
On doubly reflected

completely asymmetric Lévy processes

M.R. Pistorius∗

Abstract. Consider a completely asymmetric Lévy process X and let Z be X reflected
at 0 and at a > 0. In applied probability (e.g. [12, 19]), the process Z turns up in
the study of the virtual waiting time in a M/G/1-queue with finite buffer a or the
water level in a finite dam of size a. We find an expression for the resolvent density of
Z. We show Z is positive recurrent and determine the invariant measure. Using the
regenerative property of Z, we determine the asymptotic law of t−1

∫ t

0 f(Zs)ds for an
appropriate class of functions f . Finally, the long time average of the local time of Z
in x ∈ [0, a] is studied.
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0 Introduction

Consider the following model for the water level in a dam. Initially, the water level in the
dam is X0 ≥ 0. At random times T1, T2, . . ., for which the interarrival times Ti − Ti−1 (for
i ≥ 1, T0 = 0) are independent and exponentially distributed with mean λ−1, an amount of
water U1, U2, . . . flows into the dam, where the Ui form a sequence of positive independent
random variables with distribution function F . The water leaves the dam at constant rate
one.

If the dam is of infinite depth, the water level at time t is given by Yt = Xt−inf0≤s≤tXs∧0,
where X = (Xt, t ≥ 0) is a compound Poisson process minus a unit drift

(1) Xt =

Nt∑

i=1

Ui − t,

with N = (Nt, t ≥ 0) is a Poisson process with intensity λ > 0, which is independent of the
Ui. See [1, 10, 16] for background on these class of models. Now we adapt this model by
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supposing the dam has a finite size a > 0: The amount of water overflowing the level a is
then immediately lost. Denote the water level in this finite dam by Z. See Section 2.1 for a
precise definition. Note that Z can also be interpreted as the workload of a M(λ)/G/1-queue
with finite buffer size a and service time distribution F .

For this process Z, several questions may emerge: What is the stationary distribution
of Z and what about the convergence to stationarity? Can we find an expression for the
overflow probability or the part of the time the dam is empty in stationarity? What about
the law of long time averages of functions of Zt?

In the literature (e.g. Cohen [12] and more recently Zwart [19]) this model for a finite
dam has been considered before. In this paper, however, we will follow a different approach
by studying Z from the point of view of Lévy processes without negative jumps. A Lévy
process X is a real-valued random process with stationary and independent increments.
Clearly, processes of the form (1) are a subclass of this bigger class. We construct the
corresponding process Z for this bigger class of Lévy processes X (Section 2.1), study its
ergodic properties and provide the answers of the questions in the previous paragraph.

In Section 2.2, we use regenerative process theory in conjunction with the specific form
of the resolvent measure of Z (found in Section 2.1) to show that Z is 0-positive in the
classification of Tuomen and Tweedie [18], identify its 0-invariant measure and find that
the transition probabilities of Z weakly converge to the invariant measure. Moreover, using
the R-theory of irreducible Markov chains developed by Tuomen and Tweedie, we show
this convergence to hold in total variation if the transition probabilities of X are absolutely
continuous with respect to the Lebesgue measure. Finally, in Section 2.3 the asymptotic
law of some time averages and the long time average of the local time in x ∈ [0, a] of Z are
determined.

1 Preliminaries

1.1 Setting

In this section we set some notation and review standard results on spectrally positive Lévy
processes. For more background, we refer to [9] or [7], Chapter VII.

Let X = {Xt, t ≥ 0} be a Lévy process without negative jumps defined on (Ω,F ,F =
{Ft}t≥0,P), a filtered probability space which satisfies the usual conditions. For all x the
measure Px will denote the translation of P under which X0 = x. To avoid trivialities, we
exclude the case where X has monotone paths. Since X has no negative jumps, the moment
generating function E[e−θXt ] exists for all θ ≥ 0. and is given by

(2) E[exp(−θXt)] = exp(t ψ(θ))

for some function ψ(θ) which is well defined at least on the positive half axis, where it
is convex with the property limθ→∞ ψ(θ) = +∞. Let Φ(0) denote its largest root. On
[Φ(0),∞) the function ψ is stricly increasing and we denote its right inverse function by
Φ : [0,∞) → [Φ(0),∞). It is well known, that the asymptotic behaviour of X can be
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determined from the sign of ψ′
+(0), the right derivative of ψ in zero. Indeed, X drifts to ∞,

oscillates or drifts to −∞ according to whether ψ ′
+(0) is negative, zero or positive.

