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Abstract. Consider a spectrally one-sided Lévy process X and reflect it at its past

infimum I. Call this process Y . For spectrally positive X, Avram et al. [2] found an

explicit expression for the law of the first time that Y = X − I crosses a finite positive

level a. Here we determine the Laplace transform of this crossing time for Y , if X is

spectrally negative. Subsequently, we find an expression for the resolvent measure for

Y killed upon leaving [0, a]. We determine the exponential decay parameter % for the

transition probabilities of Y killed upon leaving [0, a], prove that this killed process is

%-positive and specify the %-invariant function and measure. Restricting ourselves to

the case where X has absolutely continuous transition probabilities, we also find the

quasi-stationary distribution of this killed process. We construct then the process Y

confined to [0, a] and proof some properties of this process.
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0 Introduction

A spectrally one-sided Lévy process is a real-valued stochastic process with stationary and
independent increments, which has jumps of one sign. In this paper we will study such a
Lévy process reflected at its past infimum, that is, the Lévy process minus its past infimum.
In applied probability, these reflected processes frequently occur, for example in the study of
the water level in a dam, the work load in a queue or the stock level (See e.g. [1, 8, 20] and
references therein.) Moreover, the reflected Lévy process occurs in relation with a problem
associated with mathematical finance. See [17, 22] and references therein.

The paper decomposes into three parts. In the first part, we study the level-crossing
probabilities of the reflected Lévy process. For spectrally positive Lévy processes X, Avram
et al. [2] found an explicit expression for the Laplace transform of the first exit-time of
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the reflected process from [0, a]. In Section 3.2 we complement this study by obtaining the
Laplace transform of the exit time for the reflected process of the dual, a spectrally negative
Lévy process. Subsequently, in Section 4, we solve for the resolvent measure of the transition
probabilities of the reflected Lévy process killed upon leaving [0, a].

Bertoin [6] investigated the exponential decay and ergodicity for completely asymmetric
Lévy processes killed upon leaving a finite interval. The purpose of the second part is to
extend Bertoins study to reflected Lévy processes killed upon up-crossing a finite level. We
determine the exponential decay parameter % of the semi-group, prove that the process is
%-positive in the classfication of Tuominen and Tweedie [29] and specify the %-invariant
function and measure. Restricting ourselves to Lévy processes of which the one dimesional
distributions are absolutely continuous with respect to the Lebesgue measure, we also find
the quasi-stationary distribution. Section 7 contains the main results in that direction.
Section 6 contains a study of the transition probabilities of the reflected Lévy process with
results that are preparatory for these results.

Important elements in the proof of the ergodic properties and the exponential decay are
the special form of the earlier computed resolvent measure together with special properties
of fluctuation theory of completely asymmetric Lévy processes, elementary properties of
analytic functions and the R-theory developed by Tuominen and Tweedie [29] for a general
irreducible Markov process.

The third part starts with the construction by h-transform of the reflected process con-
ditioned to stay below the level a. We study then this process: we show positive recurrence
and determine the stationary measure. If the one-dimesional distributions of the Lévy pro-
cess are absolutely continuous, we observe that, as a direct consequence of the results of
the second part mentioned above, the conditional probabilities of the reflected Lévy process
conditioned on the fact that it exits [0, a] after t, converge as t tends to infinity. The in
this way constructed process conincides with the earlier mentioned h-transform. If X has
unbounded variation, also the rate of convergence of the supremum of the reflected process
to a is studied. The results obtained are analogous to the ones Lambert [18] achieves in his
study of a completely asymmetric Lévy process confined in a finite interval. The results of
this part can be found in section 8.

The function Z(q)(x) = 1+q
∫ x

0
W (q)(y)dy, where W (q) is the scale function of a spectrally

negative Lévy process X that is killed at an independent exponential time with parameter q,
plays an important role in our results. See for a precise definition the forthcoming section 1.
The function Z(q) first occured, although implicitly, in [4, 6]. In [2] it is shown to be closely
related to certain exit-problems of X and X reflected at its supremum. Just like the function
W (q) is called a q-scale function since {exp(−q(T̂ ∧ t))W (q)(XT̂∧t), t ≥ 0} is a martingale for

T̂ the first exit time of the positive real line, the function Z (q) has an analogous property,
but now for the reflected process Y ; indeed exp(−qt)Z (q)(Yt) is a martingale. Therefore we
would propose to call Z(q) the adjoint q-scale function.
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1 Preliminaries

This section reviews standard results on spectrally negative Lévy processes. For more back-
ground we refer to [7] or [5], Chapter VII.

Let X = {Xt, t ≥ 0} be a Lévy process without positive jumps defined on (Ω,F ,F =
{Ft}t≥0,P), a filtered probability space which satisfies the usual conditions. For all x the
measure Px will denote the translation of P under which X0 = x. To avoid trivialities, we
exclude the case where X has monotone paths. Since X has no positive jumps, the moment
generating function E[eθXt ] exists for all θ ≥ 0. and is given by

E[exp(θXt)] = exp(t ψ(θ))

for some function ψ(θ) which is well defined at least on the positive half axis, where it
is convex with the property limθ→∞ ψ(θ) = +∞. Let Φ(0) denote its largest root. On
[Φ(0),∞) the function ψ is stricly increasing and we denote its right inverse function by
Φ : [0,∞) → [Φ(0),∞). It is well known, that the asymptotic behaviour of X can be
determined from the sign of ψ′

+(0), the right derivative of ψ in zero. Indeed, X drifts to
−∞, oscillates or drifts to +∞ according to whether ψ ′

+(0) is negative, zero or positive.
We use the notations c ∨ d = max{c, d} and c ∧ d = min{c, d}. Denote by I and S the

past infimum and supremum of X respectively, that is,

It = inf0≤s≤t(Xt ∧ 0), St = sup0≤s≤t(Xt ∨ 0)

and introduce the notations Y = X − I and Ŷ = X̂ − Î = S − X for the Lévy process X
reflected at its past infimum I and its dual, the process X reflected at its supremum. Denote
by η(q) an exponential random variable with parameter q > 0 which is independent of X.
The Wiener-Hopf factorization of X implies that Yη(q) has an exponential distribution with
parameter Φ(q) and that

(1) E[exp(−θŶη(q))] =
q

q − ψ(θ)
· Φ(q) − θ

Φ(q)
.

2 Scale functions

As in e.g. [6, 2], a crucial role will be played by the function W (q) which is closely connected
to the two-sided exit problem. To be precise we give a definition for W (q) and review some
of its properties.

Definition 1 For q ≥ 0 the q-scale functionW (q) : (−∞,∞) → [0,∞) is the unique function
whose restriction to [0,∞) is continuous and has Laplace transform

∫ ∞

0

e−θxW (q)(x)dx = (ψ(θ) − q)−1, θ > Φ(q)

and is defined to be identically zero for x < 0.
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By taking q = 0 we get the 0-scale function which is usually called just “the scale function”
in the literature [5]. For q > 0, W (q) can be regarded as “the scale function” of the original
process X killed at an independent exponential time with parameter q. It is known that
W = W (0) is increasing, when restricted to (0,∞). Moreover, the value of W is 0 and
infinity is connected to certain global properties of X. Indeed, W (0) is zero precisely if X
has unbounded variation. Secondly, W (∞) = limx→∞W (x) is finite, precisely if X drifts to
∞, which follows from a Tauberian theorem in conjunction with the earlier mentioned fact
that ψ′

+(0) > 0 if and only if X drifts to ∞.
Inverting now the Laplace transform (1), we find that

(2) P(Ŷη(q) ∈ dy) =
q

Φ(q)
W (q)(dy) − qW (q)(y)dy, y ≥ 0,

where W (q)(dy) denotes the Stieltjes measure associated with W (q) with mass W (q)(0) in
zero.

For every fixed x, we can extend the mapping q 7→W (q)(x) to the complex plane by the
identity

(3) W (q)(x) =
∑

k≥0

qkW ?k+1(x)

where W ?k denoted the k-th convolution power of W = W (0). The convergence of this series
is plain from the inequality

W ?k+1(x) ≤ xkW (x)k+1/k! x ≥ 0, k ∈ N,

which follows from the monotonicity of W . From the expansion (3) and the properties of
W , we see that the q-scale function is continuous except possibly at zero. and that it is for
each q ≥ 0 increasing on (0,∞).

Closely related to W (q) is the function Z(q). We recall the definition given in [2].

Definition 2 The adjoint q-scale function Z (q) is defined by

(4) Z(q)(x) = 1 + q

∫ x

−∞

W (q)(z)dz.

Note that this function inherits some properties from W (q)(x). Specifically it is strictly
increasing, differentiable and strictly convex on (0,∞) and is equal to the constant 1 for
x ≤ 0. Moreover, if X has unbounded variation, Z (q) is C2 on (0,∞).

Example. A stable Lévy process X with index α ∈ (1, 2] has as cumulant ψ(θ) = θα; its
scale function and adjoint are respectively given by [4]

W (q)(x) = αxα−1E ′
α(qxα) Z(q)(x) = Eα(qxα)
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where Eα is the Mittag-Leffler function with parameter α

(5) Eα(y) =

∞∑

n=0

yn

Γ(1 + αn)
, y ∈ R.

In the case that α = 2, the process X/
√

2 is a Brownian motion and W (q), Z(q) reduce to

(6) W (q)(x) = q−
1
2 sinh(x

√
q) Z(q)(x) = cosh(x

√
q).

Hence for a standard Brownian motion W (q), Z(q) are found by replacing (x, q) by (2x, q/2)
in (6).

For later reference, we give four lemmata with some properties of W (q) and Z(q) which
we will need later on.

Lemma 1 The function x 7→ W (q)(x) is right- and left-differentiable on (0,∞). Moreover,
if X has unbounded variation or its Lévy measure has no atoms, W (q) is continuously dif-
ferentiable on (0,∞).

By W
(q)′
± (x), we will denote the right- and left-derivative of W (q) in x, respectively.

Proof In the proof of theorem VII.8 in [5] Bertoin shows that W satisfies for some constant

K, W (x) = K exp(−
∫∞

x
n̂(h > t)dt), where n̂ is the Itô excursion measure of Ŷ = S − X

and h are excursion heights of excursions of Ŷ away from zero. From this representation, we
deduce that

(7) W ′
+(x) = W (x)n̂(h > x) W ′

−(x) = W (x)n̂(h ≥ x).

It can be shown that the ditribution of h under excursion measure n̂ has no atoms if X
has unbounded variation (see [18]) or if X has bounded variation but its Lévy measure Λ
has no atoms (one way to see this is to invoke equation (20) to show that n̂(h = x) =
d
−1Λ({−x})W (0)/W (x)). Hence, under these conditions, W restricted to (0,∞) is contin-

uously differentiable. Using the expansion (3) and the monotonicity of W , it is not hard to
prove that the properties of W carry over to W (q) (see [18, Prop. 5.1]). �

The second lemma is immediate from the definition of Z (q) and W (q)′.

