LAME EQUATIONS WITH ALGEBRAIC SOLUTIONS

FRITS BEUKERS AND ALEXA VAN DER WAALL

ABSTRACT. In this paper we list all finite groups that occur as the monodromy
groups of Lamé equations L, gy = 0 with finite monodromy, together with a
list of examples of such equations. We show that the set of such Lamé equations
with n & 1/2+Z is countable, up to scaling of the equation. This result follows
from the general statement that the set of equivalent second order equations,
having algebraic solutions and all of whose integer local exponent differences
are 1, is countable.

1. SECOND ORDER EQUATIONS WITH FINITE MONODROMY

Consider the set of second order linear Fuchsian differential equations of the form
d
Ly=0 L e C(z)[+
y=0, LeC()y]

having finite monodromy group. Denote this set by A. As is well-known, A is
precisely the set of second order equations over C(z) whose solution set consists of
functions that are algebraic over C(z). By abuse of language we call the elements
of A algebraic differential equations.

Consider an equation Ly = 0 from the set A. At every point of a € P! the
equation Ly = 0 has two rational local exponents p;(a), p2(a). We call |p;(a) —
p2(a)| the local exponent difference at a. The local exponent difference at every
non-singular point is 1.

Suppose conversely that the local exponent difference of Ly = 0 at a equals 1.
Since Ly = 0 belongs to A there are no local logarithmic solutions. Two local
solutions of the equation are (z — a)? fi(2) and (2 — a)?*! f2(2), where fi, f2 are
locally biholomorphic functions at a. The differential equation (2 — a) PL((z —
a)?y) = 0 then is algebraic and has the solutions f1,(z — a)fo. In particular, z = a
is a non-singular point of the new differential equation.

An equation from A is called pure if the only integral exponent difference that is
allowed to occur is 1. In particular, apparent singularities are forbidden with such
equations. Denote the subset of A of pure equations by 4g. Both sets are stable
under the substitution

L — A(2)R(2) "L o R(z)?

for any A(z),R(z) € C(z) and p € Q They are also stable under automorphisms
of PL. That is, given an automorphism ¢(z) , there exists a matrix

(Z Z) € GL(2,Q)
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such that
az+b
z)=——
9(2) cz+d’
and vice versa. These two operations give an equivalence relation on 4 and Ag
that we denote by ~. We call two equations in A equivalent if they are equivalent
with respect to the relation ~. We have the following statement.

Theorem 1.1. Let the notation be as above. Then Ag/ ~ is a countable set.

This Theorem is a consequence of Theorem 7.1, which is a more quantitative
version of Theorem 1.1. The statement and proof of Thm 7.1 can be found in Section
7 of this paper. As a consequence of Theorem 1.1 one can start an enumeration of
the set Ag. We perform this enumeration using an increasing number of singular
points of the differential equation. Let us start with Fuchsian equations having
two singularities which we may assume to be 0,00. Such an equation is of the

form 2224 + az Y + by = 0 and is known as Euler’s homogeneous equation of
order 2. It has a ba51s of solutions of the form z#*, 22, where py, pa are zeros of
22 + (a — 1) + b. Algebraicity of the solutions is equivalent to p;,ps € Q. The
latter condition is equivalent to imposing a,b € Q with positive rational square
(a—1)2 —4b. In addition, if the equation is supposed to be in Ag, then (a—1)2 —4b
is not allowed to be an integer square in Z \ {1}.

The first interesting case of an algebraic Fuchsian equation of order 2 is one with
three singularities. By application of an equivalence transformation we can see to
it that the singularities are 0,1, co and that at both 0,1 at least one local exponent
is 0. These properties characterise the Gaussian hypergeometric equation, having
the famous hypergeometric series

F(a,b,c|z) =§: ((l"

as solution, where (z), = z(z +1)--- (x + n — 1) is the so-called Pochhammer
symbol. The numbers a, b, ¢ are the parameters of the hypergeometric equation.
In 1873 H.A.Schwarz [Sch73], using ideas of Riemann, gave a complete list and
enumeration of all hypergeometric equations having an algebraic solution set.

The next step would be to study second order equations with four singularities.
However, in this case we encounter a difficulty. In the previous cases the equation
was determined by the location of the singularities and the local exponents. In
other words, by local data. In the case of four singularities there is one parameter
which is not determined by local data. This parameter is called the accessory pa-
rameter of the equation. The dependence of the monodromy group on the accessory
parameter is as yet little understood. It is possible, however, to find conditions on
the accessory parameter such that the solutions will be algebraic. We do this for the
Lamé equation, equation (1). As parameters this equation contains the accessory
parameter B and an index n.

Statement and proof of the main results of this paper will appear in the sections
to come. Here we give a brief overview. In Theorem 4.4 we deduce all possible finite
groups that might occur as finite monodromy for a Lamé equation. We also list
the corresponding values of the parameter n, which are usually congruence classes
modulo Z. Conversely, in Theorems 5.1 and 6.1 we show that these groups, together
with each class n(mod Z), actually occur. In Theorem 4.6 we show that, given a
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finite group G and an index n, n ¢ 1/2 + Z, the number of Lamé equations with
given monodromy G and index n is finite, up to equivalence of equations.

Finally we mention that this paper is an elaboration of Alexa van der Waall’s
PhD thesis [vdW02], in which many of the results of the present paper are contained.

2. THE LAME EQUATION

The Lamé equation with n € Q and g5, g3, B € C as parameters is the differential
equation

PO TL 4 20— (nfn+ 1)z 4+ B)y =0, )

where p(2) := 423 — goz — g3 has three distinct zeros 21, 22, z3. The Lamé equation
will be abbreviated by

Ln,By =0.

The local exponents are 0,1/2 at the three finite singularities 21, 22 and z3, and
—n/2,(n+1)/2 at co. Since the equation does not change under the transformation
n+— —1 —n we assume n > —1/2. The number B is the accessory parameter of
the equation.