Denote by I and S the infimum and the supremum of X respectively, that is, It =
inf0≤s≤t(Xt ∧ 0) and St = sup0≤s≤t(Xt ∨ 0) where we used the notations c ∨ 0 = max{c, 0}
and c ∧ 0 = min{c, 0}. By Y = X − I and Ŷ = X̂ − Î = S −X we denote the Lévy process
X reflected at its past infimum I and at its past supremum S, respectively.

For X and X̂ = −X the first entrance time of (a,∞) are denoted by T̂a, Ta respectively,

Ta = inf{t ≥ 0 : Xt > a} T̂a = inf{t ≥ 0 : −Xt > a}.

Similarly, τa and τ̂a represent the first entrance time of (a,∞) for Y and Ŷ respectively. We

will use τ0[τ̂0] to stand for the first time Y [Ŷ ] hits 0.

1.2 Scale functions and exit problems

As in e.g. [8, 5, 15], a crucial role will be played by the function W (q) which is closely con-
nected to the two-sided exit problem. We give a definition and review some of its properties.

Definition 1 For q ≥ 0, the q-scale function W (q) : (−∞,∞) → [0,∞) is the unique
function whose restriction to [0,∞) is continuous with Laplace transform

∫ ∞

0

e−θxW (q)(x)dx = (ψ(θ) − q)−1, θ > Φ(q)

and is defined to be identically zero for x < 0.

By taking q = 0 we get the 0-scale function which is usually called just “the scale func-
tion” in the literature. It is well known that W = W (0) is right and left differentiable and
increasing on (0,∞). We write W ′

±(x) to denote the right and left derivative of W in x
respectively. The values of W in 0 and infinity are related to two global properties of X.
Indeed, W (0) = limθ→∞ θ/ψ(θ) is zero precisely if X has unbounded variation. Secondly,
W (∞) = limx→∞W (x) is finite precisely if X drifts to −∞, which follows from a Tauberian
theorem in conjunction with the earlier mentioned fact that ψ ′

+(0) > 0 if and only if X drifts
to −∞.

For every fixed x ≥ 0, we can extend the mapping q 7→W (q)(x) to the complex plane by
the identity

(3) W (q)(x) =
∑

k≥0

qkW ?k+1(x)

where W ?k denoted the k-th convolution power of W = W (0). The convergence of this series
is plain from the inequality

W ?k+1(x) ≤ xkW (x)k+1/k! x ≥ 0, k ∈ N,
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which follows from the monotonicity of W . From the expansion (3) we find that on (0,∞)
also W (q)(·) is increasing and right and left differentiable. If X has unbounded variation or
has a Lévy measure that is absolutely continuous with respect to the Lebsgue measure, W (q)

restricted to (0,∞) is continuously differentiable (see [14]).
The function W (q) plays a key role in the solution of the two-sided exit problem as shown

by the following identity for x ∈ [0, a], (e.g. Bertoin [8] and references therein)

(4) Ex

[
e−qT̂0I(T̂0 < Ta)

]
= W (q)(a− x)/W (q)(a),

where I(A) is the indicator of the event A.
We recall the definition, given in [5, 15], of the function Z (q), which is close relative of

W (q).

Definition 2 The adjoint q-scale function Z (q) is defined by

(5) Z(q)(x) = 1 + q

∫ x

0

W (q)(z)dz.

Indeed, as shown in [15], the Laplace transform of the first entrance time of (a,∞) for Ŷ
can be expressed in terms of the function Z (q) as follows:

E−x

[
e−qτ̂a

]
= Z(q)(x)/Z(q)(a) x ∈ [0, a].