Lemma 2 The mapping (x, q) 7→ Z (q)(x) is continuous on [0,∞)×R and, for every x ≥ 0,

q 7→ Z(q)(x) and q 7→W
(q)′
± (x) are analytic functions.

Using the expansion (3), one can check the following convolution identity to be true:

Lemma 3 For q, r ∈ C and a > 0 we have

W (q) ? W (r)(a) =
1

r − q
(W (r)(a) −W (q)(a)),

where for q = r the expression is to be understood in the limiting sense.
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The following result concerns the asymptotic behaviour of W (q) and Z(q). We write f ∼ g if
lim(f/g) = 1.

Lemma 4 (i) For q > 0, we have as x→ ∞

W (q)(x) ∼ eΦ(q)x/ψ′(Φ(q)), Z(q)(x) ∼ qeΦ(q)x/ (Φ(q)ψ′(Φ(q))) .

(ii) As x ↓ 0 the ratio (W (x) −W (0)/x converges to a positive constant or to +∞.

Proof (i) We can straightforwardly check that the Laplace-Stieltjes transforms of the func-

tions U(x) :=e−Φ(q)xW (q)(x) and Ũ(x) := e−Φ(q)x(Z(q)(x) − 1) are given by

∫ ∞

0

e−λxU(dx) =
λ

ψ(λ+ Φ(q)) − q
=

λ

ψ(λ+ Φ(q)) − ψ(Φ(q))
;

∫ ∞

0

e−λxŨ(dx) =
qλ

(Φ(q) + λ)(ψ(λ+ Φ(q)) − q)
,

where dU, dŨ denote the Stieltjes measure associated to U, Ũ respectively, which respectively
assign masses W (q)(0) and 0 to zero. Since ψ′(Φ(q)) > 0, the statements follow using a
Tauberian theorem (e.g. [5, p.10]).
(ii) Recall that the Laplace-Stieltjes transform of W is given by λ/ψ(λ). If the Brownian
coefficient s := limλ→∞ ψ(λ)/λ2 is positive, the same Tauberian theorem implies thatW (x) ∼
x/s for x tending to infinity. Set d := limλ→∞ λ/ψ(λ). If s = d−1 = 0, that is X has no
Brownian component and unbounded variation, we find, again using the Tauberian theorem,
that W (x)/x tends to infinity for x → ∞. Similarly, if the Lévy measure of X has finite
mass m, we can check W (x) −W (0) ∼ mx/d, whereas for X with bounded variation but
infinite mass of the Lévy measure we can verify that (W (x) −W (0))/x tends to infinity as
x→ ∞. �

3 Exit problems

3.1 Two-sided exit

We now turn our attention to the two-sided exit problem and review the main results [6].

Denote the passage times T̂a, Ta for X and −X above and below the level a by

Ta = inf{t ≥ 0 : Xt > a} T̂a = inf{t ≥ 0 : −Xt > a}

The following result, the origins of which go back to Takács [27], expresses the (discounted)
probabilities of exiting the interval [0, a] above and below in terms of W (q) and Z(q).

Proposition 1 For q ≥ 0, the Laplace transform of the two-sided exit time T̂0 ∧ Ta on the
part of the probability space where X starts at x ∈ [0, a] and exits the interval [0, a] above
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and below is respectively given by

Ex

[
e−qTaI(T̂0>Ta)

]
= W (q)(x)/W (q)(a)(8)

Ex

[
e−qT̂0I(T̂0<Ta)

]
= Z(q)(x) −W (q)(x)Z(q)(a)/W (q)(a)(9)

Proof For x ∈ (0, a), this result can be extracted directly out of existing litterature. See
for example [5, Thm. VII.8] for a proof of (8) using excursion theory. Combining this with
[6, Cor 1], we find equation (9). Note by a small typographic mistake in [6]

∫ x

0
W (q)(x)dx

is used instead of q
∫ x

0
W (q)(y)dy = Z(q)(x) − 1. Since 0 is regular for (0,∞) for X, the

identities hold for x = a. Similarly, they hold for x = 0 if X has unbounded variation. If
X has bounded variation, 0 is irregular for (−∞, 0) and hence T̂0 > 0 almost surely. Since
Tε ↓ 0 almost surely if ε ↓ 0, the strong Markov property implies that

E0

[
e−qTaI(T̂0>Ta)

]
= lim

ε↓0
E0

[
e−qTεI(T̂0>Tε)

W (q)(ε)/W (q)(a)
]

= W (q)(0)/W (q)(a),

whence (8) is valid for x = 0 as well. Analogously (9) is shown to hold for x = 0. �

Remark. Let n be the Itô-excursion measure associated to the excursions of Y = X−I away
from zero and let h, ζ denote the height and lifetime of the generic excursion respectively.
In [5, Prop VII.15] Bertoin related n and the scale function W as follows

n(h > a) = W (a)−1.

Using Propositions 14 and 15 in [5] combined with Proposition 1, we find the following link
between n and W (q):

n(e−qζ , h > a) = lim
x↓0

Ex(e
−qTaI(T̂0>Ta))

W (x)
= W (q)(a)−1,

since W (q)(0) = W (0).

3.2 Mixed exit

As a next step, we study exit problems of [0, a] for the reflected Lévy processes Y and Ŷ .
The first passage time of a positive level a > 0 will be denoted by

τa = inf{t ≥ 0 : Yt > a} and τ̂a = inf{t ≥ 0 : Ŷt > a},

where we will use τ0 and τ̂0, respectively, to denote the first time that Y and Ŷ hit zero.
The following result expresses the Laplace transforms of the exit times τa and τ̂a in terms of
the scale functions W (q) and Z(q). Note that X0 = x and hence Y0 = x under Px. Similarly,
we see that Ŷ0 starts from x under the measure P−x.

7



Proposition 2 Let x ∈ [0, a] and q ≥ 0. Then we have

(i) Ex[e
−qτa ] = Z(q)(x)/Z(q)(a).

(ii) E−x[e
−qτ̂a ] = Z(q)(a− x) − qW (q)(a− x)W (q)(a)/W

(q)′
+ (a).

By analyticity in q (Lemma 2) and monotone convergence, we find from Proposition 2 the
following expressions for the expectations of the stopping times τa and τ̂a for x ∈ [0, a]:

(10) Ex[τa] = W (a) −W (x), E−x[τ̂a] = W (a− x)
W (a)

W ′
+(a)

−W (a− x),

where W (x) =
∫ x

0
W (y)dy. If X is a standard Brownian motion, we recall the form of the

q-scale function given in the example in Section 2 and we find back the following well known
identities:

Ex[e
−qτa] = cosh(x

√
2q)/ cosh(a

√
2q), Ex[τa] = (a2 − x2)/2,

for q ≥ 0 and x ∈ [0, a].
Proof The second Laplace transform can be directly infered from Theorem 1 in [2]. To prove
the form of the first Laplace transform, we use ideas developed in [2]. From the two-sided
exit probability (8) we can extract that

Mt = exp(−q(t ∧ T̂0 ∧ Ta))W
(q)(X(t ∧ T̂0 ∧ Ta)) t ≥ 0,

is a martingale. Indeed, combining (8) and the fact that W (q)(XT̂0∧Ta
)/W (q)(a) is almost

surely equal to the indicator of {T̂0 > Ta}, we find for x ∈ R

Ex[e
−q(T̂0∧Ta)W (q)(XT̂0∧Ta

)] = W (q)(x).

Combined with the Markov property of X we see that

Ex(e
−q(T̂0∧Ta)W (q)(XT̂0∧Ta

)|Ft) = e−qtW (q)(Xt)1{t<T̂0∧Ta}

+ e−q(T̂0∧Ta)W (q)(XT̂0∧Ta
)1{t≥T̂0∧Ta}

= e−q(t∧T̂0∧Ta)W (q)(Xt∧T̂0∧Ta
),

so that we have constance of expectation. Similarly, the martingale property follows. Exactly
in the same vein, now using the exit probability in equation (9), we conclude that

e−q(t∧T̂0∧Ta)
(
Z(q)(Xt∧T̂0∧Ta

) −W (q)(Xt∧T̂0∧Ta
) Z(q)(a)

W (q)(a)

)
, t ≥ 0

is a martingale. By taking a linear combination, we see that e−q(t∧T̂0∧Ta)Z(q)(Xt∧T̂0∧Ta
) is

a martingale. Recall that Z(q)(·) is once (twice) continuously differentiable on (0,∞) if X
has (un)bounded variation, respectively. Applying Itô’s lemma to e−qtZ(q)(Xt) (Theorema
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II.31(32) in [23] in the case where X has (un)bounded variation) on the set {t ≤ T̂0}, we
find that

e−q(t∧T̂0)Z(q)(Xt∧T̂0
) −

∫ t∧T̂0

0

e−qs(Γ − q)Z(q)(Xs−)ds

is a (local) martingale, where Γ is the infinitesimal generator of X. The martingale property

of e−q(t∧T̂0∧Ta)Z(q)(Xt∧T̂0∧Ta
) implies now that

(11) (Γ − q)Z(q)(x) = 0, x ∈ (0, a).

Let Ic be the continuous part of I. By applying (the appropriate version of) Itô’s lemma to
Nt = exp(−qt)Z(q)(Yt) and using Z(q)(x) = 1 for x ≤ 0, one can verify that

Nt −
∫ t

0

e−qt(Γ − q)Z(q)(Ys−)ds+ q

∫ t

0

W (q)(Ys−)dIc
s

is a local martingale. Note that the last term in the previous display is identically zero.
Indeed, if X has bounded variation Ic ≡ 0; otherwise we see that dIc

s is negative if and only
if Ys− = 0 and W (q)(0) = 0 in this case. Noting that Nt∧τa is bounded by Z(q)(a) we deduce
from equation (11) that Nt∧τa is a uniformly integrable martingale. Hence, as t→ ∞,

Z(q)(x) = Ex[Nt∧τa ] → Ex[Nτa] = Z(q)(a)Ex[e
−qτa] x ∈ [0, a],

where we used that Px-almost surely τa <∞ and Yτa = a. �

3.3 Martingales

Another consequence of Proposition 2 is the following martingale property, which justifies
the name adjoint q-scale function for Z (q).

Proposition 3 For q ≥ 0,

(e−q(t∧T̂0)W (q)(Xt∧T̂0
), t ≥ 0) and (e−qtZ(q)(Yt), t ≥ 0)

are martingales.

Proof The first assertion follows by applying Lemma VII.11 in [5] to a spectrally negative
Lévy process that is killed at an independent exponential time η(q).

Recall that Nt = exp(−qtZ(q)(Yt). From the proof of Proposition 2, we know that
(Nt∧τa , t ≥ 0) is a martingale. We now claim that Nt∧τa converges in L1 to Nt as a tends to
∞. Since for s ≤ t

E|E(Nt∧τa |Fs) − E(Nt|Fs)| ≤ E|Nt∧τa −Nt|,
the claim implies that Nt is a martingale. So we will be done after proving the claim. Write

Nt∧τa = Nt1{t<τa} +Nτa1{t≥τa}.
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Since τa < ∞ a.s., monotone convergence implies that the first term on the right-hand side
increases to Nt in L1. For the second term we note that by the Cauchy-Schwarz-inequality

(12) Ex[e
−qτa1{t≥τa}] ≤ (Ex[e

−2qτa ])1/2
Px(t ≥ τa)

1/2.