One can consider the action of the monodromy group M C GL(2,C) of L, 5
with respect to a local basis of solutions around a non-singular point. The local
monodromy matrices 7; at the finite singularities z;, ¢ = 1,2, 3, have eigenvalues
+1 and hence satisfy 77 = v2 = y2 = Id. They thus are reflections by definition.
In addition, one has v;y2v3Y = Id where 7 is the local monodromy matrix at
00. Moreover, the group M is generated by the complex reflections 7y, v2 and 73
and therefore is a reflection group by definition.

Lemma 2.1. The monodromy group M of the Lamé equation is a complex reflection
group, whose matrices have determinant +1.

Proof. The lemma follows immediately from the remarks made above. |

In Section 4 we determine the monodromy group M and its projective group
PM c PGL(2,C) more specifically. In general there are two particular cases to
be mentioned. The first is n + 1/2 € Z. Then logarithmic solutions of the Lamé
equation at oo may arise, since n + 1/2 € Z is the local exponent difference at co.
There is always a logarithmic solution for n = —1/2.

Theorem 2.2 (Brioschi-Halphen). Suppose n + 1/2 € Z>o. Then there exists
Pn € Z[g2/4, 93/4, B] of degree n+1/2 in B such that L, gy = 0 has no logarithmic
solutions at oo if and only if pn(g2,93,B) = 0.

Proof. Proofs are given in [P0036, §37] and in [Bal81, Thm 2.6]. O
The polynomial p,, of Theorem 2.2 is known as the Brioschi-Halphen determi-

nant. The suggested proofs of the Theorem also show how to calculate p,, in prac-
tice.

Theorem 2.3. Letn € 1/2+ Z>o and g2,93 € C be given. Then p,(g2,93,B) =0
if and only if M is finite. In that case PM is Klein’s Four group Vy.
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Proof. We use Theorem 2.2. First suppose p, (g2, g3, B) = 0. Then there are no
logarithmic solutions. The matrix v, thus acts as a scalar multiplication by =i.
This yields y172vs = +i-Id. It follows from 72 = Id and v; # +£1d, i = 1,2,3,
that PM is V4. Lemma 2.1 implies that the scalar matrices of M are contained in
(i-Id). Henceforth, the group M is finite.

Conversely, if M is finite then the Lamé equation only has algebraic solutions.
In particular there are no logarithmic solutions and thus p,(g2, g3, B) = 0. O

For n = 3/2 we have p, (g2, 93, B) = B? — 3g2/4. There are overcountably many
g2, g3, B satifying B2 —3g,/4 = 0. Notice also that our equation is not pure for such
triples, since the local exponent difference at oo is 2. So we see that Theorem 1.1
cannot hold if we drop the purity condition. Table 1 gives a few more polynomials
Pn. More examples of p,, are listed in Table A.1 of [vdW02].

n pn(gQag3aB)

1/2 B

3/2 B2 - %gg

5/2 B3 — 7923 + 2093

7/2 | B* — 89,B? + 216g3B + %4243
TABLE 1.

The remaining case of interest in generalisn ¢ 1/2+ Z.

3. LAME EQUATIONS WITH INTEGRAL n

The purpose of this section is to specify the monodromy groups for Lamé equa-
tions with integer n. In particular we describe their finite monodromy groups and
show that these are neccessarily irreducible.

Theorem 3.1. Suppose that M acts reducibly. Then n € Z. Moreover, M does
not act completely reducibly and is infinite.
Proof. Suppose that M acts reducibly. Then, from the local exponents at the
finite singularities we infer that the invariant solution is of the form
3

[1G-2)%Qe) 2)

i=1
with €; € {0,1/2}, Q(2) € C[z]. This implies that there is a local exponent at oo
which is — deg(Q) — Zle €;. Therefore it is an integer or half integer which is < 0.
As a result we have n € Z>o.

Suppose in addition that M acts completely irreducible. This would imply the
existence of a second solution of the form (2) that is linearly independent of the
first. If v, is not a scalar matrix, then this solution should correspond to the
second local exponent (n+1)/2. This is a contradiction to the exponent being < 0.
If 7o is a scalar matrix, then we know that the exponent difference n + 1/2 is an
integer, which contradicts n € Z.

Suppose that M is finite and acts reducibly. Then, by Maschke’s Theorem, M
acts completely reducibly. However, this is not possible by our previous statement.
We conclude that if M acts reducibly, it should be infinite. |
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In the case that M acts reducibly, the eigenfunctions of the form (2) are called
the Lamé solutions. The following classical theorem characterises the occurrence of
Lamé solutions.

Theorem 3.2. Suppose n € Z>o. Then there exists a polynomial I, € Qg2, g3, B]
of degree 2n+1 in B, such that there is a Lamé solution if and only if 1,,(92, g3, B) =
0.

Proof. For a discussion of this statement we refer to [WW50, §23.41, 23.42] or
to [vdWO02, §4.4]. O

A few of the polynomials ,,(B) are given in Table 2. For a more extensive list
we refer to Table A.3 of [vdW02].

In(B)
B
4B% — g2B — g3
(B? — 3g2)(4B® — 992 B + 27g3)
B (16B% — 504B*g, + 2376 B3gs + 4185B% g3
—36450Bgsgs — 337595 + 9112593)
TABLE 2.

W NN = oS

It is now possible to give a fairly complete description of the monodromy group
in the case that n € Z>q.

Theorem 3.3. Suppose that n € Z>o and that M acts irreducibly. Then there is
a basis y1(2),y2(2) of the vector space of solutions with respect to which M is a
subgroup of the infinite dihedral group

A0 0 A " . (01
pe={(3 ).(% D) rec) v em (0 ).

In addition, y1y» is a polynomial F,(z) of degree n in z.

