦ > 0 the limiting behavior is different from one
solution to another. In fact, as x → ∞, y 6→ 0 (in this example x goes to infinity in finite
time). Thus, a unique manifold to which all solutions are attracted does not exist. However,
as ε ↓ 0, the solutions become exponentially close to y = 0 for large x. This example is treated
carefully in [21].

For an introduction to Geometric Singular Perturbation, see [12]. For a thorough treatment
on the theory of invariant manifold, see [11] and also [22]. The dynamics however, is similar
apart from the fact that the slow motion is tunneling into a very narrow tube along the curve
instead of following a unique manifold. For instance in the example above, the width of the
tunnel is O(exp(−1/εx◦)).

The linear perturbation is governed by two parameters: µ1 (= Re(λ1)) and µ2 (= Re(λ2)).
If µ1µ2 > 0, the system becomes simple in the sense that we have only one equilibrium, the
trivial one. The flow of the normal form collapses to the trivial equilibrium either in positive
or negative time, which implies the non-existence of any other limit set. In the opposite case:
µ1µ2 < 0, the trivial equilibrium is unstable. In a general situation, we have two critical
points: the trivial one and the nontrivial one. There are two situations where the nontrivial
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equilibrium fails to exist. The first situation is when we have no interaction between the
dynamics of (z1, z2) and (z3, z4). The other situation corresponds to a particular instability
balance between the modes. For a large part of the parameter space, we prove that the solu-
tions are bounded (see section 4). Combining the information of the energy-preserving flow
(section 5) and its bifurcations (section 6), we can derive a lot of information of the dynamics
of the normal form for small µ1 and µ2.

The nontrivial equilibrium that we mentioned above, is a continuation of one of the equi-
libria of the fast system. Although we have the explicit expression for the location of the
nontrivial equilibrium, to derive the stability result using linearization is still cumbersome.
Using geometric arguments, the stability result and also the bifurcations of this nontrivial
equilibrium can be achieved easily.

We show in this paper that the only possible bifurcation for the nontrivial equilibrium is
Hopf bifurcation. This Hopf bifurcation can be predicted analytically. This result is presented
in section 8. We also study the bifurcation of the periodic solution which is created via the
Hopf bifurcation of the nontrivial equilibrium. However, this is difficult to do analytically.
Using the continuation software AUTO [5], we present the numerical bifurcation analysis of
this periodic solution in section 9. Numerically, we find Torus bifurcation and a sequence of
Period-Doubling and Fold bifurcations.

1.3. The lay out. In section 2 the system is introduced. The small parameter in the system
is the frequency of one of the oscillators and it is called ε̃. Using averaging we normalize the
system and reduce it to a three-dimensional system of differential equations. The normalized
system is analyzed in section 3. We complete the analysis of the case where µ1µ2 > 0 in
this section and assume that µ1µ2 < 0 in the rest of the paper. In section 4, we re-scale
µ1 and µ2 using a new small parameter ε. By doing this we formulate the normal form
as a perturbation of an energy-preserving system in three-dimensional space. There are two
continuous sets of equilibria of the energy-preserving part of the system and they are analyzed
in section 5. In section 6, we use the fact that the phase space of the energy-preserving part
of the system is fibered by invariant half spheres, to project the unperturbed system to a
two-dimensional system of differential equations. The stability results derived in section 5,
are applied to study the bifurcation in the projected system. In section 7, we turn on our
perturbation parameter: ε 6= 0. Using geometric arguments, we derive the stability results for
the nontrivial equilibrium. Furthermore, in section 8 we use a similar argument to derive the
condition for Hopf bifurcation of the nontrivial equilibrium. The bifurcation of the periodic
solution which is created via Hopf bifurcation, is studied numerically in section 9.

2. Problem formulation and normalization

Let 0 < ε̃ � 1 be a small parameter. Consider a system of ordinary differential equations
in R

4 with coordinates z = (z1, z2, z3, z4), defined by:

(2.1) ż =

(

A1 0
0 A2

)

z + F (z),

where Aj, j = 1, 2 are two by two matrices, with eigenvalues: ε̃µ1 ± i, and ε̃µ2 ± iε̃ω, ω, µ1,
and µ2 are real numbers. We assume that µ1 and µ2 are bounded and ω is bounded away
from zero and infinity. The nonlinear function F is a quadratic, homogeneous polynomial in
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z satisfying: z · F (z) = 0. Thus, the flow of the system ż = F (z) is tangent to the sphere:
z1

2 + z2
2 + z3

2 + z4
2 = R2 where R is the radius.

We re-scale the variables by z 7→ ε̃z. By doing this we formulate the system (2.1) as a
perturbation problem, i.e.

(2.2) ż =

(

Ā1 0
0 0

)

z + ε̃F̄ (z),

with Ā1 =

(

0 1
−1 0

)

. Note that F̄ is no longer homogeneous; it contains linear terms. We

normalize (2.2) with respect to the actions defined by the flow of the unperturbed vector field
of (2.2) (that is for ε̃ = 0). This can be done by applying the transformation

z1 7→ r cos(t + ϕ), z2 7→ −r sin(t + ϕ), z3 7→ x and z4 7→ y

to (2.2) and then average the resulting equations of motion with respect to t over 2π. See
[18] for details on the averaging method.

The averaged equations are of the form

ϕ̇ = ε̃G1(r, x, y) + O(ε̃2)
ṙ = ε̃G2(r, x, y) + O(ε̃2)
ẋ = ε̃G3(r, x, y) + O(ε̃2)
ẏ = ε̃G4(r, x, y) + O(ε̃2),

where Gj ,j = 1, . . . , 4 are at most quadratic. Thus, we can reduce the system to a three-
dimensional system of differential equations by dropping the equation for ϕ. This reduction
is typical for an autonomous system. We note that by applying the averaging method, we can
preserve the energy-preserving nature of the nonlinearity. Furthermore, by rotation we can
choose a coordinate system such that the equation for r is of the form ṙ = ε̃G̃2(r, x) + O(ε̃2).

We omit the details of the computations and just write down the reduced averaged equa-
tions (or normal form) after rescaling time by t 7→ ε̃t, i.e.

(2.3)





ṙ
ẋ
ẏ



 =





µ1 0 0
0 µ2 0
0 0 µ2









r
x
y



+





δxr
Ω(x, y)y − δr2

−Ω(x, y)x



 ,

where Ω(x, y) = ω + αx + βy, µ1, µ2, α, β, ω, and δ are real numbers. It is important to note
that up to this order, the small parameter ε̃ is no longer present in the normal form, by time
reparameterization.

To facilitate the analysis we introduce some definitions. Let a function G : R
3 → R

3 be
defined by:

(2.4) G(ξ) =





δxr
Ω(x, y)y − δr2

−Ω(x, y)x



 ,

where ξ = (r, x, y)T , Ω(x, y) = ω + αx + βy. We also define a function S : R
3 → R by

(2.5) S(ξ) = r2 + x2 + y2.

Note that d
dt

(S) = 0 along the solution of ξ̇ = G(ξ). Lastly, we define

(2.6) S(R) = {ξ | r2 + x2 + y2 = R2, R ≥ 0}
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which is the level set S(ξ) = R2.

Remark 2.1 (Symmetries in the system). We consider two types of transformations: trans-
formation in the phase space Φj : R

3 → R
3, j = 1, 2 and in the parameter space: Ψ : R

6 → R
6.