Recall that η(r) denotes an independent exponential random variable with parameter r.
Since τa → ∞ if a→ ∞ and we can check that, for r > 0,

Px(τa ≤ η(r)) = Px(τa ≤ t) + Px(τa ∈ (t, η(r)], t < η(r))

− Px(τa ∈ (η(r), t], η(r) < t),

there exists an ar large enough such that Px(τa ≤ t) is bounded by Px(τa ≤ η(r)) for all
a ≥ ar. Combining this property with equations (12) and Proposition 2(i), we find that

Ex[Nτa1τa≤t] ≤ Z(2q)(x)Z(q)(a)/Z(2q)(a).

By Lemma 4 (recalling that Φ is increasing), we conclude that the expectation in the previous
display converges to zero, which finishes the proof. �

4 Resolvent measure

The Lévy process killed when it exits from [0, a] has the strong Markov property; denote its
transition probabilities by (P t, t ≥ 0), that is, for a Borel set A ⊆ [0, a] we have

P t(x,A) = Px(Xt ∈ A, t < Ta ∧ T̂0) for x ∈ [0, a].

and its q-resolvent kernel by

U q(x,A) =

∫ ∞

0

P t(x,A)e−qtdt = Ex

(∫ T∧T̂

0

e−qt1{Xt∈A}dt

)
, q ≥ 0.

Since the Lévy process has an absolute continuous resolvent kernel, it follows from the Radon-
Nikodym theorem that U q(x, ·) has a density with respect to the Lebesgue measure, which
will be denoted by uq(x, ·). Suprun [26] showed that, for x ∈ [0, a],

(13) uq(x, y) =
W (q)(x)W (q)(a− y)

W (q)(a)
−W (q)(x− y) y ∈ [0, a]

is a version of this density. Now we consider the Lévy processes Y and Ŷ killed upon leaving
[0, a). These killed processes still have the strong Markov property and we write (Qt, t ≥ 0)

and (Q̂t, t ≥ 0) respectively to denote their transition probabilities. To be more precise, for

Borel-sets A ⊆ [0, a], we denote the transition probabilities of Y and Ŷ by

Qt(x,A) = Px(Yt ∈ A, t < τa), Q̂t(x,A) = P−x(Ŷt ∈ A, t < τ̂a).

and the corresponding q-resolvent kernels by Rq(x,A) and R̂q(x,A), respectively. We state
the following result:
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Theorem 1 (i) The measure Rq(x, ·) is absolutely continuous with respect to the Lebesgue
measure and a version of its density is given by

rq(x, y) =
Z(q)(x)

Z(q)(a)
W (q)(a− y) −W (q)(x− y), x, y ∈ [0, a).

(ii) Let r̂q(x, 0) =W (q)(a− x)W (q)(0)/W
(q)′
+ (a) for x ≥ 0 and set

r̂q(x, y) = W (q)(a− x)
W

(q)′
+ (y)

W
(q)′
+ (a)

−W (q)(y − x) x, y ∈ [0, a], y 6= 0.

Then r̂q(x, 0)δ0(dy) + r̂q(x, y)dy is a version of the measure R̂q(x, dy).

Example. If X is a standard Brownian motion, a famous result of Lévy states that |X| = Y ,
where the equality is in law. Let τ ′ be the first exit time of |X| from [0, a] and let as before
η(q) is an independent exponential random variable with parameter q > 0. Recalling from
the example in Section 2 the form of the functions W (q), Z(q) for a Brownian motion and
substituting in Theorem 1, we find, after some algebra,

Px(|X|η(q) ∈ dy, η(q) < τ ′)/dy =

√
q√
2
· sinh((a− |y − x|)√2q) + sinh((a− x− y)

√
2q)

cosh(a
√

2q)

for 0 ≤ x, y ≤ a. This formula is well known in the literature (e.g. [9, 3.1.1.6]).

Proof of part (i) Pick x, y ∈ [0, a] arbitrary and let q > 0. By applying the strong Markov
property of Y = X − I at the stopping time τx and using the memoryless property of the
exponential distribution, we find

P0(Yη(q) ∈ dy, η(q) < τa) = P0(Yη(q) ∈ dy, η(q) < τx)(14)

+ E0[e
−qτx ]Px(Yη(q) ∈ dy, η(q) < τa)

Analogously, the probability in (14) admits as second decomposition

(15) P0(Yη(q) ∈ dy, η(q) < τa) = P0(Yη(q) ∈ dy) − E0[e
−qτa]Pa(Yη(q) ∈ dy).

Combining the two decompositions (14) and (15) we find

(16) Px(Yη(q) ∈ dy, η(q) < τa) = Pa(Yη(q) ∈ dy) − E0[e
−qτa ]

E0[e−qτx]
Px(Yη(q) ∈ dy).

Our next step is to evaluate the probability Px(Yη(q) ∈ dy). Applying as before the strong
Markov property at the stopping time τ0, we find the decomposition

Px(Yη(q) ∈ dy) = Px(Yη(q) ∈ dy, η(q) < τ0) + Ex[e
−qτ0 ]P0(Yη(q) ∈ dy)(17)

= Px(Xη(q) ∈ dy, η(q) < T̂0) + Ex[e
−qT̂0 ]P0(Yη(q) ∈ dy)

11



where in the second line we used that (Yt, t ≤ τ0) has the same law as (Xt, t ≤ T̂0). Suprun
[26] showed that a version of the resolvent density of the process X killed upon entering the
negative half-line is given by

(18) q−1
Px(Xη(q) ∈ dy, η(q) < T̂0)/dy = e−Φ(q)yW (q)(x) −W (q)(x− y).

By integrating this resolvent density over y, we find the Laplace transform of T̂0 to be equal
to

(19) Ex[e
−qT̂0 ] = Z(q)(x) − qΦ(q)−1W (q)(x).

Substituting (19) and (18) into (17) and recalling that Yη(q) has an exponential distribution
with parameter Φ(q) we end up with

Px(Yη(q) ∈ dy)/dy = Z(q)(x)Φ(q)e−Φ(q)y − qW (q)(x− y).

Substituting this into equation (16) and recalling from Theorem 2 that P(τx > η(q)) is given
by Z(q)(x)−1, we get the formula as stated in the Theorem for q > 0. For q = 0, the result
follows by letting q ↓ 0. �

Proof of part (ii) Let x, y ∈ [0, a] and let q > 0. Since ((S−X)t; t < τ̂0) has the same law as

(−Xt; t < T̂0), the strong Markov property of Ŷ = S −X enables us to write

Px((S −X)η(q) ∈ dy, η(q) < τ̂(a)) = Px(−Xη(q) ∈ dy, η(q) < T̂0 ∧ Ta)

+
W (q)(a− x)

W (q)(a)
P0((S −X)η(q) ∈ dy, η(q) < τ̂(a)),

where we used the two-sided exit probability (8). The first quantity on the right-hand side is
seen to be equal to quq(a−x, a−y)dy, where uq is given in (13). To evaluate the probability
in the second term on the right-hand side we are going to make use of the Master formula
of excursion theory (e.g. [5, Cor. IV.11]). We shall use standard notation (see Bertoin [5,

Ch. IV]). To this end, we introduce the excursion process ê = (êt, t ≥ 0) of Ŷ , which takes
values in the space of excursions

E = {f ∈ D[0,∞) : f ≥ 0, ∃ ζ = ζ(f) such thatf(x) = f(0) = 0 for all x ≥ ζ}.

of càdlàg functions f with a generic life time ζ = ζ(f) and is given by

êt = (Ŷs, L
−1(t−) ≤ s < L−1(t)) if L−1(t−) < L−1(t)

where L−1 is the right-inverse of a local time L of Ŷ at zero; else êt = ∂, some isolated point.
We take the running supremum S to be this local time L (cf. [5, Ch, VII]). The space E is
endowed with the Itô excursion measure n̂. A famous theorem of Itô states that ê is a Poisson
point process with characteristic measure n̂, if Ŷ is recurrent; otherwise (êt, t ≤ L(∞)) is
a Poisson point process stopped at the first excursion of infinite lifetime. For an excursion

12



ε ∈ E its supremum is denoted by ε. By εg = (Ŷg+t, t ≤ ζg) we denote the excursion of Ŷ
with left-end point g, where ζg and εg denote its lifetime and supremum respectively.

Letting Ta(ε) = inf{t ≥ 0 : ε(t) ≥ a} an application of the compensation formula yields
for y > 0

P0((S −X)η(q) ∈ dy, η(q) < τ̂(a))

= E

[∑

g

I

(
εg(η(q)) ∈ dy, g < η(q) < g + ζg, η(q) < τ̂a, sup

h<g
εh ≤ a

)]

= E

[∫
e−qsI

(
sup
h<s

εh ≤ a

)
dSs

]
n̂(ε(η(q)) ∈ dy, η(q) < ζ ∧ Ta(ε)).

The first factor can be infered from [2] to be equal to W (q)(a)/W
(q)′
+ (a). For the second

factor, we distinguish between the case that X has bounded or unbounded variation.
If X has bounded variation, it is well known (e.g. [24] or [19] for a more recent reference)

that an excursion starts with a jump almost surely. Denote by d,Λ(dx) the drift and Lévy

measure of X, respectively. Note that in this case the time up to time t that the process Ŷ
has spent in zero is equal to local time St divided by the drift d. By the Markov property,
under n̂, the excursion of Ŷ , once in (0,∞), evolves as −X killed at time T0. Furthermore,

the entrance law of an excursion of Ŷ under n̂ is given by Λ/d. Indeed, letting F : E → [0,∞)
be any bounded measurable functional on the space of excursions, we find that

∫
F (ε)n̂(dε) = E

[ ∑

0≤s≤1

F (es)

]

= E

[ ∑

0≤t<∞

I(St ≤ 1, Xt− = St,∆Xt < 0)F ({−Xs+t +Xt− , s ≤ τ̂0})
]

= E

[∫ ∞

0

I(St ≤ 1, Xt− = St)dt

∫ 0

−∞

F ({−Xs − x, s ≤ T−x})Λ(dx)

]

=
1

d

∫ 0

−∞

Ex [F ({−Xs, s ≤ T0})] Λ(dx),(20)

where on the first line we used as before the Master formula of excursion theory followed in
the third line by an application of the compensation formula applied to the Poisson point
process (∆Xt, t ≥ 0) with characteristic measure Λ(dx) combined with the independent
increments property of X. Applying this identity to F (ε) = I(ε(t) ∈ dy, t < ζ ∧ Ta(ε)),
taking the Laplace transform in t and using (13), we find that

n̂(ε(η(q)) ∈ dy, η(q) < ζ ∧ Ta)

dy
=
q

d

∫ 0

−∞

(
W (q)(a+ x)W (q)(y) −W (q)(a)W (q)(y + x)

W (q)(a)

)
Λ(dx).