The reflected Lévy process Y = X − I killed upon exiting [0, a] has the strong Markov
property; denote its transition probabilities and q-resolvent measure by (P t, t ≥ 0) and

U q(x, ·), respectively. Similarly, (P̂ t, t ≥ 0) and Û q(x, ·) denote the transition probabilities

and q-resolvent measure of Ŷ killed at the first exit of [0, a]. From [15] we have the following

expressions for the resolvent measures U q(x, ·), Û q(x, ·)

Û q(x, dy) =
(
Z(q)(x)W (q)(a− y)/Z(q)(a) −W (q)(x− y)

)
dy(6)

U q(x, dy) = W (q)(a− x)W (q)(dy)/W
(q)′
+ (a) −W (q)(y − x)dy(7)

where x, y ∈ [0, a] and W (q)(dy) denotes the Stieltjes measure associated to W (q) with mass

W (q)(0) in zero. Note that W (q)(dy) and W (0)δ0(dy) + W
(q)′
+ (y)dy (where δ0 is the delta

measure in zero) are versions of the same measure.

1.3 Examples

1. A stable Lévy process X with index α ∈ (1, 2] has as cumulant ψ(θ) = θα; in [6],
Bertoin showed that the Mittag-Leffler function plays an important role in the two-sided
exit problem for X. To be more precise, he found that q-scale and adjoint q-scale function
of X are respectively given by

W (q)(x) = αxα−1E ′
α(qxα) Z(q)(x) = Eα(qxα)
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where Eα is the Mittag-Leffler function with parameter α

(8) Eα(y) =

∞∑

n=0

yn

Γ(1 + αn)
, y ∈ R.

In the case that α = 2, the process X/
√

2 is a Brownian motion and W (q), Z(q) reduce to

(9) W (q)(x) = q−
1

2 sinh(x
√
q) Z(q)(x) = cosh(x

√
q).

Replacing (x, q) by (2x, q/2) in (9), we find W (q), Z(q) for a standard Brownian motion.
2. Let Xt = Jt − µt where J is a compound Poisson process where the jump distribution F
is of phase type (m,α,T ) (see [2, 3])

1 − F (x) = α exp(T x)1, x ≥ 0

where 1 is a m-column vector of ones, α is a m-probability vector and T is a m times m
matrix with negative elements on the diagonal and non-negative ones off-diagonal, such that
the row sums are non-positive. From [4] we find that the q-scale function of X is given by

W (q)(x) = (exp (Φ(q)x) − α
∗ exp ((T + tα∗)x)t) /ψ

′(Φ(q))

where t = −T 1, α∗ = λ
µ
p(Φ(q)I − T )−1, α

∗ = α∗(Φ(q)I − T )−1 and ψ′(Φ(q)) = µ− α
∗
t.

3. If Xt = Jt − µt is a standard Poisson process J minus a drift µ > 0, it has as cumulant
ψ(θ) = µθ + e−θ − 1. The process X has as (0-)scale function

W (0)(x) = W (x) =
∑

n≥1

F ?n(x)/µn

where F = F ?1 is the cumulative distribution function of a uniform([0, 1])-random variable
and F ?n+1(x) =

∫
F ?n(x− y)dF (y) for n ≥ 1.

2 The doubly reflected process

2.1 Construction and resolvent

We now show how to construct the path of a Lévy process which is is reflected at 0 and at
the level a. This stochastic process moves, while it is in (0, a) as a Lévy process. Each time
it attempts to cross 0 or a, it is “regulated” or “perturbed” to keep it inside the interval
[0, a]. Denote by D[0,∞) the space of cadlag functions ω : [0,∞) → R. Define the map
ga : D[0,∞) → D[0,∞) piecewise by

ga(ω)(t) =





(ω(t) ∨ 0) ∧ a if ω(y) ∈ (0, a)(0 ≤ y < t) or t = 0
(ω(t) − infs≤y≤t ω(y)) ∧ a if ga(ω)(s) = 0, ga(ω)(y) < a (s < y < t)
(a + ω(t) − sups≤y≤t ω(y)) ∨ 0 if ga(ω)(s) = a, ga(ω)(y) > 0 (s < y < t).
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From the path ω of a Lévy process, the map ga constructs uniquely the path ga(ω) of a doubly
reflected Lévy process. For a spectrally positive Lévy process X, we denote this pathwise
constructed stochastic process by Z = {Zt = ga(X)(t), t ≥ 0}. From the construction, we see
that the process Z satisfies the strong Markov property. Denote its transition probabilities
and q-resolvent respectively by P̃t(x,A) = Px(Zt ∈ A) and

Ũ q(x,A) =

∫ ∞

0

e−qtP̃t(x,A)dt,

where A ⊆ [0, a] is a Borel set. Using the results from the previous section, we are able to
express the resolvent Ũ in terms of the scale functions W (q) and Z(q).