Consider Φ1(r, x, y) = (−r, x, y), which keeps the system (2.3) invariant. This immediately
reduces the phase space to D = {r ≥ 0|r ∈ R} × R

2. Another symmetry which turns out
to be important is a combination between Φ2(r, x, y) = (r,−x,−y) and Ψ(α, β, δ, ω, µ1, µ2) =
(−α,−β,−δ, ω, µ1, µ2). System (2.3) is invariant if we transform the variables using Φ2 and
also the parameters using Ψ. It implies that we can reduce the parameter space by fixing a sign
for β. We choose β < 0. One can also consider a combination involving time-reversal sym-
metry. We are not going to take this symmetry into account because this symmetry changes
the stability of all invariant structures in the system. Thus, we assume: ω > 0.

3. General invariant structures

System (2.3) has exactly two general invariant structures in the sense that they exist for all
values of the parameters. They are the trivial equilibrium (r, x, y) = (0, 0, 0) and the invariant
manifold r = 0. The linearized system around the trivial equilibrium has eigenvalues µ1,
µ2 ± iω. We have three cases: µ1µ2 > 0, µ1µ2 < 0 or µ1µ2 = 0.

If µ1µ2 > 0, along the solutions of system (2.3), we have Ṡ = µ1r
2+µ2(x

2+y2) (see (2.5) for
the definition of S) is positive (or negative) semi-definite if µ1 > 0 (or µ1 < 0, respectively).
Thus, S is a globally defined Lyapunov function. As a consequence, all solutions collapse
into the neighborhood of the trivial equilibrium for positive (or negative) time , if µ1 < 0 (or
µ1 > 0, respectively). Moreover, there is no other invariant structure apart from this trivial
equilibrium and the invariant manifold r = 0. This completes the analysis for this case.

For µ1µ2 < 0 the trivial equilibrium is unstable. In the case where µ1 > 0, the equilibrium
has one dimensional unstable manifold and two dimensional stable manifold. The stable
manifold is the invariant manifold r = 0. The situation is reversed in the case µ1 < 0. The
global dynamics in this case is not clear at the moment. We will come back to this question
in the sections 7, 8 and 9.

For µ1µ2 = 0, we have again three different possibilities: µ1 = 0, or µ2 = 0 or µ1 = µ2 = 0.
For the purpose of this paper, we consider only the most degenerate case: µ1 = µ2 = 0. In
this case, Ṡ = 0 which means S(R) is invariant under the flow of (2.3). Thus, the trivial
equilibrium is neutrally stable. The phase space of system (2.3) is fibered by invariant sphere
S(R) and hence the flow reduces to a two-dimensional flow on these spheres.

The second invariant is the invariant manifold r = 0. The following theorem gives us the
existence of this manifold.

Theorem 3.1 (The existence of an invariant manifold). Consider system (2.1), i.e.

(3.1) ż =

(

A1 0
0 A2

)

z + F (z),

with z ∈ R
4, F : R

4 → R
4 is sufficiently smooth with properties: F (0) = 0 and DzF (0) is a

zero matrix. The eigenvalues of A1 are: ε̃µ1 ± i while for A2 are: ε̃µ2 ± iε̃ω, where ω, µj ∈ R,

j = 1, 2 and 0 < ε̃ � 1. Let ż = F k(z) be a normal form for (3.1), up to an arbitrary finite
degree k. The flow of the normal form keeps the manifold M = {z | z1

2 + z2
2 = 0} invariant.
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Proof. Let us transform the coordinate by z 7→ ε̃z. System (3.1) is transformed to

ż = diag(Ā1, 0)z + ε̃F̄ (z; ε̃),

where F̄ contains also linear term. Consider the algebra of vector fields in R
4: X (R4). Note

that we can view the vector field X as a map X : R
4 → R

4. The Lie bracket in this algebra
is the srandard commutator between vector fields, i.e.

[X1, X2](z) = dX1(z) · X2(z) − dX2(z) · X1(z),

where X1, X2 ∈ X (R4) and z ∈ R
4. Let the unperturbed vector field of (2.2) be denoted by

X◦. It defines a linear rotation in (z1, z2)-plane. This action keeps all points in the manifold
M = {z|z1

2 + z2
2 = 0} invariant. We normalize the vector field corresponding to the system

ż = ε̃F̄ (z) with respect to this rotation. The resulting normalized vector field truncated to a
finite order k: XF̃ , commutes with X◦. Thus [X◦, XF̃ ] = 0. In particular, for every m ∈ M,

0 = [X◦, XF̃ ](m) = dX◦(m) · XF̃ (m) − dXF̃ (m) · X◦(m) = dX◦(m) · XF̃ (m).

This implies XF̃ (m) ∈ ker(dX◦(m)) = M. �

The dynamics in this invariant manifold gives us only a partial information of the flow. In
the next section we re-write (2.3) as a perturbation of a system with a first integral.

4. The rescaled system

Recall that if µ1 = µ2 = 0, system (2.3) has an integral, i.e. S(ξ). Let ε be a small
parameter. We re-scale: µ1 = εκ1 and µ2 = −εκ2 with κ1κ2 > 0. System (2.3) becomes

(4.1)
ṙ = δxr + εκ1r
ẋ = Ωy − δr2 − εκ2x
ẏ = −Ωx − εκ2y,

where Ω = ω + αx + βy. We have assumed that ω > 0 and β < 0.

Lemma 4.1. All solutions of system (4.1) with δ > 0, κ1 > 0 and κ2 > 0 are bounded.

Proof. Consider a function F (ξ) = r2 + x2 + y2 − 2η (βx − αy) where η is a parameter
to be determined later. The level set of F , i.e. F (r, x, y) = c is a sphere, centered at

(r, x, y) = (0, ηβ,−ηα) with radius
√

c + η2 (α2 + β2). The derivative of F along a solution
of system (4.1) is

LtF = (2εκ1 + 2ηβδ) r2 − εκ2

(

x2 + y2
)

− 2η (αx + βy)2 − L(x, y),

where L(x, y) is a polynomial with degree at most one. Since κ1 > 0, κ2 > 0 and δ > 0, we
have: 2εκ1 + 2ηβδ < 0 if and only if η > −εκ1/(βδ) > 0. This means under the conditions in
this Lemma, we can always choose η in such a way that the quadratic part of LtF is negative
definite. This ends the proof. �

Let us fix η so that the quadratic part of LtF is negative definite. Consider (x, y) ∈ R
2

and a real number c ∈ R. From equation r2 + (x − ηα)2 + (y + ηα) = c + η2
(

α2 + β2
)

we
can compute r which solves the equation, as a function of x, y, and c: r(x, y; c). Let us define
G : R

2 → R, by assigning to (x, y) the value of (LtF )(r(x, y; c), x, y). One can check that
G(x, y) has a unique maximum and ∂G/∂c does not depend on x or y. Thus, we can solve
∂G/∂x = 0 and ∂G/∂y = 0 for (x, y), and the solution is independent of c. Let (x◦, y◦) be
the solution of ∂G/∂x = 0 and ∂G/∂y = 0. We can solve the equation G(x◦, y◦; c) = 0 for c
and let’s call the solution c◦. Clearly, G(x, y; c◦) ≤ 0. Therefore, for the chosen value of η, the
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ball: B = {(r, x, y) | r2 + (x − ηβ)2 + (y + ηα)2 ≤ c◦ + η2
(

α2 + β2
)

}, is invariant under the
flow of system (4.1). Moreover, the vector field of system (4.1) is always pointing inward at
the boundary of the ball except probably at one point where G(x, y; c◦) = 0. We summarize
in the following corollary.