We claim that the following identity holds true for all a > 0:

(21) dW
(q)′
+ (a) =

∫ ∞

0

(
W (q)(a) −W (q)(a− x)

)
Λ(dx) + qW (q)(a).

13



To see this, first note that the right and left hand side of (21) have the same Laplace transform

in a. Moreover, equation (7) and the decomposition (3) imply that W
(q)′
+ is bounded on any

compact interval in (0,∞). It follows that the right hand side of (21) is right-continuous in
a > 0, as is certainly the left hand side of (21). This continuity combined with the almost
sure unicity of the Laplace transform shows the claim is true for a > 0.

After some algebra, we find that

(22) n̂(ε(η(q) ∈ dy, η(q) < ζ ∧ Ta)/dy = q

(
W

(q)′
+ (y) − W

(q)′
+ (a)

W (q)(a)
W (q)(y)

)
.

Substituting back the expression (22), we find the stated form of the density for y > 0.
Noting that

1 − E−x[e
−qτ̂a ] =

∫ a

0+

qr̂q(x, y)dy + P−x(Ŷη(q) = 0, η(q) < τ̂a),

we can verify, by combining Proposition 2 with the just found density, that R̂q(x, 0) =

W (q)(a− x)W (q)(0)/W
(q)′
+ (a) which finishes the proof in the bounded variation case.

Suppose now X has unbounded variation. Let g(τ̂a) and d(τ̂a) be the last time before

and first time after τ̂a that Ŷ visits zero. Consider now the excursion straddling τ̂a, {−Ŷt, t ∈
[g(τ̂a), d(τ̂a)}, and denote its law by Q(a). Since we are in the case of unbounded variation, all

excursions of −Ŷ away from zero leave continuously. In canonical notation, T (x) = inf{t ≥
0 : Xt ≥ x} tends to zero almost surely under Q(a) as x ↓ 0. We can verify that the same
holds for T ′(x) = inf{t ≥ 0 : Xt = x}. By right-continuity of the paths, X ◦ θT ′(x) (with θ
the shift-operator) converges to X under Q(a) in the Skorohod topology as x tends to zero.
The strong Markov property implies that under Q(a)(·|T ′(x) < T (a)) the shifted process

X ◦ θT ′(x) has the same law as X̂ = −X under P, starting at x and conditioned to exit [0, a]
at a. Using (13) and (8), we find for A ∈ Ft

Qt,(a)
x (A) := Q(a)(A ◦ θT ′(x), t < T (a)|T ′(x) < T (a))

=

∫

A

W (a) −W (a− y)

W (a) −W (a− x)
P−x(−Xt ∈ dy, t < T̂a ∧ T0)

Combining with the foregoing, we note that Q
t,(a)
x converges weakly to Q(a)(·, t < T (a)) as

x ↓ 0. From (13) it follows that

lim
x↓0

P−x(−Xη(q) ∈ dy, η(q) < T̂a|T̂a < T0) =
W (a) −W (a− y)

W ′(a)
f(y, a)dy

where the limit is in the sense of weak convergence and f(y, a) is equal to the right-hand
side of (22). We deduce that

(23) Q(a)(Xη(q) ∈ dy, η(q) < T (a)) =
W (a) −W (a− y)

W ′(a)
f(y, a)dy.
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By a computation based on the compensation formula for excursion theory (cf. proof of
Theorem 4 in [10]), one can verify that

E

[∫ ∞

0

I(St ≤ x)qe−q(t−gt)I(Ŷt−gt ∈ dy, t− gt < τ̂a)

]
= xn̂(ε(η(q)) ∈ dy, η(q) < ζ ∧ Ta(ε)),

where gt = sup{s ≤ t : Ŷs = 0}. Thus, we find

n̂(ε(η(q)) ∈ dy,η(q) < ζ ∧ Ta(ε))

= lim
x↓0

1

x
E−x

[∫ ∞

0

qe−q(t−gt)I(Ŷt−gt ∈ dy, t− gt < τ̂a ∧ τ̂0)
]

= lim
x↓0

W (a) −W (a− x)

x
×

× lim
x↓0

1

W (a) −W (a− x)

∫ ∞

0

qe−qt
E−x[I(Xt−gt ∈ dy, t− gt < T̂a ∧ T0)dt

= W ′(a)Q(a)

[
1

W (a) −W (a−Xη(q))
I(Xη(q) ∈ dy, η(q) < T (a))

]
dt.(24)

Combining (24) and (23) we deduce that (22) is also valid in this case. �

Remark. If X drifts to −∞, we can relate the conditionings in the proof of the theorem
to those in the literature on spectrally negative Lévy processes conditioned to stay in a half
line. Recall that, since X drifts to −∞, we have Φ(0) > 0 and ψ ′(Φ(0)) > 0. We write
W (x) = eΦ(0)xW#(x) where W# is the scale function of X under the measure P# which is
for A ∈ Ft given by P#(A) = E[exp(Φ(0)Xt)IA]. Since ψ#′(0) = ψ′(Φ(0)) > 0, X drifts to
+∞ under P

# and W# is bounded. Then it follows from Proposition 1 that the probability
P−x(T̂a < T0) converges to 1 − exp(−Φ(0)x) as a → ∞. By bounded convergence we then
find for At ∈ Ft

P−x(At|T̂a < T0) = (W (a) −W (a− x))−1
P−x((W (a) −W (a+Xt))At)

→ P
↓
−x(At) := E−x(

1−eΦ(0)Xt

1−e−Φ(0)x I(At)) as a→ ∞.

Note that P
↓
−x(At) is also equal to P−x(At|S∞ < 0). Hence the notation P

↓
−x is justified since

under this measure the process always stay below zero with probability one. As x ↓ 0 the
measures P

↓
−x converge weakly (in the Skorohod topology) to a measure P↓. For an analysis

of this case, see [3].

5 Analytic continuation

In this subsection, we show that the resolvent measure Rq(x, ·) and R̂q(x, ·) can be extended
to some negative values of q. Let us define % and %̂ by

(25) % = inf{q ≥ 0 : Z(−q)(a) = 0} %̂ = inf{q ≥ 0 : W
(−q)′
+ (a) = 0}.
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Continuity of q 7→ Z(q)(a) (Lemma 2) combined with the fact Z (0)(a) ≡ 1 implies that % is
positive. Similarly, we claim %̂ is positive. Indeed, since W is increasing, W ′

+(a) is positive
for all a > 0 except possibly at countably many, where it could be zero. However, any zero
of W ′ would lead to a contradiction in view of the expectation of τ̂a as stated in (10). The

claim then follows by continuity of q 7→ W
(q)′
+ (a).

Proposition 4 Let x ∈ [0, a] and A a Borel subset of [0, a). We have for q < %

∫ ∞

0

eqtQt(x,A)dt =

∫

A

{
Z(−q)(x)

Z(−q)(a)
W (−q)(a− y) −W (−q)(x− y)

}
dy

and for q < %̂

∫ ∞

0

eqtQ̂t(x,A)dt =

∫

A

W (−q)(a− x)

W
(−q)′
+ (a)

W (−q)(dy) −
∫

A

W (−q)(y − x)dy.

Proof For q ≤ 0, the statement (i) rephrases Theorem 1. By Lemma 2 and the properties
of q 7→ W (q)(x) as listed in [6, Lemma 4], we can extend the right hand side for q < %. The
coefficient cn of qn in the corresponding expansion as a power series in zero is given in terms
of the left-derivative of the left-hand side,

cn =
∫∞

0
tnQt(x,A)dt/n!.

We know that the series
∑

n cnq
n converges for |q| < %. The statement follows. The proof of

(ii) is similar and left to the reader. �

6 Irreducibility and Continuity

Let µ denote any σ-finite measure on ([0, a),B[0,a)), the interval [0, a) endowed with the Borel
σ-algebra B[0,a). Examples are the Lebesgue measure λ and the dirac measure in x ∈ [0, a),
δx. One says that transition probabilities (P t, t ≥ 0) are µ-irreducible if, for every A ∈ B[0,a)

with µ(A) > 0, its potential U(x,A) of A is positive for every x ∈ [0, a). Before we formulate
the result, we set the condition (R) by

(R)

{
X has jumps of absolute size smaller than a

or the Brownian coefficient s = limλ→∞ λ−2ψ(λ) is positive

}
.

Proposition 5 Qt is λ-irreducible and under condition (R) Q̂t is (λ+W (0)δ0)-irreducible.

Proof The first statement follows since, by Theorem 1,

r0(x, y) = W (a− y) −W (x− y) > 0 for all x, y ∈ [0, a),
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as W is increasing. For the second statement, we note that Q̂t(x, dy) ≥ P t(a− x, d(a− y)).
Thus r̂0(x, y) ≥ u0(a− x, a− y), where uq(a− x, a− y) > 0 for all x, y ∈ (0, a) by Corollary
3 in [6]. If x = 0, we see from (7) that for y < a

r̂0(0, y)/ (W (a)W (y)) =
W ′

+(y)

W (y)
− W ′

+(a)

W (a)
= n̂(h > y) − n̂(h > a) > 0.

Finally, note that r̂q(x, 0) > 0 for x ∈ [0, a), if X has bounded variation. �

Proposition 5 implies the following property of Z (q).

Corollary 1 For every q < % and x ∈ [0, a), we have Z (−q)(x) > 0.

Proof We know from Lemma 2 that Z (−q)(x) > 0 if x is sufficiently small. Let x0 be the
smallest zero of Z(−q)(x) = 0. If we had x0 < a, then we would have

∫∞

0
eqtQt(x0, (x0, a))dt =

0 by Proposition 4, which conflicts with the fact that Qt is Lebesgue irreducible. �

In order to be able to prove continuity in space and time of the transition probabilities
(Qt, t ≥ 0) and (Q̂t, t ≥ 0), we restrict ourselves to Lévy processes X of which the one-
dimensional distributions are absolutely continuous with respect to the Lebesgue measure,
that is,

(AC) P0(Xt ∈ dy) � dy for all t > 0.

It is known that (AC) holds whenever the Brownian coefficient is positive or when the mass
of the absolutely continuous part of the Lévy measure is infinite (see Tucker [28]).We use
the standard notation Qtf(x) =

∫
[0,a]

f(y)Qt(x, dy). Recall that the semi-group Q has the

strong Feller property if for every Borel bounded function f , Qtf(·) is a continuous function
on [0, a] for all t > 0. If a semigroup has the Feller as well as the strong Feller property it is
called doubly Feller.

Proposition 6 Assume (AC) is satisfied. Then the following hold true:

(i) For every x ∈ [0, a] and Borel set A ⊆ [0, a] the mappings t 7→ Qt(x,A) and t 7→
Q̂t(x,A) are continuous on (0,∞).

(ii) For every t > 0, Qt and Q̂t have the strong Feller property.

To prove Proposition 6 we need the following auxiliary results.

Lemma 5 Assume (AC) holds.

(i) The one dimensional distributions of the reflected Lévy process Y are absolutely con-
tinuous, that is,

Px(Yt ∈ dy) � dy for every t > 0, x ≥ 0.