Theorem 1 For any x ∈ [0, a], set ũq(x, 0) = Z(q)(a− x)W (q)(0)/qW (q)(a) and

(10) ũq(x, y) =
Z(q)(a− x)W

(q)′
+ (y)

qW (q)(a)
−W (q)(y − x) x, y ∈ [0, a], y 6= 0.

Then ũq(x, 0)δ0(dy) + uq(x, y)dy is a version of the measure Ũ q(x, dy).

Proof Let x, y ∈ [0, a] and write T ′
x = inf{t ≥ 0 : Zt = x}. By η(q) we denote an independent

exponential random variable with parameter q > 0. To compute the probability Px(Zη(q) ∈
dy), we use the strong Markov property of Z to write

(11) Px(Zη(q) ∈ dy) = Px(Zη(q) ∈ dy, η(q) < T ′
a) + Ex[e

−qT ′

a ]Pa(Zη(q) ∈ dy).

From the construction of Z we see that {Zt, t < T ′
a} has the same law as {Yt, t < τa}. Invoking

now (7), we find that the first probability and the Laplace transform on the right-hand side
of (11) are given by

q
W (q)(a− x)W (0)

W
(q)′
+ (a)

δ0(dy) + q

(
W (q)(a− x)W

(q)′
+ (y)

W
(q)′
+ (a)

−W (q)(y − x)

)
dy

and Z(q)(a− x) − qW (q)(a)W (q)(a− x)/W
(q)′
+ (a) respectively. For the second probability on

the right-hand side the strong Markov property implies that

Pa(Zη(q) ∈ dy) = Ea[e
−qT ′

x]Px(Zη(q) ∈ dy) + Pa(Zη(q) ∈ dy, η(q) < T ′
x)

=
Px(Zη(q) ∈ dy) + qW (q)(y − x)dy

Z(q)(a− x)
− qW (q)(y − a)dy(12)

where in the second line we used that {a−Zt, Z0 = a, t < T ′
x} has the same law as {Ŷt, Ŷ0 =

0, t < τ̂a−x} in conjunction with the the resolvent (6). Substituting everything yields a linear
equation for Px(Zη(q) ∈ dy), which has the stated expression as solution. �

Restricting ourselves to Lévy processes without negative jumps that have absolutely
continuous transition probabilities,

P(Xt ∈ dx) � dx for all t > 0,(AC)
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we can prove continuity in the time and space variable of the transition probabilities (P̃ t, t ≥
0). It is known that (AC) holds whenever the Brownian coefficient is positive or when the
mass of the absolutely continuous part of the Lévy measure is infinite (see [17]). We use the
standard notation P̃ tf(x) =

∫
f(y)P̃ (x, dy).

Proposition 1 Let f be any Borel bounded function on [0, a]. Supposing (AC) holds, we
have:

(i) For every x ∈ [0, a] the mapping t 7→ P̃ tf(x) is continuous on (0,∞);

(ii) For every t > 0 the mapping x 7→ P̃ tf(x) is continuous on [0, a].

If a semi-group has property (ii), one says that it has the strong Feller property.
Proof (i) Let A ⊆ [0, a] be any Borel set. By the Markov property as in (11) and by the fact
that {Zt, t < T ′

a} has the same law as {Yt, t < τa}, we find for x, y ∈ [0, a]

(13) Px(Zt ∈ A) = Px(Yt ∈ A, t < τa) +

∫ t

0

Pa(Zt−s ∈ A)Px(τa ∈ ds).

Under (AC), Proposition 5 in [15] states that the first term in (13) is continuous in t.
Moreover, by Lemma 6 the distribution of τa has no atoms, that is, Px(τa = t) is zero for all
x ∈ [0, a] and t > 0. Thus, the measure Px(τa ∈ ds) is absolutely continuous with respect
to the Lebesgue measure and therefore the convolution in t in (13) is t-continuous (e.g.
[13]). The assertion (i) is proved for indicator functions IA. To extend this to any bounded
Borel function f , we approximate f by a sequence of step-functions fn =

∑
k

k
2n IAk

with
Ak = {y ∈ [0, a] : f(y) ∈∈ [ k

2n ,
k+1
2n ). Write hn and g respectively for the integral of fn and

f against Px(Zt ∈ dy) and note the hn are continuous in t on (0,∞). Continuity in t of g
follows now since it is readily verified that hn converges to g uniformly on compact subsets
of (0,∞).