Proof. Note that n+1/2 is a half integer. The matrix v, thus is a reflection. We
now have

=7 =7 =7 =Id and M7Y370 = Id.

From these relations it follows easily that the subgroup

H = (m72,7273)

is an abelian subgroup of M of index 2. It is characterised by the fact that H is
the subgroup of determinant one elements. Moreover, we have M = H U~v,,H. We
can now distinguish two cases. Either H has two invariant subspaces of dimension
1 or it has only one.

First suppose H only contains semi-simple (i.e. diagonisable) elements. Since
M acts irreducibly, it is non-abelian, and so |[M| > 6. Hence H has order > 3
and consequently contains a non-scalar element. Denote the eigenfunctions of this



6 FRITS BEUKERS AND ALEXA VAN DER WAALL

element by y1,y2. With respect to this basis the group H is a subgroup of the

infinite cyclic group
A0 "
e () 1) rec).

It follows from v H = H7s, that the element 7., permutes the functions yi,ys
up to scalar multiplication. If yo0(y1) = A1¥1, Yoo(¥2) = A2y2 then M would be
an abelian group which acts reducibly, contrary to our assumptions. So we have
Yoo(¥1) = AM¥2, Yoo(y2) = Aoy1 for certain A, A2 € C. After replacing \iy2 by
yo and noticing 72, = Id we obtain 7o (¥1) = ¥2, Yoo(y2) = y1. This shows that
Yoo With respect to the basis yi,ys is of the desired form. Moreover, the group
generated by this matrix and C, is precisely the group D.

The second case we must consider is that H contains a non semi-simple element

h. By a suitable choice of basis we can assume it has the form h = + ((1) }) The

only matrices of determinant 1 that commute with A form the group

o () ) oree).

Therefore H is a subgroup of this group of matrices. The elements of H have, up to a
scalar, an unique common eigenvector y. The monodromy 7., sends y to a multiple
of itself, since H is normal in M. Hence the eigenvector y spans a one-dimensional
invariant subspace under the action of M on the solution space, contrary to our
assumption of irreducibility. This proves the first part of the Theorem.

Finally, let y1(2),y2(2) be as in the Theorem. Then the product yiy2(2) is
invariant under the monodromy action on the solution space. Hence, it is a rational
function in C(z). Since the local exponents at the finite points are > 0 we decide
that y1y2(z) is a polynomial in z. It degree in z is given by —2 times the negative
local exponent at z = oo, hence n. O

For every value of n the polynomial F;, of Theorem 3.3 can be computed easily.
A list of the first few is given in Table 3. For a more extensive list of the F,, we
refer to [vdW02, Table A.2].

Fo(2)
1
z—B
22— 3Bz + $B? — 19,
2% — 1B2® + (%B% — 192)2 — 55 B* + £ Bg2 — 193
TABLE 3.

[SCIN R e N

A direct consequence of Theorems 3.1 and 3.3 is the following.

Corollary 3.4. Let n be an integer and suppose that M is finite. Then M is a
dihedral group Dy of order 2N, for a certain N > 3. |
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4. ALGEBRAIC LAME EQUATIONS AND THEIR MONODROMY GROUPS

In this section we suppose that the monodromy group M of the Lamé equation is
finite. Due to Theorem 3.1, the monodromy group now necessarily acts irreducibly
on the solution space. Besides classifying M we also consider its projective group
PM c PGL(2,C), that is the quotient group of M and its subgroup of multiples
of the identity matrix. Through the classification of finite subgroups of PGL(2,C)
we know that PM is isomorphic to either one of the following groups:

(1) The cyclic group Cy of order k > 1,
(2) the dihedral group Dy of order 2k > 4,
(3) the alternating groups A4, As, and

(4) the permutation group Sj.

Moreover, in each of these cases we can find an explicit description of the matrix
group in [Kle84]. The following theorem is immediate.

Theorem 4.1 (Baldassarri). Suppose that M is finite. Then the projective group
PM is not Cy, nor As.

Proof. If M modulo scalars would be CYy, for a certain integer k, the group M
itself would be reducible. The statement PM # A4 follows from the fact that v,
~2 and s still have order two if we consider them as elements of PGL(2,C) and
that A4 cannot be generated by elements of order two. |

A more refined description of M rather than PM can be given when we use the
classification of Shephard and Todd [ST54] of finite complex reflection groups.

Definition 4.2. A finite complex reflection group is a finite subgroup of GL(m,C),
m € Z~qo which is generated by complex reflections. A complex reflection is a semi-
simple element all of whose eigenvalues except one are 1.

In the following theorem an element g € GL(m,C) acts on Clzy,...,z,] via
(x1,... ,2m) = g(z1,... ,2,)t The action of g on a polynomial P is denoted by
P9. We define the ring of invariant polynomials of a subgroup G C GL(m,C) by

Cz1,. .- ,2m)® :={P € z1,... ,2n]: P! = P for all g€ G}.

Theorem 4.3 (Shephard-Todd). Let G be a finite subgroup of GL(m,C). Then G
is a finite complex reflection group if and only if Clzy,...,2,]% is a polynomial
ring freely generated by m polynomials I, ..., I,,.

Proof. The theorem is proved for any unitary group in Part II of [ST54]. However,
there is no restriction in assuming unitarity, as every finite subgroup of GL(m, C)
is conjugate to a unitary group. O

Let G be a finite complex reflection group and I1,... , I, be a set of generating
invariants. We may assume them to be homogeneous polynomials. Denote the
degree of I; by d; and suppose that d; < ds < --- <d,,,. Then the d; are uniquely
determined and they are called the degrees of G. In their paper [ST54] Shephard
and Todd give a complete classification of all finite complex reflection groups. We
can use their classification to list all possible finite monodromy groups that could
occur for the Lamé equation. In the case that m = 2 we get, after considering the
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further restriction that M is generated by order 2 reflections, the following list of
possibilities.