(ii) For any t > 0, x ≥ 0, the measure Px(Ŷt ∈ dy) is absolutely continuous on (0,∞). If

X has (un)bounded variation, Px(Ŷt = 0) > (=)0.
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Proof (ii) Let N ⊂ (0,∞) be an arbitrary Borel set of measure zero and fix t > 0. The

form of the law of Ŷη(q) given in (2) combined with the absolute continuity of of W (q)(dx)
for x > 0 implies that

(26) P0(Ŷt ∈ N) = 0 for Lebesgue-almost all t > 0.

Next we note that Px(τ̂0 ∈ dt) has no atoms for x > 0. Indeed, since the sample paths of a
Lévy process are continuous at each fixed time a.s. we see that under (AC)

(27) Px(τ̂0 = t) = P−x(T0 = t) ≤ P−x(Xt = 0) = 0 x > 0.

Applying the Markov property at τ̂0 yields that

(28) Px(Ŷt ∈ N) = Px(Ŷt ∈ N, t < τ̂0) +

∫ t

0

P0(Ŷt−s ∈ N)Px(τ̂0 ∈ ds).

Noting that Px(Ŷt ∈ A, t < τ̂0) is dominated by P−x(−Xt ∈ A) and invoking (26) and (27),

we deduce from (28) that Px(Ŷt ∈ A) is zero under (AC) for all t, x > 0. By an application
of the Markov property at time s /∈ N , we can now remove the “almost” in (26) and the

first assertion follows. Recalling that Ŷt has the same law as −It and using (2), we see that

P0(Ŷt = 0) is zero for all t > 0 if and only if X has unbounded variation. The proof of (ii)
is complete. The proof of (i) is similar as (ii) and left to the reader. �

Lemma 6 For a > 0, the distribution of τ̂a has no atom, that is,

Px(τ̂a = t) = 0 for every x ∈ [0, a) and t ≥ 0.

Under (AC), the same holds for the distribution of τa.

Proof Since a Lévy process (and also a reflected Lévy process) is almost surely continuous
at time t, we have

Px(τy = t) ≤ Px(Yt = y) and Px(τ̂y = t) ≤ Px(Ŷt = y)

which are both zero under (AC) by the first and second part of the Lemma 5 respectively.
Suppose now (AC) is not satisfied; X is then a drift minus pure jump process of bounded

variation. Hence Ŷ can cross the level a > 0 only by a jump. However, the probability is
zero that the Poisson point process (∆Xt, t ≥ 0) jumps at time t. �

Lemma 7 Assume (AC) holds and let A ⊆ R be an arbitrary Borel set.

(i) For every t > 0, Px(Yt ∈ ·) and Px(Ŷt ∈ ·) have the strong Feller property.

(ii) For every x ≥ 0, t 7→ Px(Yt ∈ A) and t 7→ Px(Ŷt ∈ A) are continuous on (0,∞).
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Proof (i) By the strong Markov property, we may write

Px(Yt ∈ A) = Px(Yt ∈ A, t < τ0) +

∫ t

0

Px(τ0 ∈ ds)P0(Yt−s ∈ A).

The first term on the right-hand side is equal to Px(Xt ∈ A, t < T̂0). From Hawkes [14] we
know that under (AC) X is doubly Feller, from Chung [11] we know that a doubly Feller
process remains doubly Feller if killed upon hitting an open set. For the second term, we
note that Px(τ0 ∈ ds) = P(T̂−x ∈ ds). Since (T̂−x, x ≥ 0) is a subordinator with absolute
continuous transition probabilities under (AC) and since s 7→ P0(Yt−s ∈ A) is bounded Borel
measurable, we conclude from Lemma 2 in [6] that the second term of the previous display

is continuous on (0,∞) as a function of x. The proof for Ŷ is similar.
(ii) From the proof of Theorem 2.2 in [14] and Lemma 5, we can deduce, following an
analogous line of reasoning, that there exists a version (t, x, y) 7→ q(t, x, y) of the density of
the one-dimensional distributions of X − I, such that for all Borel bounded f and for all
x ≥ 0

Ex[f(Yt)] =

∫
f(y)qt(x, y)dy

and
∫
qt(·, z)qs(z, ·)dz = qt+s(·, ·) for all s, t > 0. Moreover, by part (i) x 7→ Ex[f(Yt)] is

continuous. Since qε(x, z)dz converges weakly to the dirac point measure at x as ε ↓ 0, we
see that, for all x ≥ 0,

∫
f(y)qt+ε(x, y)dy =

∫
qε(x, z)

∫
f(y)qt(z, y)dydz →

∫
f(y)qt(x, y)dy

as ε ↓ 0. This proves the right-continuity in the statement. To establish the left-continuity,
take 0 < η < ε < t and write

(29)

∫
f(y)qt−η(x, y)dy =

∫
qε−η(x, z)

∫
f(y)qt−ε(z, y)dydz.

By almost sure sample path continuity of X − I at time ε, qε−η(x, z)dz converges weakly to
qε(x, z)dz as η ↓ 0. Hence the right-hand side of (29) converges for all x ≥ 0 to

∫ ∫
f(y)qε(x, z)qt−ε(z, y)dydz =

∫
f(y)qt(x, y)dy

which establishes left-continuity. To prove the second statement of (ii), we repeat above
proof where everywhere the Lebesgue measure dy is replaced by the measure dy+ δ0(y), the
Lebesgue measure dy with an atom of size one in y = 0. �

Proof of Proposition 6 We only prove the statements for Y , the proofs for Ŷ are similar.
(i) By the strong Markov property of Y applied at τa, we find that

Px(Yt ∈ A) = Qt(x,A) +

∫ t

0

Px(τa ∈ ds)Pa(Yt−s ∈ A).
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The left-hand side is continuous in t on (0,∞) by Lemma 7. The same holds for the integral
on the right-hand side, as the distribution of τa has no atom. Hence t 7→ Qt(x,A) is
continuous.
(ii) Proposition VI.1 in [5] states that Y has the Feller property. Combining this with Lemma
7, we see that Y is doubly Feller. From Chung [11], we know that a doubly Feller process
killed upon hitting an open set remains doubly Feller. �

7 Ergodicity and exponential decay

Under the assumption (AC) Bertoin [6] identifies the decay parameter of the transition
probabilities (P t, t ≥ 0) of X killed upon leaving [0, a] as ρ = ρ(a) where

ρ(a) = inf{q ≥ 0 : W (−q)(a) = 0}.

The following result concerns the ergodic properties of the transition probabilites Qt and Q̂t

and identifies their decay parameters as % and %̂ respectively. The proof uses the R-theory
of irreducible Markov processes developed by Tuominen and Tweedie [29].

Theorem 2 (A) We have that % ∈ (0,∞) and % is a simple root of q 7→ Z (−q)(a) and the
following are true:

(i) Qt is %-recurrent and, more precisely, %-positive.

(ii) x 7→ Z(−%)(x) is positive on [0, a) and %-invariant for Qt; that is,

(30) QtZ(−%)(x) = e−%tZ(−%)(x) for all x ∈ [0, a).

(iii) x 7→ W (−%)(a − x) is positive almost everywhere on (0, a) and the measure Π(dx) =
W (−%)(a− x)dx on [0, a) is %-invariant for Qt, that is,

(31) ΠQt = e−%tΠ.

(iv) Assume (AC) is satisfied. Then for every x ∈ [0, a] we have

(32) lim
t→∞

e%tQt(x, ·) = c−1Z(−%)(x)Π(·)

in the sense of weak convergence where c = d
dq
Z(q)(a)|q=−% > 0.

(B) Suppose X satisfies (R). Then %̂ ∈ (0,∞) and %̂ is a simple root of q 7→ W
(−q)′
+ (a) and

the following hold:

(i) Q̂t is %̂-recurrent and, more precisely, %̂-positive;

(ii) x 7→W (−%̂)(a− x) is positive on (0, a) and %̂-invariant for Q̂t;
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(iii) x 7→ W
(−%̂)′
+ (x) is a.s. positive on (0, a) and the measure Π̂(dx) = W (−%̂)(dx) on [0, a)

is %̂-invariant for Qt;

(iv) Assume (AC) is satisfied. Then for every x ∈ [0, a] we have

lim
t→∞

e%̂tQ̂t(x, ·) = ĉ−1W (−%̂)(a− x)Π̂(·)

in the sense of weak convergence where ĉ = d
dq
W

(q)′
+ (a)|q=−%̂ > 0.

Remarks.

(i) Specialising Theorem 2(A,iv) and (B,iv) we get the following asymptotic identities for
t→ ∞ and x, y ∈ [0, a]

Px(τa > t) ∼ c′Z(−%)(x)e−%t, for a constant c′ > 0;

Px(τ̂a > t) ∼ c̃W (−%̂)(a− x)e−%̂t, for a constant c̃ > 0;

Px(Xt ∈ A|τa > t) ∼ Π(A)/Π([0, a)), for Borel sets A ⊆ [0, a).

(ii) Take α ∈ (1, 2]. In the case X is stable process of index α we recall from the example
in Section 2 that Z(q)(x) = Eα(qxα). The root introduced in (25) is hence given by
% = a−αr(α) where −r(α) is the first negative root of Eα and %̂ = a−αr̃(α) where −r̃(α)
is the first negative root of

∞∑

n=0

yn

Γ(α− 1 + nα)
.

In the special case α = 2, X/
√

2 is a standard Brownian motion and E2(−x) = cos
√
x

for x > 0. In particular, r(2) = π2/4 and

% = π2/(4a2) Z(−%)(x) = cos
( π

2a
x
)
.

Since in this case W (−q)′(x) = Z(−q)(x) = cos(x
√
q), we see that %̂ = %, as it should be.

(iii) By the decomposition (3) we find that

∂

∂q
Z(q)(a)|q=−% = W (−%) ? Z(−%)(a)

∂

∂q
W

(q)′
+ (a)|q=−%̂ =

∫ a

0

W (−%̂)(a− x)W (−%̂)(dx).

Hence the constants c, ĉ in the Theorem make µ(dx) = c−1Z(−%)(x)Π(dx) and µ̂(dx) =

ĉ−1W (−%̂)(a− x)Π̂(dx) into probability measures.
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(iv) By letting a run through (0,∞) we now consider equation (25) to define mappings
% = %(a) and %̂ = %̂(a) from (0,∞) to (0,∞). Much in the same vein as [18], we can
prove from Theorem 2 and Lemma 2 that % is a decreasing continuously differentiable
mapping on (0,∞) with derivative

(33) %′(a) = ∂
∂x
Z(−%)(x)|x=a/

∂
∂q
Z(q)(a)|q=−%(a).

Similarly, if we assume that W (and hence W (−%)) is twice continuously differentiable,
we can show that %̂ is decreasing and continuously differentiable with derivative

%̂′(a) = ∂2

∂x2W
(−%̂)(x)|x=a/

∂
∂q
W (q)′(a)|q=−%̂(a).