(ii) We will use now the decomposition (13) to prove the continuity of x 7→ P̃ f(x).
Invoking Proposition 5, we find that P tf , f integrated against the first term on the right-
hand side of (13), is continuous on [0, a]. In particular, we see that x 7→ Px(τa > t) is
continuous and then (by absence af atoms) also x 7→ Px(τa ∈ F ) for all open and closed
intervals F . Since by part (i) g : s 7→

∫ a

0
f(y)Pa(Zs ∈ dy) is continuous on (0, t), the set

Fk := {s : g(s) ∈ [ k
2n ,

k+1
2n )} is the union of an open and a closed set. Set the stepfunctions

gn(s) =
∑

k
k
2n IFk

(s) and note that x 7→
∫ t

0
gn(t − s)Px(τa ∈ ds) is continuous on [0, a] for

each n. Since

sup
x∈[0,a]

∣∣∣∣
∫ t

0

(gn(t− s) − g(t− s)) Px(τa ∈ ds))

∣∣∣∣ ≤ 2−n,

we conclude that the second term of (13) is continuous in x and the proof is done. �

2.2 Ergodicity

We now turn our attention to the ergodic properties of the transition probabilities P̃ t. The
next theorem contains the results in that direction. For the terminology in the theorem, we
refer to Tuominen and Tweedie [18].
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Theorem 2 The following are true:

(i) P̃ t is 0-recurrent and, more precisely, 0-positive;

(ii) The function 1 and measure Π̃a(dx) = W (dx)/W (a) are invariant for P̃ t, that is

P̃ t1 ≡ 1 and Π̃aP̃
t = Π̃a for all t > 0.

(iii) For every x ∈ [0, a], we have

(14) lim
t→∞

P̃ t(x, ·) = Π̃a(·),

where the limit is in the sense of weak convergence.

(iv) Suppose in addition (AC) holds. Then, for every x ∈ [0, a], the convergence in (14)
holds in total variation norm.

Example. If X is a Brownian motion with drift µ, the invariant measure for Z is given by
2µe−2µxdx/(1− e−2µa). For a stable process with index α ∈ (1, 2], the corresponding process
Z has as invariant measure (α− 1)/a · (x/a)α−2dx on [0, a]. In particular, if X is a standard
Brownian motion, we see the invariant measure for Z is given by the uniform measure on
[0, a].

If X drifts to +∞, we recall that W (∞) is finite and readily check that Π̃a(dx) weakly
converges to Π̃∞(dx) = W (dx)/W (∞) as a tends to infinity. Since Π̃∞ is the invariant
distribution of Y = X − I, we see that the proportionality Π̃a(dx) = Π̃∞(dx)/Π̃∞([0, a])
holds, an identity which is well known in queueing theory (see [19] and references therein).

Remark. Consider workload process Z of the M(λ)/G/1-queue with finite buffer a as
described in the introduction. Let wn be the actual waiting time of the nth customer in this
queue. Then wn = Zτ(n)− , where τ(n) is the nth jump time of X in (1). By the PASTA
property (Poisson Arrivals See Time Averages, e.g. Theorem 3.3 in Asmussen [1]) (wn)n has
the same stationary distribution as Z, namely W (dx)/W (a). In particular, in stationarity
an arriving customer is served immediately with probability W (0)/W (a).