Corollary 4.2. All solutions of (4.1) for δ > 0, κ1 > 0 and κ2 > 0, after some time stay
inside the ball B.

We cannot apply the same arguments as above if δ < 0. In section 7 we will derive the
conditions for bounded solutions in this case. If δ = 0, then the dynamics of r is decoupled
from the rest. Moreover, r grows exponentially with a rate: εκ1. Thus, we conclude that all
solutions except for those in r = 0, eventually run off to infinity. If κ1 < 0 and κ2 < 0, in the
invariant manifold r = 0 all solutions run off to infinity accept for the origin. This motivates
us to restrict our self to the case where κ1 > 0 and κ2 > 0. To understand system (4.1), first
we study the case where ε = 0.

5. Two continuous sets of equilibria

Recall that we have assumed that ω > 0 and β < 0 (see remark 2.1). For ε = 0, system
(4.1) becomes

(5.1)
ṙ = δxr
ẋ = Ωy − δr2

ẏ = −Ωx.

At this point we assume that α 6= 0, δ 6= 0, β < 0, and ω > 0.

5.1. A continuous set of equilibria in the plane r = 0. There are two continuous sets
of equilibria in system (5.1). One of them is the line: Ω = ω + αx + βy = 0 and it lies in the
invariant manifold r = 0. We parameterize this set by y = y◦, i.e.

(5.2) (r, x, y) =

(

0,−βy◦ + ω

α
, y◦

)

, y◦ ∈ (−∞,+∞).

The eigenvalues of system (5.1) linearized around (5.2), are:

(5.3) λ1 = 0, λ2 = −δ(βy◦ + ω)

α
, and λ3 =

(α2 + β2)y◦ + βω

α
.

It is clear that λ1 is the eigenvalue corresponding to the tangential direction to the set (5.2).
The behavior of the linearized system around the equilibria in (5.2) is determined by the
eigenvalues (5.3). They are presented in figure 1

Remark 5.1. If α = 0 we parameterize the continuous set as (r, x, y) = (0, x◦,−ω/β) , x◦ ∈
(−∞,+∞). Each of these equilibria with x◦ > 0 has two positive eigenvalues (and one zero)
and those with x◦ < 0 have two negative eigenvalues (and one zero). At x◦ = 0 we have two
extra zero eigenvalues.

5.2. A continuous set of equilibria in the plane x = 0. The other continuous set of
equilibria of system (5.1) lies in the plane x = 0. The set is a curve defined by equation

δr2 − β (y + ω/(2β))2 = −ω2/(4β), which is an ellipse if: δ > 0, or hyperbola if δ < 0. This
curve intersects r = 0 at y = 0 and at y = −ω/β. Note that y = −ω/β is also the intersection
point of the curve with the line Ω = 0 which explains why we have an extra zero eigenvalue
if y◦ = −ω/β in (5.3).
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β
ω

−
α   +  β2 2

βω
−

2λ

λ3

2λ

λ3

yo

+

+

+

− −

−

−

+ − −

− +

δ < 0

δ > 0

Figure 1. The above diagram shows the sign of the eigenvalues (5.3) for α < 0.

5.2.1. An ellipse of critical points. Let us now look at the case of δ > 0 where we have an
ellipse of critical points. We parameterize the ellipse by y◦, i.e.

(5.4) (r, x, y) =

(
√

y◦(ω + βy◦)

δ
, 0, y◦

)

where 0 ≤ y◦ ≤ −ω/β. The linearized system of system (5.1) around each of these equilibria

has eigenvalues λ1 = 0, and λ2,3 = 1
2 (αy◦ ±

√
D) where

(5.5) D = (αy◦)
2 − 4(ω + βy◦)(2(δ + β)y◦ + ω)

The following lemma gives the stability results for these critical points.

Lemma 5.2. Let α < 0.

(1) If δ ≥ −β/2 then <(λ2,3) < 0 for all except the two end points of the set of equilibria
(5.4).

(2) If 0 < δ < −β/2, then at the equilibrium

(5.6) (rs, xs, ys) =

(

− ω

2(δ + β)

√

−β + 2δ

δ
, 0,− ω

2(δ + β)

)

,

λ2 = 2αy◦ < 0 and λ3 = 0. Moreover, for the equilibria in (5.4) with 0 < y◦ < ys,
<(λ2,3) < 0, while for the other equilibria (ys < y◦ < −ω/β), λ2 < 0 and λ3 > 0.

Proof. Consider D in (5.5) as a quadratic function in y◦. If D(y◦) < 0 for 0 < y◦ < −β/ω
then the Lemma holds. Let D > 0 and define a function L(y◦) =

(

(αy◦)
2 − D(y◦)

)

/4 =

(ω + βy◦)(2(δ + β)y◦ + ω). Note that L(0) = ω2 > 0 and L(−ω/β) = 0. If δ ≥ −β/2 we have
L′(−ω/β) = −(2δ + β)ω ≥ 0. Thus we conclude that D(y◦) > (αy◦)

2, for 0 < y◦ < −ω/β.
If δ > −β/2, then L′(−ω/β) < 0. Thus, there exists 0 < ys < −ω/β such that L(ys) = 0.
From the definition of L(y◦) we conclude that ys = −ω/ (2(δ + β)). Since L(ys) = 0 we have
D(ys) = (αys)

2 so that either λ2 = 0 or λ3 = 0. Moreover, L′(ys) < 0 so that for 0 < y◦ < ys,
L(y◦) > 0. �

5.2.2. A hyperbola of critical points. For the case δ < 0, the set of equilibria (5.4) is a hyper-
bola with two branches. We call the branch of the hyperbola with y◦ > −ω/β: the positive
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branch and the one with y◦ < 0: the negative branch. Recall that the eigenvalues of these
equilibria are

λ1 = 0, λ2 =
αy◦ +

√
D

2
, and λ3 =

αy◦ −
√

D

2
,

where D = (αy◦)
2 − 4(ω + βy◦)(2(δ + β)y◦ + ω). One can see that D is a quadratic function

in y◦. It is easy to check that λ2 = 0 or λ3 = 0 if and only if y◦ = −ω/β of y◦ = −ω/2(δ +β).
However, for δ < 0 we have 0 < −ω/2(δ+β) < −ω/β. Thus, we conclude that these equilibria
cannot have an extra zero eigenvalue except for y◦ = −ω/β. Thus, at one of the branches,
<(λ2,3) are always negative while at the other branches positive. If α2 < 8β(δ + β) then for
a large value of y◦, the eigenvalues are complex pair.

w
b

r

y

x

W = 0

w
b

r

y

x

W = 0

Figure 2. In this figure, the limit sets of system (5.1) are presented. The left plot
is for the case of δ > 0 and the right is for δ < 0.

6. Bifurcation analysis of the energy-preserving system

Since S(R) is invariant under the flow of system (5.1), we reduce it to a two-dimensional
flow on a sphere. Moreover, the upper half of the sphere S(R) is invariant under the flow of
system (5.1). Thus we can define a bijection which maps orbits of system (5.1) to orbits of
a two-dimensional system defined in a disc D(0, R) = {(x, y)|x2 + y2 ≤ R◦

2}. This bijection
is nothing but a projection from the upper half of the sphere S(R) to the horizontal plane.
The transformed system is

(6.1)
ẋ = Ωy − δ

(

R2 −
(

x2 + y2
))

ẏ = −Ωx,

where Ω = ω +αx +βy. Note that the boundary of D(0, R): x2 + y2 = R2 is invariant under
the flow of system (6.1). We call this boundary the equator.