Introduce the set D% = {a > 0 : %′(a) 6= 0}. Note that it is open and its complement R+\D%

is a countable set,as % is decreasing. We have now the following reinforcement of the relation
between ρ on the one hand and %̂, % on the other hand.

Corollary 2 Suppose X has a Brownian component or jumps of size smaller than a. Then:

(i) %̂(a) < ρ(a)

(ii) %(a) < [=]ρ(a) if and only if a ∈ [/∈]D%. If a ∈ D%, W
(−%)(x) > 0 for x ∈ (0, a).

Proof of Corollary 2 (i) Since Q̂t > P t, we see that %̂ is bounded from above by ρ. From

Theorem 2(B,iii) combined with the right-continuity of x 7→ W
(−%̂)′
+ (x), we see that x 7→

W
(−%̂)′
+ (x) is nonnegative on (0, a) and zero on a null-subset of (0, a). Since W (−%̂)(0) = W (0)

is nonnegative, it follows that W (%̂)(a) > 0, which implies by definition of ρ, that %̂ < ρ.
(ii) Following the same line of reasoning as in the proof of Theorem 2, one can show that

Theorem 2 (i)-(iv) in [6] continue to hold if assumption (AC) is replaced by the assumption
of the Corollary. Since Qt > P t we see that % is bounded from above by ρ. For a ∈ D%, the
derivative %′(a) is negative, which combined with (33), Theorem 2(A,iv) and above note 3
implies that W (−%)(a) > 0. The statement now follows from the definition of ρ in conjuntion
with Theorem 2(iv). �

Proof of Theorem 2 By a close reading of the proofs of Theorema 2 and 3 in [29] one notes that
these are valid under the requirement of irreducibility (instead of simultaneous irreducibility).
By Proposition 5, we can thus use Theorema 2 and 3 from [29]. Recall from Section 5 that
% is positive. We also see that % < ∞, since otherwise

∫∞

0
eqtQt(x,A)dt would be finite for

all x ∈ [0, a) and q > 0, which would not agree with Theorem 2 in [29]. We identify % as the
decay parameter and show Qt is % recurrent. From Lemma 2 combined with Lemma 5 in [6]
we know we can find a δ ∈ (0, a/2) such that Z (−%)(x) > 1/2 and W (−%)(x) > 0 if x ∈ (0, δ);
Since q 7→ Z(q)(x) and q 7→ W (q)(x) are continuous as stated in Lemma 2 and [6, Lemma
4(i)] respectively, we find that, for every x < δ, y ∈ (a− δ, a),

(34) lim
q↑%

Z(−q)(x)W (−q)(a− y)

Z(−q)(a)
= ∞.
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Let A ⊆ (a − δ, a] be any Borel set with positive Lebesgue measure. By Proposition 4,
monotone convergence and Fatou Lemma we deduce that

(35)

∫ ∞

0

e%tQt(x,A)dt = ∞ for every x ∈ (0, δ).

Theorem 2 in [29] now implies that % coincides with the decay parameter and Qt is %-
recurrent. In particular, it implies that (35) holds for all x ∈ [0, a] and non-null Borel-
sets A ⊆ [0, a]. Hence, we deduce that Z (−%)(x) and W (−%) are positive for all respectively
Lebesgue almost all x ∈ (0, a). By note 3 above the Theorem, we now see that ∂

∂q
Z(−%)(a) > 0

thus % is a simple root.
Using the identity of Lemma 3 combined with the observation Z (q)(x)−1 = q(1?W (q)(x))

and the form of the resolvent given in Theorem 1, one finds, after some algebra, that∫
e−qtQtZ(−%)(x)dt = Z(−%)(x)/(q + %). By unicity of the Laplace transform, we find that

there exists a null set N such that (30) holds for t /∈ N . Since N is a Lebesgue null-set, for
any t ∈ N , there exists an s /∈ N such that (t− s) /∈ N . Applying the Markov property at
s, we see

QtZ(−%)(x) = Q(t−s)(QsZ(−%)(x)) = e−%sQ(t−s)Z(−%)(x) = e−%tZ(−%)(x),

from which we see that (30) holds for all t > 0 and hence Z (−%) is the %-invariant function
for Qt (unicity from Theorem 3 in [29]). Analogously, one can prove that W (−%)(a− x)dx is
the %-invariant measure for Qt.

(iv) By Proposition 6 and Theorem 1 from [29], we are allowed to apply Theorem 5 and 7
in [29]. Note that the %-invariant measure Π has a finite mass and Qt1(x) converges to zero
for all x as t tends to ∞. Following the argument given [6], the proof of Theorem 2(v), we
find from Theorem 5(i) and 7 that (32) is valid for almost all x ∈ [0, a], where the Markov
property and the absolute continuity of Qt enable us to show the last statement is valid for
all x ∈ [0, a]. This completes the proof of part (A).

Part (B) follows along the same lines as the part (A). By Proposition 5, we can again
use Theorem 2 and 3 of [29], where the role of the measure m is now played by the Lebesgue
measure with an atom of size one in zero. We invoke Lemma 5 in [6] to find a δ ∈ (0, a/2)
such that W (−%̂)(y) > 0 for y ∈ (0, δ).

By the expansion (3) we see that W
(−%̂)′
+ (0) = W ′

+(0) − %̂W (0)2. Lemma 4 [and mono-

tonicty of %̂(·) in the compound Poisson case] implies W
(−%̂)′
+ (0) is positive or infinite By

right-continuity (Lemma 2) of x 7→ W
(−%̂)′
+ (x) we can then find a δ′ such that W (−%̂)′(y) > 0

for y ∈ (0, δ′). Analogously as in (A), we can then prove the %̂-recurrence and -positivity of

Q̂t and the stated properties of W
(−%̂)′
+ (x),W (−%̂)(x).

To identify the %̂-invariant function and measure we follow an analogous line reasoning
using the following identity which follows by taking the right-derivative with respect to a of
the identity in Lemma 3

∫ a

0

W (r)(a− x)W (q)(dx) =
1

r − q
(W

(r)′
+ (a) −W

(q)′
+ (a)).

The proof of (iv) goes along the same lines as above. �
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8 The processes Y and Ŷ conditioned to stay below a

We study the process Y and Ŷ conditioned to stay below a fixed level a > 0. We introduce
the measures P� and P̂� by

dP
�
x|Ft

= HtdPx|Ft and dP̂
�
x|Ft

= ĤtdP−x|Ft

where

Ht = e%t1{t<τa}
Z(−%)(Yt)

Z(−%)(x)
and Ĥt = e%̂t1{t<τ̂a}

W (−%̂)(a− Ŷt)

W (−%̂)(a− x)
.

Theorem 2 implies that P�
x and P̂�

x are h-transforms of Px and P−x respectively. Indeed, by
the Markov property of Y under the probability measure P:

Ex(Ht+s|Ft) =
e%(t+s)

Z(−%)(x)
Ex(1{t+s<τa}Z

(−%)(Yt+s)|Ft)

=
e%(t+s)

Z(−%)(x)
1{t<τa}EYt(1{s<τa}Z

(−%)(Ys))

and the martingale property of H follows from Theorem 2(A,iii). Similarly, using Theorem

2(B,iii) we can verify that Ĥ is a martingale under P−x. The next result proves properties of
the constructed processes and shows that, if (AC) holds, the h-transforms are equal to the

limit as t tends to infinity of the conditional probabilities of Y (resp. Ŷ ) exiting [0, a] after
t. Recall the measures µ and µ̂ given in note 3 after Theorem 2.

Theorem 3 Let x ∈ [0, a). The following are true:

(i) Under P�, Y has the strong Markov property and is positive recurrent with stationary
probability measure µ. Moreover, we have in the sense of weak convergence

(36) lim
t→∞

P
�
x(Yt ∈ ·) = µ.

(ii) If X satisfies (R), (i) continues to hold if we replace the triple (Y,P�, µ) by (Ŷ , P̂�, µ̂).

(iii) Suppose (AC) holds. Then the convergence in (i) and (ii) holds in total variation norm.
Moreover, for any s ≥ 0 and A ∈ Fs, the condional laws converge as t→ ∞

Px(A|τa > t) → P
�
x(A) and P−x(A|τ̂a > t) → P̂

�
x(A).

Example. Let X be a standard Brownian motion. Theorem 3 implies that the process Y
conditioned to stay below a has generator L on (0, a) given by

(37) Lf(x) =
1

2
f ′′(x) − π

2a
tan

(πx
2a

)
f ′(x)
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for all functions f ∈ D, where D = {f ∈ C2(0, a) : f ′(0) = 0} is the domain of the operator.
By a famous theorem of Lévy, the process Y is in law equal to the process |X|. Hence,
by symmetry and tan(x) = − tan(−x), we find, as in [16], that the generator of Brownian
motion conditioned to stay in (−a, a), is given on (−a, a) by (37) for all functions f in
C2(−a, a). This conditioned Brownian motion is called the Brownian Taboo process with
taboo states {−a, a} in the nomenclature of [16].

Proof We only proof the part of the theorem involving Y , leaving the rest to the reader.
(i) It is well known that under P�

x and P̂�
x the strong Markov property is preserved [12, Thm.

XVI.28 p. 329] and the process has as the semigroup P �
t (x, dy) = Qt(x, dy)e

%t Z(−%)(y)

Z(−%)(x)
, The

positive recurrence of and the invariance of µ for P �
t are immediate from Theorem 2(A;i,iii)

combined with the form of the resolvents of the process under P�
x, which follows now directly

from Theorem 1. The form of the constant follows from note 3 after Theorem 2. To prove
the convergence, we will use the regenerative property of Y under P�. To be more precise,
under P�, Y is a delayed regenrative process, where the delay is the time to reach zero and
a cycle starts at zero and ends again at the first return to zero after a crossing of the level
a/2. Denoting by T ∗ the cyle length, we see from the forthcoming Proposition 7 that T ∗

has a finite mean. Note that T ∗ has the same distribution as τ̂0 ◦ θτa/2
under P�

0. ¿From
Lemma 6 we see that the distribution of τ̂0 ◦ θτa/2

under P�
0 has no atoms. In particular, T ∗

is not concentrated on a lattice. Theorem V.1.2 from Asmussen [1] now implies the weak
convergence (36).

(iii) As in the proof of Theorem 2(A; iv), under (AC), we invoke Theorem 5(i) of [29] to
find that (36) holds in total variation norm for Π-a.e. x ∈ [0, a). Combining the Markov
property with the absolute continuity of the transition probabilities P �

t of Y under P� under
(AC), we find

‖P �
t (x, ·) − µ‖ ≤ P �

s (x, ‖P �
t−s(Ys, ·) − µ‖)

where ‖ · ‖ denotes the total variation norm. By bounded convergence the right-hand side
converges to zero as t tends to infinity.

To prove the convergence of the conditional laws, pick s, t > 0. From the notes after
Theorem 2, we see that the variables

Ht,s =
Px(τa > t+ s|Ft)

Px(τa > t+ s)
= 1{τa>t}

PYt(τa > s)

Px(τa > t+ s)

converge to Ht a.s. as s→ ∞. Since Ex(Ht,s) = 1 = Ex(Ht), it follows from Scheffe’s lemma
that the preceding convergence holds in L1. We deduce that for every Y ∈ L∞(Ft) Ex(Y Ht,s)
converges to Ex(Y Ht). By the Markov property this means:

lim
s→∞

Ex(Y |τa > t+ s) = Ex(Y Ht) = E
�
x(Y ).