The probability pa that part of the work U offered by a customer (entering the queue in
its stationary regime Z∞) goes lost is given by

pa = P(Z∞ + U > a) =

∫ ∞

0

(
1 − W (a− x)

W (a)

)
F (dx) =

1

λ
· W

′
+(a)

W (a)
,

where the third equality follows by verifying that that the the functions a 7→ W ′
+(a)/λ and

a 7→
∫∞

0
(W (a)−W (a−x))F (dx) are right-continuous and their Laplace transforms are both

equal to

θ/ψ(θ) − 1 =

∫
(1 − e−θx)F (dx)/ψ(θ).
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Proof of Theorem 2 (i) & (ii) Note, from the expansion (3), that Z (q)(x),W (q)(x) and W
(q)′
+ (x)

are continuous as function of q. Moreover, Z (0) ≡ 1 and W (x), W ′
+(x) are positive on (0,∞)

(cf. [15]). Take now any x ∈ [0, a] and let A be any non-null Borel set then by Theorem 1,
Fatou lemma and monotonic convergence we deduce that

(15) ∞ ≤ lim
q↓0

{
Z(q)(a− x)

qW (q)(a)

∫

A

W (q)(dy) −
∫

A

W (q)(y − x)dy

}
=

∫
P̃ t(x,A)dt.

We see that P̃ t is 0-recurrent in the classification of Tuomen and Tweedie [18].
Note that P̃ t1 = 1 or 1 is an invariant function for P̃ t. Next we identify the invariant

measure. After some algebra, one can check from the decomposition (3) that qW ?W (q)(a) =

W (q)(a) − W (a) and q
∫ a

0
W (q)(a − x)W (dx) = W

(q)′
+ (a) − W ′

+(a). Moreover, by partial
integration we find

∫ a

0

Z(q)(a− x)W (dx) = W (a) +

∫ a

0

W (q)(a− x)W (x)dx.

Combining these three identities with Theorem 1, we find that
∫

e−qtΠ̃aP̃
t(x, dy)dt = q−1Π̃a(dy).

Unicity of the Laplace transform in conjunction with the previous display implies that
Π̃aP̃

t(x, ·) = Π̃a(·) for all t outside some Lebesgue null-set N . Take any t ∈ N . Then
we can find a s /∈ N such that t− s /∈ N . An application of the Markov property yields then

Π̃aP̃
t(·, dy) = Π̃a

(∫
P̃ s(z, dy)P̃ t−s(·, dz)

)
= Π̃a(P̃

s(·, dy)) = Π̃a(dy).

Thus, we conclude that the measure Π̃a is invariant for P̃ t and, as the integral of the function
1 under Π̃a is finite, P̃ t is 0-positive.

To prove (iii) we show that Z is a delayed regenerative process. The delay is the time
till Z reaches zero, the regeneration points are then the visits to zero which take place after
a visit to a. Denote by C the cycle length. Then we can verify that the distribution of C is
not concentrated on a lattice. Indeed, recalling that T ′

c denotes the first time Z hits the set
{c}, we find that

P0(C = t) =

∫ t

0

P0(T
′
a = t− s)Pa(T

′
0 ∈ ds)

which is zero by the fact that, under P0, T
′
a and τa have the same law and the distribution of

the latter has no atoms (Lemma 6 in [15]). Moreover, C has finite mean (see the forthcoming
Lemma 1(i) for an explicit computation of E[C]). Theorem V.1.2 in [1] then implies P(Zt ∈
A) → Pe(Z∞ ∈ A) = E[

∫ C

0
I(Zt ∈ A)dt]/E[C]. By bounded convergence combined with the

invariance of Π̃a, we identify Pe(Z∞ ∈ ·) as Π̃a.
(iv) Assume now (AC) holds. From equation (15), we see that the transition probabilities

P̃ t are Lebesgue irreducible (i.e. for any Borel set A ⊆ [0, a] and for any x ∈ [0, a] the
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potential U(x,A) ∈ (0,∞]). By Proposition 1 in conjunction with Theorem 1 in [18], we can
now invoke Theorem 5 in [18] to conclude that (iv) holds for Π̃a-a.e. x ∈ [0, a]. Note that
for any x ∈ [0, a], the measure Ũ q(x, ·) is absolutely continuous w.r.t. Π̃a. Proposition 1(i)
implies that for all t > 0 the same holds for the measure P̃ t(x, ·). Take now any x ∈ [0, a]
and let ‖·‖ denote the total variation norm on [0, a] equipped with the Borel-σ-algebra, then
by the Markov property of Z and the absolute continuity of P̃ t(x, ·)

‖P̃ t(x, ·) − Π̃a(·)‖ ≤
∫ a

0

‖P̃ t−s(y, ·)− Π̃a(·)‖P̃ s(x, dy),

which converges to zero as t→ ∞ (by bounded convergence). �

2.3 Long time averages

In the proof of Theorem 2 we used the fact that Z is a delayed regenerative process where
the delay is the time for Z to reach zero and the cycles are the first visits to zero after a visit
to a. Since the cycles of Z are i.i.d., the theory of regenerative processes enables us to derive
a strong law of large numbers and a central limit theorem for t−1

∫ t

0
f(Zs)ds as t→ ∞. For

a proof we refer to Theorema 3.1 and 3.2 in [1]. Recall we denote the cycle length by C.