Let Rp = −ω/β, Rh = ω/
√

α2 + β2 and

Rs = − ω
2(δ+β)

√

2β+3δ
β+δ

.

These points are bifurcation points of system (6.1), as we vary R. It is easy to see that
Rh < Rp < Rs if all parameters are nonzero (recall that we have chosen β < 0).
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6.1. On the periodic solution of the projected system. For R < Rh, the equator is a
periodic solution. The period of this periodic solution at the equator is

(6.2) T (R) = 4
R
∫

0

1
(

ω+α(R2
−y2)+βy

√
R2

−y2

)dy.

To study the stability of the periodic solution we transform to polar coordinate (ρ, θ) in the
usual way. System (6.1) is transformed to

ρ̇ = δ(ρ2 − R2) cos(θ)

θ̇ = −ω − αρ cos(θ) −
(

βρ + δρ − δR2

ρ

)

.

We then compute ρ′ = dρ/dθ = F (ρ, θ), linearized it around ρ = R, to have a first order
differential equation of the form ρ′ = A(θ)ρ. Near the periodic solution (i.e. ρ = R), θ(t) is
monotonically increasing. Thus, ρ′ = A(θ)ρ can be approximated by ρ′ = A◦ρ where

(6.3) A◦ =
2π
∫

0

A(θ)dθ = αδ
4π2ω(−1+p2+

√
1−p2)

(α2+β2)3/2(−1+p2)
,

and p = R
√

α2 + β2/ω. Thus the periodic solution x2 + y2 = R2 is unstable if αδ < 0 or
stable if αδ > 0. If α 6= 0, then this periodic solution is the only periodic solution in the
projected system (6.1).

Theorem 6.1. If α 6= 0, system (6.1) has no periodic solution in the interior of D(0, R).

Proof. Let us fix R < Rp. Then there is a unique equilibrium of system (6.1) in the interior
of D(0, R), namely: (0, y◦). Define I = {(0, y)|y◦ < y ≤ R} and J = {(0, y)| − R ≤ y < y◦}.
We write ν(x, y) for the velocity vector field corresponds to system (6.1). If Φ(t; (x̄, ȳ)) is the
flow of system (6.1) at time t with initial condition (x̄, ȳ), we want to show that:

for all P ∈ J , there exists tP ∈ (0,∞) such that Φ(tP ;P ) ∈ I.

Let J ′ be a maximal subset of J with such a property. Clearly J ′ 6= ∅ since Φ(T ; (0,−R)) =
(0, R) ∈ I where T < ∞ is defined in (6.2). Take (0, ȳ) ∈ J ′ arbitrary, writing Φ(t; (0, ȳ)) =
(x(t), y(t)), there exists t̄ such that x(t̄) = 0. If x(t̄) = 0, we have ẏ(t̄) = 0, and ẋ(t̄) 6= 0
(otherwise the equilibrium is not unique). By the Implicit Function Theorem we have: for an
open neighborhood N of (0, ȳ) there exists t (in the neighborhood of t̄) such that x(t) = 0.
Thus, J ′ is open in J . J ′ is also closed by uniqueness of the equilibrium and the fact that
(0,−R) ∈ J ′. Thus, we conclude that J ′ = J (from the definition, J is connected).
Let us define a map X : R

2 → R
2 by X(x, y) = (−x, y). Consider Γ(t) which is the trajectory

(x(t), y(t)) = Φ(t;P ), 0 ≤ t ≤ s where P ∈ J and Φ(s;P ) ∈ I. Consider t◦ > 0 such that
Γ(t◦) = (x, y) with x 6= 0. We have

d
dt

X (Γ(t)) |t=t◦ = X
(

d
dt

Γ(t)
∣

∣

t=t◦

)

= X( d
dt

Φ(t◦;P )) = X(ν(x, y))

= −ν(−x, y) + 2αx(x,−y)T = −ν(X(Γ(t)|t=t◦) + 2αx(x,−y)T .

Thus the vector field of system (6.1) is nowhere tangent to X(Γ) accept if α = 0.
Finally, consider the domain with boundary Γ ∪ X(Γ). The flow of system (6.1) is either
flowing into the domain, or flowing out of the domain. We can make the domain as small
as we want by choosing P close enough to (0, y◦) or as big as possible by choosing P close
enough to (0,−R). We conclude that there is no other limit cycle in the interior of D(0, R).
Let R◦ > Rp. If δ > −β/2, we can use Poincaré idea on the index of a vector field. Using
this idea, the existence of a limit cycle implies the existence of an extra critical point. System
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(6.1) has no other critical points apart from those in the equator. Thus, the limit cycle could
not exists. This idea also applicable in the case 0 < δ < −β/2 and R◦ > Rs. If Rp < R◦ < Rs

is similar with the case R◦ < Rp. �

Corollary 6.2. If α = 0 all but the critical solution of (6.1) for R < Rh are periodic.

Remark 6.3. The Bounded-Quadratic-Planar systems

In 1966, Coppel proposed a problem of identifying all possible phase-portrait of the so-called
Bounded-Quadratic-Planar systems. A Bounded-Quadratic-Planar system is a system of two
autonomous, ordinary, first order differential equations with quadratic nonlinearity where all
solutions are bounded. The maximum number of limit cycles that could exists is one of the
questions of Coppel. This problem turns out to be very interesting and not as easy as it seems.
In fact, the answer to this problem contains the solution to the 16th Hilbert problem which is
unsolved up to now (see [6]). System (6.1) is a Bounded-Quadratic-Planar system. From this
point of view, Theorem 6.1 is an important result for our systems. This result enables us to
compute all possible phase portraits of system (6.1).

From the previous section, one could guess that there are three situations for system (6.1), i.e.
if δ > −β/ω, 0 < δ < −ω/2, and δ < 0. For R close to zero but positive, the phase portrait
of system (6.1), is similar in all three situations. The equator is an unstable periodic solution
and there is only one equilibrium of system (6.1). There are three possible bifurcations of
the equilibria in system (6.1), namely simultaneous Saddle-Node and Homoclinic bifurcation,
Pitchfork bifurcation and Saddle-Node bifurcation.

6.2. A simultaneous Saddle-Node and Homoclinic bifurcation. If R passes the value
Rh, system (6.1) undergoes a simultaneous Saddle-Node and Homoclinic bifurcation (also
called Andronov and Leontovich bifurcation, see [13] pp. 250-252). If R < Rh the equator
is a periodic solution. The period of this periodic solution goes to infinity as R approaches
Rh from below. Exactly at R = Rh the limit cycle becomes an homoclinic to a degenerate
equilibrium (with one zero eigenvalue). This degenerate equilibrium is created via a Saddle-
Node bifurcation. This is clear since after the bifurcation (that is when R > Rh) we have two
equilibria in the equator and the homoclinic orbit vanishes.

This bifurcation occurs in all three situations of system (6.1). The difference is in the cases
of δ > 0, the limit cycle at the equator is stable while if δ < 0 is unstable. This difference has
a consequence of the stability type of the two equilibria at the equator after the Saddle-Node
bifurcation.