G(N,N/2,2) (N€2Z>0), G(N,N,2) (NZ?)), G12, G13, G22
Here G(N, N/2,2) is the group of order 4N generated by

e2m/N- 0 -1 0\ (0 1
0 e2@/AN) o 1)°\1 0)°

The degrees of G(N,N/2,2) are 4 and N corresponding to the invariants
(z122)?, @ .
The projective group of G(N, N/2,2) is the dihedral group Dy, if N is divisible

by 4 and Dy otherwise.
The matrix group

e27‘ri/N 0 0 1
G(N;Ngz) = <( 0 e_27ri/N) ) (1 0)>7

is a dihedral group of order 2N. The degrees of G(N,N,2) are 2 and N which
correspond to the invariant polynomials

N N
r1T2, xr; + Xy -

The projective group of G(N, N, 2) is either Dy, or Dy, depending on whether
N is even or not.
The group G is generated by the matrices

205 TR0 )l 5)

and is of order 48. Its center consists of the group generated by —Id. The degrees
of G2 are 6 and 8, corresponding to the invariants

oxy — 2125, 28 + ldxix; + 5.
The group Gi3 of order 96 is the matrix group generated by the elements of G2
together with i-Id. The degrees of G13 are 8 and 12, and the invariant polynomials
are given by

8 4,4 8 5 512
x7 + ldxix5 + x5, (z7x2 — T125)".

The projective groups of G2 of G13 are isomorphic to S;. We call G5 and G13
the octahedral groups.
Finally, the group G22 of order 120 is generated by

(i Q) 1 (Cs—cs“ C§—C§) 1 (CS—Cs l—Cs)
0 i) E\E-¢ G-G) Ve\G-1 -G/’
in which (5 denotes a primitive 5-th root of unity. It has degrees 12 and 30,
belonging to the invariants
x{lxz - llx‘f:cg - xlxél,

230 4+ 22821525 4 49421°23° — 2282723 + 230.

The projective image of G is A5. We call G2 the icosahedral group. We have the
following Theorem.
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Theorem 4.4. Suppose the Lamé equation L, py = 0 has monodromy group M.
Then

(1) M=G(N,N/2,2) = ne{1/2} +Z and N =4,
(2) M=G(N,N,2), N>3=>n€ZandN #4,
(3) M=G12:>n€{:|:1/4}+Z,

(4) M=Gi3=>ne{£l/6}+7Z,

(5) M =Ga2 = n e {£1/10,+£3/10,£1/6} + Z.
Moreover, if M is finite and n > —1/2, then n > 0.

Proof. First we prove the cases (1) and (2) of the Theorem.

Case (1), M = G(N,N/2,2). Since this group has an invariant of degree 4,
the fourth symmetric power of the Lamé equation should have a rational solution
in z, and since all local exponents at the finite points are > 0 this solution is a
polynomial in z. This implies that at least one of the local exponents —2n, —n +
1/2,1,n+ 3/2,2n + 2 of the fourth symmetric power at oo is an integer < 0. Hence
n is either integral or half integral. The group G(N, N/2,2) is not contained in a
dihedral linear group as otherwise there would be a group invariant of degree 2.
So n cannot be integral. We obtain that n is a half integer and that we are in the
situation of Theorem 2.2. As the projective group PM is Vy by this Theorem, we
conclude in addition that NV = 4.

Case (2), M = G(N,N,2). As we remarked before, this is the dihedral group
of order 2N as given in the previous section. In this case there is an invariant
polynomial of degree 2. Hence the second symmetric power of the Lamé equation
has a polynomial solution in z. This implies that at least one of its exponents —n,
1/2 and 2n + 1 at oo is an integer and < 0. It follows that n is integral.

In addition, suppose there exists a Lamé equation with M = Dy. Let y;(2),y2(2)
be two solutions with respect to which the group acquires our standard form as given
in Theorem 3.3. Then y;y2(2) and (y} +y3)(2) are invariant under monodromy and
hence should be polynomials in z. We relate these solutions to their expansions
around z = oco. One has y; = 2™2f1(1/z) + 2~ ("Y/2f,(1/z), where f; and
f2 are suitable powerseries satisfying f1(0)f2(0) # 0. The element v, maps y;
to ya, hence yo = (=1)"(2™2f1(1/2) — 2= (®*tV/2£,(1/2)). A brief computation
shows that y +y5 — 2(y1y2)? is equal to 16271 f;(1/2)2f2(1/2)2. We conclude that
vt + y5 — (y1y2)? is a polynomial in z that can be expanded in a series in positive
powers of 1/z. Therefore, it should vanish identically. This, however, is impossible
since y; and y, are supposed to be linearly independent solutions. It follows that
G(4,4,2) is not the monodromy group of a Lamé equation.

Next we deal with the remaining cases (3), (4) and (5). The groups Gi2, Gi3
and G2 are not subgroups of the infinite dihedral group D,. Therefore we can
now assume that n is not an integer. We use various arguments to determine the
order of the natural projection 7., of 7o in PM. If this order is N say, then this
means that the exponent difference n+1/2 at oo should be a rational number with
N as denominator. From this the value of n modulo Z can be determined for each
of the remaining groups.

Case (3), M = G15. The group PM then is isomorphic to Ss. We identify PM
with S4 to simplify notation. On G2 we distinguish two characters. The first is
o, that is the sign of the permutation of M modulo scalars. The second is J, the
determinant of the elements of M. We are interested in the product character ¢4.
Take an element g € G2 which has order 3 in PM. Clearly this corresponds to
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a 3-cycle and hence o(g) = 1. Moreover, g* is a scalar multiple of Id. Since all
scalar matrices in G2 have determinant 1, we conclude §(g) = 1. One therefore
has 0d(g) = 1 for every g € G12 that has a 3-cycle as projection.