Proposition 2 (i) For all functions f which E[sup0≤t<C |
∫ t

0
f(Zs)ds|] < ∞ or that are

nonnegative on [0, a], it holds that

1

t

∫ t

0

f(Zs)ds→ Π̃a(f) a.s. as t→ ∞.

(ii) If Var(
∫ C

0
f(Zs)ds) <∞, the limiting distribution of

(∫ t

0

f(Zs)ds− tΠ̃a(f)

)
/
√
t

is normal with mean 0 and variance σ2/E0[C] where

σ2 = Var(U) + Π̃a(f)2
Var(C) − 2Π̃a(f)Cov(U,C)

where U =
∫ C

0
f(Zs)ds and where Var[Cov] denotes the [co]variance under P0.

The variance σ2/E0[C] can be expressed in terms of the scale function W and its right-
derivative, as shown in the following lemma.

Lemma 1 (i) For all a > 0, W ′
+(a) > 0 and the mean of C and U are given by E0[C] =

W (a)2/W ′
+(a) and E0[U ] = W (a)2Π̃a(f)/W ′

+(a).
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(ii) The expectations E0[C
2], E0[CU ] and E0[U

2] can be computed by integrating the func-
tions 2, yf(z) + zf(y) and 2f(z)f(y), respectively, with respect to the measure

E0

[∫

(0,∞)2
I(Xt ∈ dy,Xs ∈ dz, 0 < t < s < C)dtds

]

=
W (a)W (a− y)

W ′
+(a)2

W (dy)W (dz) − W (y)W (a− y)

W ′
+(a)

W (dz)dy

+ (W (z) −W (z − y))
W (a)

W ′
+(a)

W (dy)dz.

Proof (i) Recalling that E0[U ] = E0[C]Π̃a(f), we concentrate on the computation of the
expectation of C. Note that the cycle length C has the same distribution as (T ′

0 ◦ θT ′

a
,P0),

the first time after T ′
a that Z reaches the level zero. Furthermore, as in the proof of

Theorem 1 we see that T ′
a and τa have the same law under P0 and T ′

0 has under Pa the same
law as τ̂a under P0. Using the resolvents (6) and (7), one checks that E0[τ̂a] = W (a) and
Ea[τ0] = W (a)2/W ′

+(a) −W (a), where W (x) =
∫ x

0
W (y)dy. Putting all bits together leads

to the stated result Since W is increasing and right-differentiable, it follows that W ′
+(a) > 0

for all but countably many a > 0. Since Er[τ0] ≤ Es[τ0] for r ≤ s, we then deduce W ′
+(a) > 0

for all a > 0.
(ii) Let η(q), η(r) be two independent exponential random variables with parameters

q, r respectively. Recall from the proof of Theorem 1 the definition of T ′
x. Following the

same methodology as in the proof of Theorem 1, we split the probability space according to
whether η(q), η(r) are before or after T ′

a and apply the Markov property of Z. The equalities
in law in the proof of Theorem 1 imply then that P(Zη(q) ∈ dy, Zη(r) ∈ dz, η(q) < η(r) < T ′)
is equal to the sum of the three terms

P(Zη(q)∧η(r) ∈ dy, η(q) < T ′
a, η(q) < η(r))Py(Zη(r) ∈ dz, η(r) < T ′

a)

= q(q + r)−1
P(Yη(q+r) ∈ dy, η(q + r) < τa)Py(Yη(r) ∈ dz, η(r) < τa),

where we used P(η(q) < η(r)) = q/(q + r), and

P(Zη(q)∧η(r) ∈ dy, T ′
a < η(q), η(q) < η(r))Py(Zη(r) ∈ dz, η(r) < T ′

0)