�

In the sequel, we will frequently use the fact (from the optional stopping theorem) that
for every finite stopping time S and Y ∈ L+(FS)

P
�
x(Y ) = Ex(Y HS), P̂

�
x(Y ) = E−x(Y ĤS).
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We now collect some Laplace transforms of hitting times under P
�.

Proposition 7 For any 0 ≤ b < x < c < a, q ≥ 0 the following hold:

(i) Two sided exit problem under P�: if T ′ = inf{t ≥ 0 : Yt = Xt − It /∈ (b, c)},

E
�
x(e

−qT ′

1{YT ′=c}) =
Z(−%)(c)

Z(−%)(x)

W (q−%)(x− b)

W (q−%)(c− b)
.

(ii) Passage at an upper level:

E
�
x(exp(−qτc)) =

Z(−%)(c)

Z(−%)(x)

Z(q−%)(x)

Z(q−%)(c)

(iii) Passage time below a lower level: if T ′′ = inf{t ≥ 0 : Yt = Xt − It /∈ (b, a]},

E
�
x(exp(−qT ′′)1{YT ′′−

∈dy}1{∆YT ′′∈dz})

=
Z(−%)(y + z)

Z(−%)(x)

(
W (q−%)(x− b)W (q−%)(a− y)

W (q−%)(a− b)
−W (q−%)(x− y)

)
dyΛ(dz).

Proof For q ≥ %, (i) and (ii) follow readily from (8) and the remark preceding the proposition.
The identity can then be extended by an argument analogous to the proof of Proposition 4.
(iii) We now set 0 ≤ b < x < a,0 ≤ b < y < a, 0 < y + z < a and compute by the com-
pensentation formula applied to the Poisson point process of jumps, the following quantity:

E
�
x(exp(−qT ′′)1{YT ′′∈dy}1{∆YT ′′∈dz})

= Ex(
Z(−%)(y + z)

Z(−%)(x)
e(%−q)T ′′

1{T ′′<τa}1{YT ′′∈dy}1{∆YT ′′∈dz})

=
Z(−%)(y + z)

Z(−%)(x)
Ex(
∑

t≥0

e(%−q)t1{Ys∈(b,a)∀s<t}1{Yt∈dy}1{∆Yt∈dz})

=
Z(−%)(y + z)

Z(−%)(x)
Ex(

∫ ∞

0

dtΛ(dz)e(%−q)t1{Xs∈(b,a)∀s≤t}1{Xt∈dy})

= Λ(dz)u
(%−q)
(a−b)(x− b, dy − b),

where uq
(a−b) denotes the resolvent density of the process X, killed as it exits from [0, a −

b]. The result follows by applying (13). In the one but last line we used that, under Px,

(YT ′′, T ′′ < τa) is in law equal to (XT̂−b
, T̂−b < Ta). �

Similarly, we state some Laplace transforms of hitting times under P̂�.

Proposition 8 For any 0 < b < x < c < a the following hold:
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(i) Two sided exit problem under P
�: if T ′ = inf{t ≥ 0 : Ŷ = St −Xt /∈ (b, c)},

Ê
�
x(e

−qT ′

1{XT ′=b}) =
W (−%̂)(a− b)

W (−%̂)(a− x)

W (q−%̂)(c− x)

W (q−%̂)(c− b)
.

(ii) Passage at a lower level:

Ê
�
x(exp(−qTb)) =

W (−%̂)(a− b)

W (−%̂)(a− x)

W (q−%̂)(a− x)

W (q−%̂)(a− b)

(iii) Passage time above an upper level: if T ′′ = inf{t ≥ 0 : Ŷt = St −Xt /∈ [0, c)},

Ê
�
x(exp(−qT ′′)1{XT ′′−

∈dy}1{∆XT ′′∈dz}
)

=
W (−%̂)(a− y − z)

W (−%̂)(a− x)

(
W (q−%̂)(c− x)W (q−%̂)(dy)

W
(q−%̂)′
+ (c)

−W (q−%̂)(y − x)dy

)
Λ(dz).

8.1 Excursion measure away from a point under P�

Recall that a point x ∈ [0, a) is said to be regular (for itself) under P� if

P
�
x(inf{s > 0 : Ys = x}) = 1.

Obviously, x > 0 in regular under P� if and only if x > 0 is regular under P, hence if and
only if X has unbounded variation under P. We assume this throughout from now on. The
local time at level at x, denoted by Lx is defined as the occupation density

Lx
t = lim

ε↓0

1

2ε

∫ t

0

1{|Ys−x|<ε}ds.

Let σs be its right-continuous inverse:

σs = inf{t > 0 : Lx
t > s}, s ≥ 0.

Analogously to what we did in the proof of Theorem 1, we now consider the excursion process
e = (es, s ≥ 0) of Y away from {x} where

es = (Yu, σs− ≤ u < σs) if σs− < σs

and else es takes the value ∂ where ∂ is an additional isolated point. Again, a famous theorem
of Itô states that e is a Poisson point process valued in the space E . Its characteristic measure
is denoted by nx under P (and n�

x under P�) and is called the excursion measure away from
{x}.

In this section we present some useful formulas involving the local time Lx and the
excursion measure n�

x. For every excursion of X − I away from {x}, we denote its height by
m = m(ε):

m(ε) = sup
u≤ζ(ε)

(εu − ε0) = sup
u≤ζ(ε)

εu − x.
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Recall that σ stands for the inverse of the local time Lx. As well known, σ is a subordinator.
Define Laplace exponent Φ�

x by

E
�
x(e

−λσt) = exp(−tΦ�
x(λ)), λ ≥ 0.

Proposition 9 For any nonnegative λ and any η ∈ [0, a− x],

n�
x(1 − 1{m<η}e

−λζ) =
Z(λ−%)(x+ η)

Z(λ−%)(x)W (λ−%)(η)
.

In particular, for any nonnegative λ,

Φ�
x(λ) =

Z(λ−%)(a)

Z(λ−%)(x)W (λ−%)(a− x)

and for any η ∈ [0, a− x]

n�
x(m > η) =

Z(−%)(x+ η)

Z(−%)(x)W (−%)(η)
.

The proof is defered to the Appendix. The previous proposition enables us to specify
the asymptotic behaviour of the local time. Recall from the Theorem 3 that the stationary
measure µ of the conditioned process is absolutely continuous with density p, say.

Corollary 3 If x ∈ (0, a) or x = 0 and a ∈ D%, we have a.s.

lim
t→∞

Lx
t /t = µ(dx)/dx = p(x).

Proof We deduce from Proposition 9 that Φ�
x has a right-derivative in 0 equal to

C(a)

Z(−%)(x)W (−%)(a− x)
= p(x)−1.

Hence using E�
x(σt) = t/p(x) and that {σt : t ≥ 0} is a Lévy process, the law of large numbers

entails that Lx
t /t = t/σt converges a.s. to p(x) as t tends to infinity. �

8.2 Excursion measure away from 0 under P̂
�

We consider now the process S −X = {(S −X)t, t ≥ 0} under the measure P̂�. Note that,
since X has no positive jumps, the supremum S is a local time in 0 for S −X (Bertoin [5]).
Furthermore,

Tu = inf{s ≥ 0 : Ss ≥ u} = inf{s ≥ 0 : Xs ≥ u}
is a subordinator under P̂�. In this section we consider again the excursion process ê =
{ês, s ≥ 0} of S − X away from zero as defined in equation (). As earlier saw in the proof
of Theorem 1(ii), a famous theorem by Itô implies that the process {ês, s ≥ 0} is a Poisson

point process valued in the space E . By ĥ we denote the height of the excursion. Denote its
characteristic measure by n̂ and n̂� under P and P̂� respectively.
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Proposition 10 For any η ∈ (0, a), λ ≥ 0 we have

n̂�(1 − 1{ĥ<η}e
−λζ) =

W (λ−%̂)′(η)

W (λ−%̂)(η)

In particular for any η ∈ (0, a), λ ≥ 0,

φ�(λ) =
W (λ−%̂)′(a)

W (λ−%̂)(a)
, n̂�(ĥ > η) =

W (−%̂)′(η)

W (−%̂)(η)
.

Proof The second and the third formula follow directly from the first one (taking η = a,
λ = 0 respectively). As in Proposition 9, an application of the exponential formula yields
that

n̂�(1 − 1{ĥ<η}e
−λζ)) =

[
E
�

(∫ τ̂η

0

e−λtdSt

)]−1

.

Suppose first that λ ≥ %̂. Then we find for the right-hand side of previous display that

E
�

(∫ τ̂η

0

e−λtdSt

)
=

∫ ∞

0

E
�
(
e−λTs1{Ts<τ̂η}

)
ds =

∫ ∞

0

E
(
e(%̂−λ)Ts1{Ts<τ̂η}

)
ds

=

∫ ∞

0

e−Φ(λ−%̂)s
E
(
eΦ(λ−%̂)XTs+(%̂−λ)Ts1{Ts<τ̂η}

)
ds.

Changing the measure and using the Poisson point character of the excursion process, one
finds that the expectation in the last display is equal to W (λ−%̂)(η)/W (λ−%̂)′(η). See [2] for
a similar (and more detailed) computation. By analytic continuation we can extend the
formula to hold for all λ ≥ 0 and η ∈ (0, a). �

Similarly as we proved Corollary 3, we can prove the following result:

Corollary 4 limt→∞ St/t = limt→∞ t/Tt = W (−%̂)(a)/ ∂
∂q
|q=−%̂W

(q)′(a) a.s.

8.3 Convergence of the supremum

The fact that the conditioned processes is recurrent implies that under the measures P�, P̂�

the suprema of Y and Ŷ , Mt = sup{Ys; s ∈ [0, t]} and M̂t = sup{Ŷs; s ∈ [0, t]} respectively,
converge to a; our purpose is to investigate the rate of convergence. We still assume that X
has unbounded variation.

Let f : [0,∞) → (0,∞) be a decreasing function and write

lf = lim inf
t→∞

a−Mt

f(t)
, Lf = lim sup

t→∞

a−Mt

f(t)
.

and l̂f , L̂f for the corresponding quantities involving M̂ . Recall that a real funtion is said to
be slowly varying at infinity if for any λ > 0,

lim
t→∞

g(λt)

g(t)
= 1.

Finally we recall the notations D% = {a > 0 : %′(a) 6= 0} and D%̂ = {a > 0 : %̂′(a) 6= 0}.
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Theorem 4 Assume a ∈ D% for the statements involving Mt. Assume that W (−%̂)(·) is twice

continuously differentiable and let a ∈ D%̂ for the statements involving M̂t. Then following
three assertions hold.

(i) The random variables t(a −Mt) and t(a − M̂t) converge in distribution as t → ∞ to
exponential random variables with parameters |%′(a)| and |%̂′(a)| respectively.