The group generated by the 3-cycles in Sy is precisely A4. Furthermore, G,
is generated by its scalar matrices £1d and all matrices being 2-cycles in PM.
Since (G12 contains matrices of determinant —1, at least one element h € M with
a 2-cycle as projection must have determinant —1. We then have od(h) = 1. The
group generated by A, and the image of h in Sy is of course S;. We conclude that
ad6(g) =1 for all g € G12.

Note that the ~; (i = 1,2,3) have order two and determinant —1. From the
discussion above they should correspond to 2-cycles in PM. Hence 7, being the
product y37y27y1, corresponds to an odd permutation. So the order of 7, is 2 or 4.
Therefore the exponent difference n+1/2 at oo is contained in either {1/2} + Z or
{£1/4} + Z. The first case cannot occur since then n would be an integer. So we
are left with n € {£1/4} + Z.

Case (4), M = G13. This group is simply G12 extended by the scalar matrix i-Id.
On G13 we can define the characters ,d as in the proof of case (3). Notice that
then 0d(i-Id) = —1 holds. So G12 can be considered as the kernel of the character
0d on (G13. Since 71, 2 and 3 generate (13, at least one of these generators must
have od-value —1. Their determinants are all —1. It follows that at least one of
the matrices 71, ¥2, s corresponds to an even permutation in Ss. This permutation
is necessarily a product of 2-cycles, since each of the «;’s has eigenvalues —1 and
1. Also, at least one of the projective matrices of the remaining ~;’s is a 2-cycle
as the v;’s generate G13. It is not hard to verify that Sy cannot be generated by
its subgroup V4 and a 2-cycle. Therefore we conclude that the projections of two
of the matrices ~y;,72,7vs are distinct 2-cycles and that the third is a non-trivial
element of V. Consequently, the element 7, is an even permutation and hence is
of order 2 or 3. This yields n +1/2 € {1/2} +Z or n +1/2 € £{1/3} + Z. The
first case implies n € Z which we had excluded earlier. The second case is precisely
our assertion.

Case (5), M = Ga2. Modulo scalars this group is isomorphic to 4s. A non-
trivial element of As has order 2, 3 or 5. This means that n + 1/2 is contained in
{1/2} + Z, {£1/3} + Z, {£1/5} + Z or {£2/5} + Z. The first case cannot occur
since then n € Z. The remaining cases precisely form the assertion of our Theorem.
This finishes the proof of the cases (1) upto (5).

To finish the proof of the Theorem we suppose now that M is finite and assume
—1/2 < n < 0. Then both local exponents at oo are > 0. This implies that
there exists an algebraic solution that is everywhere bounded. Hence it should be
constant. This contradicts the irreducibility of our equation. So one has n > 0,
as asserted. |

Partial results in the direction of Theorem 4.4 were obtained by Baldassarri
[Bal81] and Chiarellotto [Chi95]. In [Chi95] there is a method given to count the
number of inequivalent Lamé equations with given dihedral monodromy group. To
warn the reader and to avoid confusion it should be pointed out, however, that
Chiarellotto only considers monodromy modulo scalars. Since, the monodromy
groups Dy and Dy, for N = 2(mod 4) give rise to the same projective mon-
odromy group, they are not distinguished by the counting procedure in [Chi95].
For example, from [Chi95] it follows that there are two distinct Lamé equations
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with n = 1 and projective dihedral monodromy group of order 10. In [vdWO02] the
author gets only one Lamé equation with exact monodromy D5, whereas the other
intended solution has dihedral monodromy of order 20. Also, it is mentioned in
[Chi95] that there is one case with n = 1 and projective dihedral monodromy group
of order 8. Theorem 4.4 states that Dy cannot occur as monodromy group. The
group alluded to in [Chi95] is in fact dihedral of order 16. Recently Litcanu [Lit02]
reconsidered the results of [Chi95] by studying Grothendieck’s “dessins d’enfants”.
He also considered the counting problem for other groups than the dihedral ones.

Finally we point out an error in [Bal81]. There it is stated that the octahedral
group does not occur for n € {£1/6} + Z. However, the Lamé equation with
92 =1, g5 =0, B =0 and n = 1/6 has octahedral monodromy, as it is the rational
pull-back of the hypergeometric equation

z(z — 1)y" + (5z/4 — 3/4)y’ — (7/24%)y = 0

by the substitution £ = 22. The latter hypergeometric equation has octahedral
monodromy. This error was noticed independently by R.S. Maier in [Mai02].

A question that remains to be answered is whether for any choice of group and
n, as allowed by Theorem 4.4, there exists a Lamé equation. We shall not give
a complete answer but prove in Theorem 5.1 that G12, G135 and Ga2 indeed are
monodromy groups of Lamé equations when we take the smallest positive represen-
tatives of each of the possible classes n(mod Z). For the dihedral groups we prove
a similar result in Theorem 6.1. We expect that with increasing n the number of
algebraic Lamé equation also increases.

Besides showing the existence of an algebraic Lamé equation with given M and
n one could take this one step further and try to determine the number of these
equations. Notice that if we replace z by Az in the Lamé equation, we get a new
Lamé equation with parameters B/), go/\?, g3/\? instead of B, g2, g3. We call two
such Lamé equations scalar equivalent. We have the following fact.

Proposition 4.5. Suppose n # 0. Let L, py = 0 and L, cy = 0 be two Lamé
equations which are equivalent with respect to the relation ~ defined in Section 1.
Then L, g and L, ¢ are scalar equivalent. Moreover, one has n = m.

Proof. For a proof we refer to [vdW02, Prop. 5.3.1]. O
The following result is a direct consequence of Theorem 7.1 and the above Propo-

sition.