= q(q+r)−1
E[e−(q+r)τa ]P0(Ŷη(q+r) ∈ d(a−y), η(q+r) < τ̂a)Pa−y(Ŷη(r) ∈ d(a−z), η(r) < τ̂a)

and finally

P(Zη(q)∧η(r) ∈ dy, η(q) < T ′
a, η(q) < η(r))Py(Zη(r) ∈ dz, T ′

a < η(r) < T ′
0 ◦ θT ′

a
)

= q(q + r)−1
P(Yη(q+r) ∈ dy, η(q + r) < τa)Ey[e

−(q+r)τa ]P0(Ŷη(r) ∈ d(a− z), η(r) < τ̂a).

Substituting the expressions from the resolvents (6) and (7) and letting q, r tend to zero, we
find after some algebra the stated formula. �

If X has bounded variation, we see from previous proposition, that Z spends on average
W (0)/W (a) > 0 part of the time in 0. In any x ∈ (0, a] (and also in x = 0 if X has
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unbounded variation) Z spends on average no time. Therefore we look at the local time at
x. Define the local time at x as an occupation density as follows

Lx
t = lim

ε↓0

1

2ε

∫ t

0

1{|Zt−x|<ε}dt.

Then we have the following result:

Proposition 3 For x ∈ (0, a) and y ∈ [0, a] we have

lim
t→∞

Ey[L
x
t ]/t = c and lim

t→∞
Lx

t /t = c Py–almost surely

where

(16) c =
1

2
· W

′
+(x) +W ′

−(x)

W (a)
.

For x = a (and for x = 0 if X has unbounded variation) the proposition remains valid if we
set c = W ′

−(a)/W (a) (and c = W ′
+(0)/W (a) respectively).

Proof Following the same line of reasoning as in the first lines of the proof of [7, Prop V.5],
we can prove

1

2ε

∫ η(q)

0

1{|Zt−x|<ε}dt→ Lx
η(q)

in L2(P) as ε ↓ 0. Hence, we note that if X has unbounded variation

Ey

[∫ ∞

0

e−qtdLx
t

]
= lim

ε↓0

1

2ε
Ey

[∫ ∞

0

e−qt1{|Zt−x|<ε}dt

]

= lim
ε↓0

1

2ε

∫ x+ε

x−ε

ũq(y, z)dz = ũq(y, x),

where for the final equality we used that x 7→ uq(y, x) is continuous on (0, a) (see (10) and
recall that we haveW (0) = 0). By partial integration and Fubini’s theorem Ey[

∫∞

0
e−qtdLx

t ] =∫∞

0
e−qtdEy[L

x
t ]. A Tauberian theorem (e.g. [7, p.10]) in conjunction with the form of the

density ũq(y, x) and the continuity in q of W (q)′ and Z(q) implies then that for y ∈ [0, a]

(17) Ey[L
x
t ]/t→W ′(x)/W (a) as t→ ∞,

recalling that W is continuously differentiable in this case.
If X has bounded variation, W is not necessarily continuously differentiable and W (0) >

0. However, it is not hard to verify that the limit (17) remains valid if we replace W ′(x) by
(W ′

+(x) +W ′
−(x))/2.

Denote by σx
s = inf{t > 0 : Lx

t > s} the right-continuous inverse of Lx. Note that
(σx

s , s ≥ 0) is a subordinator. Then we see that the process dLx
t e defined by dLx

t e = inf{n ∈
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N : σx
n > t} is a renewal process under Px (resp. delayed renewal process under Py with

y ∈ [0, a], y 6= x). A renewal theorem implies then that for y ∈ [0, a]

(18) Ey[dLx
t e]/t→ Ex[σ

x
1 ]−1 as t→ ∞.

Since dLx
t e − 1 < Lx

t ≤ dLx
t e, the convergence (18) continues to hold if we replace dLx

t e by
Lx

t . By comparing limits we see that Ex[σ
x
1 ]−1 is equal to (16).

Finally, by the strong law of large numbers combined with the independent increments
property of σx we find

lim
t→∞

Lx
t /t = lim

t→∞
t/σx

t = Ex[σ
x
1 ]−1

Py-almost surely, y ∈ [0, a],

which completes the proof. �
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