(ii) The random variable lf and l̂f are 0 or ∞ almost surely according to whether
∫∞

1
f(s)ds

converges or diverges.

(iii) Assume further that t 7→ tf(t) is increasing and slowly varying at infinity and let

γf = inf{γ > 0 :

∫ ∞

1

f(t)e−γtf(t)dt <∞},

with the convention inf ∅ = +∞. Then Lf = |%′(a)|−1γf and L̂f = |%̂′(a)|−1γf almost
surely.

Remarks

(i) Let =
∫∞

dtf(t)e−γtf(t). One easily sees that if γf < ∞, If is finite (and decreasing)
on (γf ,∞) and that if γf > 0, If = ∞ on [0, γf).

(ii) If logk denotes the k-th iterate of the logarithm, then for

f(t) = t−1 log t, Lf = 0, lf = 0;

f(t) = t−1 log2 t, Lf = |%′(a)|−1, lf = 0;

f(t) = t−1 log3 t, Lf = ∞, lf = 0.

(iii) Recall that for α ∈ (1, 2], −r(α) denotes the first negative root of Eα, where Eα is
the Mittag-Leffler function of parameter α. In the case X is a stable process of index
α ∈ (1, 2],

lim sup
t→∞

t(a−Mt)

log2 t
=

aα+1

αr(α)
a.s.,

which yields in the case X is a Brownian motion

lim sup
t→∞

t(a−Mt)

log2 t
=

2a3

π2
a.s..

The proof can be found in the Appendix. Following the lead of Lambert [18], the idea is
to exploit the Poisson point character of the excursions away from {x} under P� and of the

excursions of Ŷ away from zero under P̂�,
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Appendix

A Proof of Proposition 9

Proof The last two assertions follow easily from the first (by taking η = a − x and λ = 0
respectively). To prove the first assertion we start with the following identity:

(38) n�
x(1 − 1{m<η}e

−λζ) =

[
E
�
x(

∫ τx+η

0

e−λtdLx
t )

]−1

.
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Indeed we have

E
�
x

(∫ τx+η

0

e−λtdLx
t

)
= E

�
x

(∫ ∞

0

e−λσs1{σs<τx+η}ds

)

=

∫ ∞

0

dsE�
x

(
exp(−

∑

0≤u≤s

λ(τu − τu−)χ{m(eu)<η})

)
,

where we wrote χA(ω) = 1[∞] if ω ∈ [/∈]A. By the exponential formula, the foregoing
quantity is thus equal to

∫ ∞

0

ds exp
(
−sn�

x(1 − exp(−λζχ{m<η}))
)

= [n�
x(1 − 1{m<η}e

−λζ)]−1

which establishes (38). The next step consists in proving the following identity

(39) E
�
y(

∫ ∞

0

e−λtdLx
t ) = u�λ(y, x)

Indeed, following a line of reasoning similar to the first lines of the proof of [5, Proposition
V.2], we see that if η(q) is an independent exponential random variable with parameter q > 0
that

(2ε)−1

∫ η(q)

0

1{|Ys−x|<ε}ds
L2(P)−→ Lx

η(q) as ε ↓ 0.

As a consequence, provided q > %, the convergence also holds in L2(P�) and

E
�
y[

∫ ∞

0

e−qtdLx
t ] = lim

ε↓0

1

2ε
E
�
y[

∫ ∞

0

e−qt1{|Yt−x|<ε}dt]

= lim
ε↓0

1

2ε

∫ x+ε

x−ε

u�q(y, u)du = u�q(y, x)

(recall that we assumed that the Lévy process has unbounded variation which ensures
W (q−%)(0) = 0, from where we see that u�q(y, ·) is continuous.) This proves (39) for q > %,
which can be analytically extended as before.

We are now able to complete the proof of our statement. The identity (39) and the
Markov property enable us to write

E
�
y[

∫ ∞

0

e−qsdLx
s |Ft] =

∫ t

0

e−qsdLx
s + e−qtu�q(Yt, x)

which entails by an application of the optional sampling theorem at τx+η, that

E
�
y[

∫ τx+η

0

e−qsdLx
s ] = u�q(x, x) − u�q(x + η, x)E�

x[e
−qτx+η ].

Proposition 7(ii), jointly with the expression for u�
q in given in Theorem 3(iii) yield the result

for any q > %, and then by an analytical continuation argument, for any q > 0. �
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B Proof of Theorem 4

Proof We only proof the statements involving M̂t, the proof of the statements involving Mt

runs analogously (using then excursions away from {x} as in [18]) and is skipped. We split
the proof into three parts.
(i) This part uses the following elementary lemma.

Lemma 8 Fix y ∈ (0,∞] and let R be an increasing function. Next consider a Poisson
point process (Zs, s ≥ 0) on [0, y) with characteristic measure dR. For every t > 0, set
it = inf0≤s≤t Zs, where we agree that inf ∅ = y. Then

E(e−λit) = 1 − λ

∫ y

0

e−λue−tR(u)du, λ > 0.

The lemma follows immediately from the identity

P(Zs > x for all s ∈ [0, t]) = exp(−tR(x)), x ∈ (0, y).

Recall the notation involving the excursions of Ŷ away from 0. Our argument relies on the
elementary observation that M̂Tt is the maximum of the excursion heights (ĥ(εs), s ≤ t).
Recall from Proposition 9 that

R̂(u) =
W (−%̂)′(a− u)

W (−%)(a− u)
u ∈ [0, a),

is the distribution function of the measure n̂�(a− ĥ ∈ ·). The properties of W (q) and W (q)′

imply that the function R̂ is of class C1 and its derivative at 0 is positive. The point process
(Ks, s ≥ 0) defined by

Ks =

{
a− ĥ(es) if Ts− < Ts

∞ otherwise,

is a Poisson point process with characteristic measure dR̂. We deduce from the previous
lemma that

Ê
�(e−λt(a−M̂Tt )) = 1 − λ

∫ ta

0

dve−λve−tR̂(v/t),

hence by dominated convergence,

lim
t→∞

Ê
�(e−λt(a−M̂Tt )) = 1 − λ

∫ ∞

0

dve−λve−R̂′(0) =
R̂′(0)

λ+ R̂′(0)
.

Let p̂0 denote the constant W (−%̂)(a)/ ∂
∂q
|q=−%̂W

(q)′(a) Now let 0 < δ < p̂0. According to

Corollary 3, one has Tδt < t for suffiently large t, so that

lim inf
t→∞

Ê
�
x(e

−λt(a−M̂t)) ≥ R̂′(0)

λδ−1 + R̂′(0)
.
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Letting δ → p̂0, we get that

lim inf
t→∞

Ê
�(e−λt(a−M̂t)) ≥ R̂′(0)p̂0

λ+ R̂′(0)p̂0

.

From Proposition 10,the form of p̂0 and note 4 after Theorem 2 we find that p̂0R̂
′(0) equals

−%̂′(a). Proceeding similarly with δ > p̂0, we get

lim
t→∞

Ê
�(e−λt(a−M̂t)) =

R̂′(0)p̂0

λ+ R̂′(0)p̂0

=
|%̂′(a)|

λ+ |%̂′(a)| .

(ii) We claim that P̂�(M̂t > a − f(t) i.o. as t → ∞) is 0 or 1 according to whether the
integral

∫∞

1
W (−%̂)′(a − f(s))ds converges or diverges. Since the function W (−%̂)′ is of class

C1,
∫∞

f(s)ds <∞ implies
∫∞

W (−%̂)′(a−f(s))ds <∞. Replacing f by λf and then letting
λ → ∞, we get the result. The same method applies to the converse assertion now letting
λ→ 0: indeed, the second derivative at a of W (−%̂) is negative, hence

∫∞
f(s)ds = ∞ implies

that
∫∞

W (−%̂)′(a− f(s))ds = ∞.
We now prove the claim. Let t0 be such that f(s) < a/2 for s ≥ t0 and define

Nt =
∑

t0≤s≤t

1{ĥ(es)>a−f(s)} t0 < t

to be the number of points of the excursion process in the time interval [t0, t] whose absolute
maximum exceeds a− f(T ). We know that Nt is a Poisson variable of parameter

∫ t

tx

n̂�(ĥ > a− f(s))ds =

∫ t

tx

W (−%̂)′(a− f(s))

W (−%̂)(a− f(s))
ds.

Therefore, N∞ is infinite a.s., that is M̂Tt > a−f(t) i.o. as t→ ∞ if
∫∞

W (−%̂)′(a−f(s))ds =
∞. Otherwise the last event is evanescent.

To get the results for M̂t recall from Corollary 4 that as t→ ∞, Tt ∼ t/p̂0 a.s. for some
positive finite constant p̂0. Observing that the integral criterion of the theorem remains
unchanged when replacing f by t 7→ f(λt), one easily deduces that the events {M̂t >

a− f(t) i.o. as t→ ∞} and {M̂Tt > a− f(t) i.o. as t→ ∞} have the same probability.
(iii) Consider the previously defined Poisson point process K with characteristic measure

dR̂. Recall that the function R is C1 and has a positive derivative in some interval [0, δ).
As a − MTt = min{Ks : s ≤ t}, we find that, for t sufficiently large, say t > t1 (hence

a−MTt suffiently close to 0), the path (R̂(a−MTt), t ≥ t1) coincides with that of (ut, t ≥ t1),
where ut is the minimum on [0, t] of a Poisson point process with characteristic measure the
uniform distribution on (0, 1).

The key step in the proof is now to appeal to the extremal process (vt, t > 0) defined in
[21]. Such a process starting from v0 > 0 has the same law as ((v0∧ut), t ≥ 0). For functions
f as in the statement, Theorem 3 in [21] states that vt > f(t) infinitely often as t→ ∞ with
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probability 0 or 1 according whether If (1) converges or diverges. Suppose that If (1) = ∞
then

lim sup
t→∞

R̂(a−MTt)

f(t)
≥ 1 a.s.

Now pick λ > 1. Then we have

lim sup
t→∞

R̂(a−MTt)

λf(t)
= lim sup

t→∞

R̂(a−MTλp̂0t
)

f(t)
= lim sup

t→∞

R̂′(0)(a− M̂t)

f(λp̂0t)

= lim sup
t→∞

λp̂0R̂
′(0)

(a− M̂t)

f(t)
,

where the first inequality is due to Corollary 4 and the last equality to the slow variation of
t 7→ tf(t). Recalling that p̂0R̂

′(0) = |%̂′(a)| and letting λ→ 1, we obtain that Lf ≥ |%̂′(a)|−1

a.s.
In the case where If (1) <∞, one can prove the opposite inequality in the same way.
Pick λ > γf (if γf = ∞ there is nothing to prove) and apply the foregoing result to λf :
Iλf (1) converges so Lf = λLλf is bounded above a.s. by λ|%̂′(a)|−1. Letting λ → γf , we get
Lf ≤ γf/|%̂′(a)| a.s. With λ < γf (for γf > 0, otherwise there is nothing to prove), one can
prove the opposite inequality. �
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