Theorem 4.6. The number of scalar equivalence classes of Lamé equations with

given finite monodromy group M and parameter n & 1/2 + Z is at most finite. O

This Theorem also occurs in [Lit02, Thm 4.1] and [vdW02, Thms 5.4.4, 6.7.9].
It seems that B. Dwork has also given a proof, but never published it, see [MR99,
Prop. 2.8]. In the latter reference the authors should probably have added: 2n ¢ Z.

5. ENUMERATION OF ALGEBRAIC LAME EQUATIONS

In this section we describe a computational method to obtain all algebraic Lamé
equations for a given monodromy group M € {Gi2,G13,G22} and fixed n. In
particular this algorithm leads to the following Theorem.

Theorem 5.1. For each of the following pairs of M,n there exists a Lamé equation:
(1) M = G12 with n = 1/4,3/4,
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(2) M = G13 with n = 1/6,5/6,
(3) M = Gy with n = 1/10,3/10,7/10,9/10,1/6,5/6.

To prove Theorem 5.1 it suffices to exhibit some examples and this is what we

shall do. At the same time we describe the methods used to calculate them.

Proof of Theorem 5.1. The desired examples can be recovered from the following
table, Table 4.

Group | n B g2 | 93
I | G | 1/4] 0 0 | 1
I | G |3/4] 3/8 |-168]622

I | Gy | 1/6] o0 1| o

v Gz | 5/6 0 1 0
V | G |1/6] 1/6 | 60 | 90

VI Gaz | 5/6 1 a

VII Gaa 1/10 0 0

VIII| Gss |3/10]3/100| 3 |5/4

0
Y

IX Ga2 | 7/10 0
X G22 |9/10 1
TABLE 4.

In this table « is any zero of

533800350987521823325605888 — 26070068116173113859168000z
+46007586351295022880000022 — 31977967441123755000002:>
+3513693527268750000x* + 3523224117382812525.

The number 8 then satisfies
B = —(1/33989399094889069443707636943360) x
x (612667142673340661012556043831296
+86650981715104732984547311731072a
—17283681264580052655768214060000.
+42047432660617149760911000000°
—117679692466463161209218750).

Although example VI looks horrifying, it is the simplest we could find with Gaa
and n = 5/6. Furthermore, + is any zero of

1874362548828125 — 341608324218752
+5083531143752% + 22353786273
and
§ = (—1/11494507500) x (354707421875
4342909618757 + 21619224+7).
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Whenever we have an algebraic Lamé equation with group M that is not dihedral,
we can verify the data in Table 4 in the following way. Let d be the degree of the
lowest invariant of M. Compute the symmetric powers of the Lamé equation up
to d-th power and verify that the d-th symmetric power is the first which has a
polynomial solution, which we denote by P(z). Nowadays this can be done in
several computer algebra packages, for example in Maple 6 and higher versions. In
Table 5 the results for the ten cases above are given.

d | P(2)
I 6 |1
I | 6|z-11/6
Imm | 6 |1
IV | 6 | 22+1/320

V |12 |2+ 3/2
VI | 12 | polynomial of degree 5
VII |12 |1
VIIT | 12 | 2+ 5/12
IX |12 |2%-16/189
X | 12 | polynomial of degree 4
TABLE 5.

We have to mention how the examples were found. In Chapter 6 of [vdW02]
for each choice of M an algorithm is given, that produces for every input n the
list of Lamé equations with monodromy group M and parameter n. Here we give
only one example of such a construction. All the other cases that are mentioned in
Theorem 5.1, are obtained by performing similar calculations.

We want to determine all algebraic Lamé equations with parameter n = 3/10.
According to Theorem 4.4 the monodromy group must be G22. This group has an
invariant of degree 12. Let y;1(2),y2(2) be two local solutions around infinity that
correspond to the local exponents at oo. The explicit solutions read

5B1 (25B2 Tgs \ 1
_ (), 5B _ T\ 1
ni = z (H 127" ( 192 1280) 2 )

5B1 (258> 299g>\ 1
— —13/20 1 = - - . .
ba(2) ? ( N (4032 + 8960) 2t )

There exists a binary form I(x;,x2) of degree 12 such that I(y;,y2)(z) is invariant
under monodromy. Hence it is a rational function in z. Moreover, since the local
exponents at all finite points are non-negative, we have I(y;y,y2)(z) € C[z]. The only
degree twelve monomials that occur in I(y;,ys) are therefore, yilys, ySyS, y1yit.
The others all contain non-integral fractional powers of z.

We must find a and 3 such that I = y}lys + ayly§ + By1yit € C[z]. Notice that
the three relevant monomials of each term are of order —1,3,7 in 1/z,respectively.
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Up to order 1/2* one has

125B N 100008 — 3g> 1
9 112 2
75000083 + 650Bg> — 63g5 1 1
+ 2128 2T 0()

The coefficients of 1/z and 1/z2 must be zero. Recall that through the substition
z — Az in the Lamé equation the parameter B changes into B/A. Hence, after
suitable normalisation we can assume that B has some arbitrarily given value. We
take B = 3/100. It then follows from the vanishing of our two coefficients that
g2 = 3 and g3 = 5/4. a

I = 2+

23

Notice that the general approach of solving g» and g3 first for a given non-zero
B and then again for the case that B = 0 would have given all algebraic Lamé
equations with given M and n. However, in our example the assumption B = 0
leads to g2 = g3 = 0, which is impossible by the definition of p(z).

6. EXISTENCE OF LAME EQUATIONS WITH GIVEN DIHEDRAL GROUP.

It might be possible to extend the counting methods as given in [Chi95] and
[Lit02] to establish a count for Lamé equations having exact monodromy group Dy,
but we do not pursue this here. Instead we like to make use of explicit solutions
to the Lamé equation using elliptic functions. The main goal in this section is to
prove the following Theorem.