6.3. A Pitchfork bifurcation. The second bifurcation which occurs also in all three situ-
ation of system (6.1), is a Pitchfork bifurcation. However, there is a difference between the
cases of δ > −β/ω, 0 < δ,−β/ω and the cases of δ < 0. In the first cases, the equilibrium
which is inside the domain, collapses into the saddle-type equilibrium at the equator when
R = Rp. After the bifurcation (R > Rp) a stable (with two negative eigenvalues) equilibrium
is created at the equator. The flow of system (6.1) after this bifurcation is then simple. We
have two equilibria at the equator, one is stable with two dimensional stable manifold and
one is unstable with two dimensional unstable manifold. The flow simply moves from one
equilibrium to the other. This is the end of the story for the case δ > −β/ω.

In the second cases (0 < δ < −β/ω), a saddle-type equilibrium branches out of the saddle-
type equilibrium at the equator, at R = Rp. The equilibrium at the equator then becomes a
stable equilibrium with two dimensional stable manifold.
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>>

Rh Rp
0

>>

Rh Rp Rs0

>>
Rh Rp0

Figure 3. In the upper part of this figure, we present the phase portraits of
system (6.1) as R◦ → ∞ for the case where δ > −β/2. Passing through Rp, one
of the equilibria of system (6.1) undergoes a Pitchfork bifurcation. As R passes
through Rh we have a Saddle-Node bifurcation which happens simultaneously with a
Homoclinic bifurcation. In the middle part of this figure, we draw the phase portraits
of system (6.1) as R → ∞ for the case where δ < −β/2. In this case, before Pitchfork
bifurcation, there is a Saddle-Node bifurcation at R = Rs. In the lower part of the
figure, there are the phase portraits of system (6.1) in the case δ < 0.

In the third cases (δ < 0), a stable focus branches out of the saddle-type equilibrium
at the equator. After the bifurcation, we have four equilibria, two at the equator and two
inside the domain. Both of the equilibria at the equator are of the saddle type. One of the
equilibria inside the domain is a stable focus while the other is unstable focus. There is no
other bifurcation in the cases where δ < 0.

6.4. A Saddle-Node bifurcation. In the cases where 0 < δ < −β/ω we have an extra
bifurcation, i.e. a Saddle-Node bifurcation. Recall after Pitchfork bifurcation, inside the
domain there is a saddle-type equilibrium. There is also a stable focus which is always there
from the beginning. These two equilibria, collapses to each other in a degenerate equilibrium,
if R = Rs. When R > Rs, the degenerate equilibrium vanishes. Therefore, we have a Saddle-
Node bifurcation. We note that the location of the degenerate equilibrium plays an important
role in the analysis of the normalized system (i.e. for 0 < ε � 1). In the neighborhood of
that point we find a Hopf bifurcation. See section 8.

After the bifurcation, the phase portrait of system (6.1) is again similar with the cases
where δ > −β/ω. We are left with two equilibria at the equators, one is stable, with two di-
mensional stable manifold, and the other is unstable, with two dimensional unstable manifold.
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Rp Rh=0

RhRp = Rs
0

Rp Rh=

Figure 4. The phase portraits of system (6.1) as R → ∞ for α = 0. The upper
figure is for the case where δ ≥ −β/2, the middle figure is for 0 < δ < −β/2, while
the lower figure is for δ < 0.

The phase portraits of system (6.1) are plotted in Figure 3.

6.5. Some degenerate cases. To complete the bifurcation analysis of system (6.1), let us
turn our attention to the degenerate cases. We have three cases, i.e. α = 0, β = 0, and δ = 0.
We only present the analysis for α = 0. Note that if α = 0, the vector field corresponding to
system (5.1) is symmetric with respect to the y-axis. Instead of re-doing the whole calcula-
tion again, we can also draw the conclusion by looking at figure 3 and make an x-symmetric
pictures out ot them. If α = 0, we have Rh = Rp which means that the linearized system of
system (5.1) around the equilibrium in the equator is zero when R = Rp. See figure (4) for
the phase-portraits of the system (6.1).

Our next goal is to turn on the perturbation ε to be non zero. Immediate consequence
of this is S(r, x, y) = R◦

2 is no longer invariant under the flow of system (4.1).

7. The isolated nontrivial equilibrium

Let us now consider system (4.1) for ε 6= 0, with κ1 > 0 and κ2 > 0. Recall that Ṡ =

2ε(κ1r
2 − κ2(x

2 + y2)). Putting Ṡ = 0 gives us an equation which defines a cone in D. This

cone separates the phase space D into two parts: the inner part where Ṡ < 0 and the outer
part where Ṡ < 0. If an equilibrium of system (4.1) exists, then it must lie on the cone.



WIDELY SEPARATED FREQUENCIES ... 15

The location of the nontrivial equilibrium of system (4.1) is

(7.1) r◦(ε) =

√

(ε2(βκ1−δκ2)2+(εακ1−δω)2)κ1κ2

((βκ1−δκ2)δ)2
, x◦(ε) = −εκ1

δ
, and y◦(ε) = (εακ1−δω)κ1

(βκ1−δκ2)δ .

One can immediately see that (7.1) exists if and only if (βκ1 − δκ2)δ 6= 0.

To facilitate the analysis, let us write the equilibrium (7.1) as ξ
◦
(ε) = (r◦(ε), x◦(ε), y◦(ε))

and correspondingly, the variables ξ = (r, x, y). The variable ξ, system (4.1) is written as

ξ̇ = H(ξ; ε). Let us also name the cone Ṡ = κ1r
2−κ2(x

2 +y2) = 0 as C and the set of critical
points (5.4) as E .

Assuming that DξH (ξ
◦
(0)) has only one zero eigenvalue, by the Center Manifold Theorem,

there exists a coordinate system such that around ξ
◦
(0), system (4.1) can be written as

(7.2)

(

ξ̇h

ξ̇c

)

=

(

A(ε)ξh

λ(ε)ξc

)

+ higher-order term,

where A(0) has no zero eigenvalue and λ(0) = 0. Let us choose ε1 small enough such that
the eigenvalues of A(ε) remain non zero for 0 < ε ≤ ε1.

Let Wε be the invariant manifold of system (7.2) which is tangent to Eλ(ε) at ξ
◦
(ε), where

Eλ(ε) is the linear eigenspace corresponding to λ(ε). We note that the Center Manifold
Theorem gives the existence of Wε. Also, W0 is the center manifold of ξ

◦
(0), which is, in our

case, uniquely defined and tangent to E at ξ
◦
(0). Since E intersects C at ξ

◦
(0) transversally,

for small enough ε2 we have Wc(ε) intersect C at ξ
◦
(ε) transversally for 0 < ε ≤ ε2.

Lastly, E also intersects S(R) transversally, for |R− ‖ ξ
◦
(0) ‖ | < c for some positive

number c. This follows from the assumption that DξH (ξ
◦
(0)) has only one zero eigenvalue.

Thus, there exists ε3, small enough, such that Wc(ε) intersects S(R) transversally for |R− ‖
ξ
◦
(ε) ‖ | < c and 0 < ε ≤ ε3. Choosing ε∗ = min{ε1, ε2, ε3}, we have proven the following

lemma.

Lemma 7.1. Let us assume that DξH (ξ
◦
(0)) has only one zero eigenvalue. There exists

0 < ε∗ � 1 such that, for ε ∈ (0, ε∗), the system (7.2) has an invariant manifold Wε which is

tangent to Eλ(ε) at ξ
◦
(ε). This invariant manifold intersects the cone Ṡ = 0 transversally at

ξ
◦
(ε). It also intersects the sphere S(R) transversally, for all R, |R− ‖ ξ

◦
(0) ‖ | < ε.

From system (7.2), we conclude that the dynamics in the manifold Wε is slow since λ(ε) =
O(ε) if ε ∈ (0, ε∗). The Lemma 7.1 also gives us the stability result for the equilibrium (7.1).
If ε ∈ [0, ε∗), then the eigenvalues of A(ε) remain hyperbolic. Thus, we can use the analysis
in section 4. For the sign of λ(ε) we have the following lemma.

Lemma 7.2. Consider the system (7.2). For ε ∈ (0, ε∗), we have λ(ε) > 0 if

(1) δ < 0 and κ2δ > κ1β, or
(2) −βκ1/(2κ1 + κ2) < δ < −β/2.

Also for ε ∈ (0, ε∗), λ(ε) < 0 if

(1) δ < 0 and κ2δ < κ1β, or
(2) δ ≥ −β/2, or 0 < δ < −βκ1/(2κ1 + κ2).

Proof. We only prove the first case of the first part of the lemma. The other cases can
be proven in the same way. From Lemma 7.1, we conclude that Wε intersects the cone C
transversally. The situation for δ < 0, β < 0, and κ2δ > κ1β, is drawn in figure 5. The three
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Figure 5. The continuous set of critical points E for δ < 0 and β < 0 is plotted on
the figure above. The dashed lines represent the cone C. It separates the phase-space
into two parts, the expanding part (the shadowed area) and the contracting part.
There are also three concentric circles drawn in this figure. The radius of these circles
satisfies: R′ < R < R′′.

concentric circles, marked by R′, R and R′′, are the intersection between the sphere S(R′),
S(R), and S(R′′) with the plane x = 0 (respectively). Note that max{|R′−R|, |R′′−R′|, |R′′−
R|} < ε. As ε becomes positive, an open subset of E which contains ξ

◦
can be continued with

ε and form the invariant slow manifold Wε with properties described in Lemma 7.1. Thus,
we conclude that inside the shadowed area, the dynamics is moving from S(R) to S(R ′′). On
the other side, the dynamics is moving from S(R) to S(R′), i.e. λ(ε) > 0. �

In section 4 we left out a question: whether the solutions of system (4.1) are bounded in
the case δ < 0. Using the same arguments as in Lemma 7.1 and the proof of lemma 7.2, for
ε small enough we have the following result.

Corollary 7.3. If δ < 0, α < 0 and κ2δ < κ1β then the solution of (4.1) is bounded.

Proof. If δ < 0, E is a hyperbola with two branches: the negative and positive branches. The
negative branch is the one that passes through the origin. For α < 0, the positive branch is
attracting. Moreover, the positive branch is in the interior of Ṡ < 0. This ends the proof. �

In the next section we are going to study the behavior near the boundary κ2/κ1 = (βδ −
2(δ + β))/δ.

8. Hopf bifurcations of the nontrivial equilibrium

The most natural thing to start with in doing the bifurcation analysis is to follow an equi-
librium while varying one of the parameters in system (4.1). However, the analysis in the
previous sections shows that we have no possibility of having more than one nontrivial critical
point. Thus, we have excluded the Saddle-Node bifurcation of the nontrivial equilibrium of
our system. Let us fix all parameters but δ. We will use this parameter as our continuation
parameter. Recall that we have fixed β < 0, α < 0, ω > 0 and κj > 0, j = 1, 2.

Let δ > −βκ1/(2κ1 + κ2) and consider the system (7.2). By Lemma 5.2, considering the
chosen value of parameters: β < 0, α < 0, ω > 0 and κj > 0, j = 1, 2, we conclude that
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<(λ1,2) < 0, where λ1,2 are the eigenvalues of A(0). Using Lemma 7.1, for small enough ε,
<(λ1,2(ε)) < 0 where λ1,2(ε) are the eigenvalues of A(ε). If δ < −βκ1/(2κ1 + κ2), by Lemma
7.1 we have λ(ε) > 0 and by Lemma 5.2, we have λ3 > 0.

R1 Rs R2

Wo

xo(0)

0 1 2 3 4 5 6 7

−7
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−1

0

d
a Stable non trivial critical

point 

Hopf curve 

Unstable non trivial
critical point 

Figure 6. In the left figure we draw the illustration for the situation in Theorem
8.1. W◦ is the center manifold of ξ

◦
(0). The three curves labelled by R1, R2 and Rs

are the intersection between the center manifold Wε with S(R), where the label is the
value of R. In the right figure, we plot the two parameters numerical continuation of
the Hopf point that we found if δ > 0. The numerical data for this continuation are:
β = −6, ω = 3, κ1 = 5, κ2 = 1 and ε = 0.01.

See the left figure of figure 6 where we have drawn an illustration for this situation. At δ =
−βκ1/(2κ1 + κ2) we have the situation where system (4.1) near ξ

◦
(0) has a two-dimensional

center manifold Wε. Locally, W◦ intersect S(Rs) transversally (thus, so does Wε for small
enough ε). At S(R2), the analysis in the section 6 shows that there are only two equilibria
which are at the equator. It is easy to check that the dynamics is as depicted in Figure 6.
At S(R1), as a equilibrium of system (6.1), ξ

◦
(0) has undergone a Saddle-Node bifurcation.

Thus, it splits up into one stable equilibrium and one saddle type equilibrium, which are
drawn using a solid line and a dashed line respectively. Again, the dynamics at S(R1) is then
verified. For ε 6= 0 but small, all of the dynamics is preserved. As an addition, we pick up a
slow dynamics moving from one sphere to the other which is separated by the cone C which
is the straight line in Figure 6. This geometric arguments show that in the center manifold
Wε, around ξ

◦
(ε), we have rotations. Thus, as δ passes −βκ1/(2κ1 + κ2), generically the

nontrivial equilibrium undergoes a Hopf bifurcation.

Theorem 8.1 (Hopf bifurcation I). Keeping β < 0, α < 0, ω > 0 and κj > 0, j = 1, 2
fixed, the nontrivial equilibrium (7.1) undergoes a Hopf Bifurcation in the neighborhood of
δ = −βκ1/(2κ1 + κ2).

Remark 8.2. It is suggested by this study that if we singularly perturbed a Saddle-Node bi-
furcation we get a Hopf bifurcation. One could ask a question how generic is this phenomena.
The answer to this question can be found in the seminal paper of M. Stiefenhofer [19]. Us-
ing blown-up transformations with different scaling (this is typical in singular perturbation
problems), it is proved that this phenomenon is generic.
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We check this with numerical computation for the parameter values: α = −2, β = −6,
ω = 3, κ1 = 5, κ2 = 1 and ε = 0.01. We found Hopf bifurcation in the neighborhood of
δ = 2.81 while our analytical prediction is 2.73. We have to note that from our analysis it
seems that the parameter α does not play any role. However, the location of the nontrivial
equilibrium depends on α. This might be the explanation for the rather large deviation of
our analytical prediction of the bifurcation value δ, compare to the numerical result.