Theorem 6.1. For each integer N > 3, N # 4,6 there is a Lamé equation with
n = 1 having a dihedral monodromy group of order 2N . There is a Lamé equation
with dihedral group of order 12 when n = 2.

The remainder of this section is devoted to a proof of Theorem 6.1.
The elliptic curve

vi =42 — goz — g3
can be parametrised by using the standard Weierstrass function g so that
2 = ﬂo(u)a
vo= p'(u)

We denote the associated period lattice by A. To this lattice also the Weierstrass
functions ((u) and o(u) are associated, where

o(w) =u [[ (l—g)exp(g—}-%)

and

Furthermore, one has p(u) = —('(u). All this and more can be found in [WW50,
Ch. XX]. The reader should bear in mind though that in [WW50] the symbols
w1,ws denote half-periods, whereas we use them to denote a basis of A.
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The Lamé equation can be rewritten using the substitution z = p(u) as
d2

75 — (n(n+ 1p(w) + By = 0. 3)

Using elementary properties of elliptic functions one can show the following propo-
sition.

Proposition 6.2. Let A be a rank two lattice in C and p(u) the corresponding
Weierstrass function. Let B € C and choose a € C such that B = p(a) Then a
solution to

d?y

ez (2p(u) + B)y =0

is given by

eut(a) M' (4)
o(u)
Moreover, if a is not a half period, then an independent solution can be obtained by
changing a into —a.

To verify that the proposed solution satisfies our differential equation is an ex-
ercise in elliptic functions. In fact, solving the Lamé equation with n = 2 in terms
of o-functions was part of the Cambridge Math. Tripos 1912, see [WW50, p.459].

If we denote solution (4) by f,(u), the transformation properties of the o-function
ensure

fa(u+w) = eSO f (u), (5)

where 7(w) is the quasi-period defined by ((u + w) — ((u) = n(w)-

The monodromy group of Equation (3) should now be the abelian group H dis-
cussed in the proof of Theorem 3.3. The eigenvalues of the elements of H consist of
the multipliers of the functional equation (5). A set of generators for this multiplier
group can be obtained by taking a basis wy,ws of A and computing

eC(a)wl—am, eC(a)wz—am,
where 71 = n(w1),n2 = n(w2). We now choose a € C and A in such a way that the
above to numbers generate the cyclic group of order N. Hence,

—2mik: 2mik
C(a)wy —am = N = C(a)ws —ana = N .

for some integers k1 and ks with ged(kq, k2, N) = 1. If we consider this as a system
of equations in a and ((a), its solution yields

mk1 + naks wik1 + wakso
C(a) - N ’ a = N -
We conclude that a is a torsion point of precise order N.
In the following we display the dependence of ((u) on A more explicitly, by
rewriting ((u) as ((u,w1,ws). It now follows that our Lamé equation has a dihedral
group of order 2N when

¢ k1w + kows w _ ki + kana
TN Whw — N
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is satisfied. In Section 6 of [Hec26] E. Hecke studies functions of the form

If we write 7 = wy /w2 and assume (1) > 0, we get that
Z T ﬁ @ — wQZ(wlan;kl/N,kz/N)
'N'N)’ 27

is a modular form of weight 1 with respect to the congruence subgroup I'(V) consist-
ing of all matrices in SL(2, Z) which are Id modulo N. Moreover, Z(r, k1 /N, k2 /N)
only depends on ki, k2 modulo N. It is also shown in [Hec26] that the differ-
ent Z(7,k1/N,ky/N) are permuted under the action of SL(2,Z). The value of
Z(1,k1 /N, ka/N) at T = oo is given by k; /N—1/2if 0 < k; < N and cot(kam/N)/2i
when k; = 0.

To determine the Lamé equations with n = 1 and monodromy group Dy, we
must look for zeros of the functions Z(7, k1 /N, ka/N). To this end we simply
take the product of Z(r,ki/N,ko/N) over all ki, ke with 0 < ki,ks < N and
ged(kq, k2, N) = 1. We denote this product by Z(7) and let ¥(N) be the number
of factors. Then Z(7) is a modular form with respect to SL(2,Z) of weight U(N).
Denote by vp(Z) the zero-multiplicity of Z(7) at P in a fundamental domain of
SL(2,Z) (including oo). We have the well-known formula

1 1 )\
ve2) + g2+ g2+ Y wp(z) = T,
P#00,i,p

where p is a primitive root of unity of order 3. If we can show that v (Z) <
¥(N)/12, then we are done. It is well-known that ¥(N) = N? ] (1-1/p?), where
the product is taken over all prime divisors of N.

We finally compute the contributions of each factor to v (Z). The value of
Z(1,k1 [N, ky/N) at T = oo is given by k; /N—1/2if 0 < k; < N and cot(kem/N)/2i
for k; = 0 (see [Hec26]). So the only factors which contribute something to the
zero order are the ones with k; /N = 1/2. In these cases we deduce from [Hec26]
that the local g-expansion of Z(r, ki /N, ko /N) starts with ¢'/2. So, when N is odd
there is no zero of Z(7) at co. When N is even, the zero-multiplicity of Z(r) at
00 is the number of integers ko such that 0 < k2 < N/2 and ged(ka, N/2) =1, i.e
#(N/2), where ¢ is Euler’s ¢-function. If we define the ¢-value of a non-integer to
be zero, we finally have that ve(Z) = ¢(N/2).

Clearly when N is an odd integer > 3, then ¥(N) — ¢(N/2) > 0, so Theorem
6.1 is proved. When N is even, by making use of ¢(N/2) < ¢(N) we obtain

T(N) ¥(N) d(N) 1
T—Qﬁ(N/Z) > T_¢(N) =~ 19 <N1;[ <1+I_9> _12>'

The latter quantity is clearly positive for N > 12. However, checking all integers
N < 1 implies ¥(N)/12 — ¢(N/2) > 0 for N = 8 and N = 10 as well. Thus we
have proved the first statement of Theorem 6.1.