We can also vary κ1 while keeping δ fixed. Again, we find an agreement with our analytical
prediction. In this experiment, we kept α = −2, β = −6, ω = 3, κ2 = 1 and ε = 0.01. For
δ = 2 we found Hopf bifurcation if κ1 ≈ 0.9342573 (predicted by Theorem 8.1 at κ1 = 1).
If δ = 1.5, we found κ1 ≈ 0.4861231 (predicted at κ1 = 0.5) and if δ = 1 at κ1 ≈ 0.2472450
(predicted at κ1 = 0.25).

Another Hopf bifurcation happens in the neighborhood of α = 0. This is obvious from
the bifurcation analysis of the system (6.1). We have the following result.

Theorem 8.3 (Hopf bifurcation II). If δ < 0 or if δ > −β/2, keeping all other parameter
fixed but α, the nontrivial equilibrium (7.1) undergoes a Hopf Bifurcation in the neighborhood
of α = 0.

On the left figure of Figure 6, we have plotted a two parameters continuation of the Hopf
point in (α, δ)-plane. One can see that for a large value of δ, Hopf bifurcation occurs in the
neighborhood of α = 0. This is in agreement with Theorem 8.3. For δ < β/2 ≈ 3 in our
experiment, the Hopf curve is almost independent of α just as it is predicted by Theorem 8.1.
We find also another Hopf bifurcation close to δ = 0. This branch is actually belong to the
same curve. However, to see this bifurcation we need to re-scale the parameter which results
in a different asymptotic ordering. We are not going into the details of this.

9. Numerical continuations of the periodic solution

In this section we present a one parameter continuation of the periodic solution created
via Hopf bifurcation of the nontrivial critical point. This is in general a difficult task to
do analytically. Using the numerical continuation software AUTO [5], we compute the one
parameter continuations of the periodic solution.

9.1. A sequence of Period-Doubling and Fold bifurcations. The numerical data that
we use are the same as in the previous section: α = −2, β = −6, ω = 3, κ1 = 5, κ2 = 1 and
ε = 0.01. We start with a stable equilibrium found for δ = 4 and follow it with decreasing
δ. Recall that in the neighborhood of δ = 2.81 we find a Hopf bifurcation where a periodic
solution is created.

We follow this periodic solution with the parameter δ. The periodic solution undergoes a
sequence of Period-Doubling and Fold bifurcations. In figure 7 we plot δ against the period
of the periodic solution. Also we attached the graph of the periodic solutions. For δ in the
neighborhood of 1.15, the periodic solution is unstable (except probably in some very small
intervals of δ). Moreover, the trivial and the nontrivial equilibria are also unstable. Since
the solution is bounded, by forward integration we will find an attractor. We plotted the
attractor and the Poincaré section of the attractor in the same figure.

The attractor that we found by forward integrating is non-chaotic. All of its Lyapunov
multipliers are negative. It is not clear at the moment whether the attractor is periodic or
not. The Poincaré section that we draw suggests that this is not a periodic solution.
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Figure 7. On the upper-left part of this figure we plot the sequence of Period-
Doubling and Hopf bifurcations of the periodic solution. There also we have attached
the periodic solution for four decreasing values of δ. The attractor for δ = 1.1 is drawn
in the lower-left part of of this figure while in the upper-right part is the the Poincaré
section of the attractor. The numerical data that we use are α = −2, β = −6, ω = 3,
κ1 = 5, κ2 = 1 and ε = 0.01. On the lower-right part of the figure, we plot the two
parameters continuation of the Hopf point using ε and δ. For several values of ε, we
do one parameter continuation of the resulting periodic solution.

Although a sequence of Period-Doubling and Fold bifurcations usually leads to chaos, it
seems that in our system it is not the case. In order to understand this, we do two parameters
continuation of the Hopf point. The parameters that we use are δ and ε. Recall that we have
fixed α = −2, β = −6, κ1 = 5, and κ2 = 1.

In figure 7, we also plotted the result of two parameters continuation of the Hopf point
using δ and ε. One can see that as the value of ε increases, the distance between two Hopf
bifurcations in parameter space becomes smaller. The periodic solution that comes out of
the nontrivial equilibrium via the first Hopf bifurcation, collapses back into the nontrivial
equilibrium via another Hopf bifurcation. For several values of ε we plot the one parameter
continuation of the periodic solution. This result gives us an indication that the sequence
of Period-Doubling and Fold bifurcations in our case is not an infinite sequence. We remark
though that it is still possible that for ε small enough, we might still find an infinite sequence
of these bifurcations. We do not have that for ε ≥ 0.025.

Remark 9.1. It is also interesting to note that, based on these numerical studies, there is
an indication that the behavior of the system (4.1) is actually much simpler if µ1 and µ2 are
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large. This observation is based on the fact that for ε > 0.114, the nontrivial equilibrium is
stable. The flow then collapses into this critical point, except inside the invariant manifold
r = 0.

9.2. The slow-fast structure of the periodic solution. Let us now try to understand
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Figure 8. In this figure we plot the projections to the (y, r)-plane of the periodic
solution for four different values of δ.

the construction of this periodic solution. From the previous discussion, one can see that
exactly at the Hopf bifurcation point, the center manifold of the corresponding equilibrium is
not tangent to the sphere S(R). This means that the periodic solution that is created after
the bifurcation is a combination of slow and fast dynamics.

In figure 8 we have plotted the projections to the (r, y)-plane of the periodic solution for
four values of δ. On each plot, there are two dotted lines through the origin. These lines
represent the cone C. Thus, the location of the nontrivial equilibrium is in O(ε)-neighborhood
of the intersection point between one of the lines with the ellipse E .

This periodic solution is created via Hopf bifurcation at δ ≈ 2.81. We draw the projection
of the periodic solution at four values of δ, i.e. 2.8194 . . ., 1.8868 . . ., 1.6834 . . . and 1.4808 . . ..
We also plotted the ellipse of equilibria and the cone Ṡ = 0 using dotted lines. As δ decreases,
the periodic solution gets more loops which is represented by the spikes in figure 8. This fits
our analysis in section 6 (see also figure 3). For ε = 0 and R > 0 small enough, the equator
of the sphere r2 + x2 + y2 = R2 is an unstable periodic solution of system (5.1), since α < 0.
However, the equator become less unstable when δ decreases (recall that the stability of the
equator is determined by αδ, see (6.3)). Thus, the smaller δ is, the longer the periodic solution
stays near the invariant manifold r = 0.

Recall that as δ decreases, the periodic solution described above also undergoes a sequence of
Period-Doubling and Fold bifurcations. Thus, apart from the periodic solution above, there
is also some unstable periodic solutions with much higher period. Moreover, the periodic
solution that we plotted in figure (8) is not necessarily stable.

9.3. Non-existence of orbits homoclinic to the origin. In the system (4.1), the condi-
tion on the saddle value to have Shilnikov bifurcation can be easily satisfied (see [9] for the
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condition). However, we cannot have a homoclinic orbit in the normal form. The reason is
quite straightforward. In Theorem 3.1 we prove that the plane r = 0 is invariant under the
flow of the normal form. It implies that the two-dimensional stable manifold of the equilib-
rium at the origin is r = 0. Thus, there is no possibility of having an orbit homoclinic to this
critical point.