By being a bit more careful it might be possible to give a counting formula for
the number of Lamé equations with n = 1 and monodromy Dy. It turns out that
for N up to 10, the formula ¥(N)/12 — $(N/2) gives twice the correct answer. One
may realise that we could have taken our product over all pairs k;, k2 modulo a



LAME EQUATIONS WITH ALGEBRAIC SOLUTIONS 17

common factor +1. This corresponds to the fact that the points @ and —a belong
to the same Lamé equation. But we will not make this any more precise here.

Finally, we must display a Lamé equation with Dg as its monodromy group. The
choice n = 2, B = 21, g2 = 327, g3 = 1727 provides such an example by using the
techniques as explained in the previous section. The second polynomial solution
(next to (y1y2)?) of the 6-th symmetric power of the Lamé equation is z — 11. This
finishes the proof of Theorem 6.1.

7. THE NUMBER OF EQUIVALENT EQUATIONS

In this section we discuss a refinement of Theorem 1.1 and its proof. To any
element Ly = 0 of Ay we associate the number 6(L), which is the sum of all local
exponent differences # 1 of Ly = 0. By Ag(r) we denote the set of equation Ly = 0
in Ap such that 6(L) < r. Since L ~ L' implies §(L) = §(L'), we see that ~ is also
an equivalence relation on Ag(r). Notice also that two equivalent equations have
the same projective monodromy group. We have

Theorem 7.1. Let G C PGL(2,C) be a given finite group and r € R>o. Then the
number of elements in Ag(r)/ ~ having projective monodromy group G is finite.

Proof. Given a linear differential equation from Ag, let M C GL(2,C) be its finite
Galois group. The conjugacy class of M in GL(2,C) depends on the choice of a
local basis y1,y2 of solutions with respect to which M is determined. According to
F. Klein’s work, y; and y» can be chosen in such a way that M modulo scalars is
one of a concrete list of possible groups in PGL(2,C). They are the cyclic group
Cn of order N, the dihedral group Dy of order 2N, the tetrahedral group A4, the
octahedral group Ss and the icosahedral group As. We can assume that G is one of
these groups. A rational function f(z) is called G-invariant when f(22£t) = f(z)

cz+d
holds for every (Z Z) € G. The G-invariant rational functions form a subfield

of C(z) that we denote by C(2)¢. Klein constructed an explicit rational function
ja(z) € C(z) for each G, such that the field C(jg (2)) is C(2)¢ . Moreover, it is
shown in [Kle84] that je(z) ramifies only in the points above 0,1 and oo.

Next we consider the composite function

R(z) == ja(y1/y2)(2)

on P!. Then R(z) is invariant under monodromy, hence is a meromorphic function
on P!, i.e. R(z) € C(z). For a point zop € P! the ramification order of R(z) at
Zo is equal to the local exponent difference of Ly = 0 at 2y, multiplied by the
ramification order of jg at y1(20)/y2(20). In particular this implies that any point
2o where the local exponent difference is not an integer, is mapped to a ramification
point of jg by 2o — y1(20)/y2(20). Since jg ramifies only above 0, 1, co, we conclude
R(2) € {0, 1, OO}

Let 2o be any point that satisfies R(z9) # 0,1,00. Then 2y must have integral
exponent difference. Since our equation is pure this difference is 1 and therefore
R(z) is unramified in zo. We conclude that R(z) is a so-called Belyi-function, a
rational function R : P! — P! such that R ramifies only above 0, 1, co.

From [Kle84] it follows that two branch points a;,a2 € P! of jg, that satisfy
ja(a1) = je(az), have the same multiplicities. We denote the ramification indices
of jg above 0, 1 and oo by Ag, A; and Ay. From [Kle84] we know that (Ao, A1, Aso)
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is a permutation of one of the triples (1, N, N),(2,2,N),(2,3,3),(2,3,4),(2,3,5),
depending on G. Let Apax be the maximum of Ag, A1, Aso. Is D denotes the degree
of R(z), then the Riemann-Hurwitz Theorem yields

2D-2= (e;—1),
i
where the e; are the ramification indices of R(z). As we have seen, all ramification
takes place above 0,1, 00. The contribution to >~,(e; — 1) of the singular points of
Ly = 0 can be bounded above by Apaxd(L). The contribution of the non-singular

points can be bounded by
D
—(\i—1).
> -1

i=0,1,00 °
Hence
2D — 2 < §(L)Amax + (3 - ) _1/A:)D.

2

So we find that
(=14 ) " 1/A)D < 6(L) Amax + 2.

Since =143, 1/A; > 0, the latter inequality gives an upper bound on D depending
only on the group G and §(L) < r.

According to [Sch94, Lemma 1.1] the set of Belyi functions of bounded degree
is finite when we consider two Belyi-functions f(z), f(¢(z)) as equivalent for every
projective linear map ¢. Therefore the set of ratios y;(z)/y2(z) modulo fractional
linear transformations in z is finite.

Finally, suppose that two differential equations Ly = 0 and Ly = 0 give rise to
the same quotient

y1/y2 = 91/ (6)
We have to prove that these equations are equivalent. If we differentiate both sides
of Equation (6), then we obtain W/y? = W /2, where W and W are the Wronskian
determinants of the differential equations. For example, one has W (z) = yjy2—y195-
It is well-known that W (z) = S(z)? for some S(z) € C(z) and a € Q. Similarly
we have W (z) = S(2)%. This implies §» = S%/25(2)~%/?y, and a similar result for
y1. We conclude that Ly = 0 and Ly = 0 are equivalent equations. Hence, up to
equivalence the set of equations in Ag(r) is finite, as asserted. d

The set Ap is a countable union of sets A4 (r) with prescribed projective mon-
odromy. Theorem 7.1 therefore immediately implies Theorem 1.1.
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