Moreover, we can not perturb the manifold away by including the higher order terms in
the normal form. The existence of an orbit homoclinic to the origin in the full system is still
an open question, which is not treated in this paper. Another possibility is to add some term
that perturbed the invariant manifold r = 0 away. This can be done by introducing time
dependent perturbation, for instance: periodic forcing term or parametrically excited term.
These are subjects of our further research.
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Figure 9. In this figure, on the left part we plot the Torus that we find by continuing
a periodic solution. This periodic solution is created via Hopf bifurcation at δ = 2.81
and α = −2. The torus is computed for the value of α = 6.8. On the rigth-hand
side, we plot the two parameters continuation of the Torus bifurcation point, Hopf
point and one branch of the Period-Doubling point. The vertical axis is α while the
horizontal is δ.

9.4. Torus bifurcation. Another interesting bifurcation that happens in system (2.3) is a
Torus bifurcation. This bifurcation is found by following the periodic solution which is created
after Hopf bifurcation. Recall that the numerical data that we use are α = −2, β = −6, ω = 3,
κ1 = 5, κ2 = 1 and ε = 0.01. At δ = 2.81 we find a Hopf bifurcation, and if we continue the
periodic solution by varying δ, we get a sequence of Fold and Period-Doubling bifurcations
as drawn in figure 7.

Instead of following the stable periodic solution with δ, we now follow it using α. Around
α = −0.9, the periodic solution becomes unstable via Period-Doubling bifurcation. Around
α = −0.2, the periodic re-gain its stability by the same bifurcation. Around α = 6.7, the
periodic solution becomes neutrally stable. After this bifurcation, an attracting torus is
created and it is drawn in figure 9 on the left. This is also known as Secondary Hopf or
Neimark-Sacker bifurcation. See [13].

To complete the bifurcation analysis, in the same figure but on the right, we plot the two
parameter continuation of the Torus bifurcation, the Hopf bifurcation and the two Period
Doubling bifurcations mentioned above. Note that the two Period-Doubling bifurcations
are actually connected. On that diagram we have indicated the region where we have a
stable nontrivial critical point. Above the Torus curve (the curve where the periodic solution
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becomes neutrally stable), we shaded a small domain. In that domain, we can expect to
compute the torus numerically.

Further away from the curve, the torus get destroyed and a new attractor is formed. The
reason for this destruction is since the location of the torus is quite close to the invariant
manifold r = 0. Recall that the closer we are to the invariant manifold, the more we get
attracted to the origin. This is why the torus is destroyed.

The torus curve ends in co-dimension two point Cd2. There is still a lot of work that have
to be done to be able to say something more about the the behaviour near this point. We
are not going to do that in this paper. Also, near this point there is a lot of Period-Doubling
and Fold curves which are close to each other in the (δ, α)-plane. It is indeed interesting to
devote some studies to the neighborhood of point Cd2.

Remark 9.2. In doing the numerical continuation, we found that to compute the three-
dimensional torus in our system is cumbersome. The computation become less cumbersome
if the value of κ1/κ2 is not large. For instance, our computation which results are plotted in
Figure (9) is for κ1/κ2 = 5. If we decrease this value, it is easier to compute the torus since
it survives in a larger set of parameters.

9.5. A heteroclinic connection. For δ < 0, the nontrivial equilibrium undergoes a Hopf
bifurcation in the neighborhood of α = 0. Continuing this periodic solution using α as the
continuation parameter, we find a Torus bifurcation. Apart from this bifurcation, we do not
find another codimension one bifurcation of the periodic solution.
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Figure 10. Heteroclinic connection between the nontrivial and the trivial equilibria.
We plot also the attracting periodic solution by a thick line.

If α < 0, in the previous analysis we show that negative branch of the hyperbola is repelling.
If we choose, κ2δ < κ1β, by Corollary 7.3 we conclude that the solutions of system (2.3) are
bounded. The trivial and the nontrivial equilibria are both unstable of the saddle type.
The trivial equilirbium has two-dimensional stable manifold W o

s (which is r = 0) and one
dimensional unstable manifold which is exponentially close to the negative branch. On the
other hand, the nontrivial equilibrium has two-dimensional unstable manifold W n

u which is
locally transversal to the negative branch, and one dimensional stable manifold which is
exponentially close to the negative branch.

Generically, W o
s intersects W n

u transversally in a one-dimensional manifold. This one-
dimensional manifold lies in r = 0. However, in our system there is no other limit set in



WIDELY SEPARATED FREQUENCIES ... 23

r = 0 appart from the origin. Thus, we conclude that the two manifolds do not intersect
each other. Since the solutions are bounded, we conclude that W n

u does not span to infinity.
By these arguments, we numerically find an attracting periodic solution to where the W n

u

is attracted to. Moreover, the one-dimensional unstable manifold of the origin, is connected
with the one-dimensional stable manifold of the nontrivial critical point. We illustrate the
situation in Figure 10.

10. Concluding remarks

We have discussed in this paper the dynamics of a four-dimensional system of coupled
oscillators with widely separated frequencies. In combination with an energy-preserving non-
linearity, it creates a system with rich dynamics of the slow-fast type in three-dimensional
space. We do not claim that we have completed the analysis of the dynamics of such a system.
However, in this paper we have presented a large part of it. The normal form of our system
can be viewed as a three-dimensional energy-preserving system which is linearly perturbed.
The flow of the energy-preserving part lives in two dimensional integral manifolds. These
manifold fiber the phase-space.

We have completed the analysis for the energy-preserving part of the normal form. Al-
though in a sense it is very special, we note that the energy-preserving part can be viewed
as a Bounded-Quadratic-Planar system which has been extensively studied but still contains
a lot of open problems. Extending this analysis for small perturbations, we can get a lot of
information of the normal form.

Although we leave out the forcing terms, there is energy exchange between the character-
istic modes of our normal form. The main ingredient that we need for this energy exchange
is µ1µ2 < 0. Physically, this means one of the modes should be damped while the other is
excited. This, however, is not a restrictive condition since if both modes are damped (or
excited), clearly one would need an energy source (or an absorber) to have energy exchange.

In relation with the results in [8, 23] on how to prove that a three-dimensional system of
differential equations is non-chaotic, we note that our system is more complex than theirs.
The studies in [8, 23] are concentrated on nonlinear three-dimensional systems having only
at most 5 terms. Our normal form contains 11 terms. So far in our analysis we find no trace
of chaotic behavior. It is evident in our system that we cannot have homoclinic orbits. This
excludes the Shilinkov’s scenario for a route to chaos. Thus, whether our system is chaotic
or not is still an open question. It is also interesting to note that Torus (or Neimark-Sacker)
bifurcation usually is followed by a lot of chaos in the system, in the presence of homoclinic
tangencies (see for instance [3]). This may provide us with a way to find chaotic behavior in
our system.

We leave out several interesting questions from our analysis. Below we have listed several
open questions.

(1) The invariant manifold r = 0 can be perturbed away by perturbing the systems
with small periodic forcing term or a parametrical excitation term. In the absence
of this invariant manifold, we might find homoclinic orbit that could lead to a lot of
interesting dynamics. The complication is, we have to analyze a 4-dimensional normal
form.
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(2) The behavior (dynamics) of the system near the co-dimension two point: Cd2 is not
analyzed in this paper. This type of co-dimension two point is treated carefully in the
book by Kuznetsov [13]. One could for instance follow the periodic solution around
the point Cd2 and compare the result with those studies in [13].

(3) The global dynamics in the case of the absence of the nontrivial equilibrium is also
an interesting case. This will be treated in a sequel of this paper.
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