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In [CDD00], Cohen, Dahmen and DeVore proposed an adaptive wavelet al-
gorithm for solving operator equations. Assuming that the operator defines a boundedly
invertible mapping between a Hilbert space and its dual, and that a Riesz basis of wavelet
type for this Hilbert space is available, the operator equation can be transformed into an
equivalent well-posed infinite matrix-vector system. This system is solved by an iterative
method, where each application of the infinite stiffness matrix is replaced by an adaptive
approximation. Assuming that the stiffness matrix is sufficiently compressible, i.e., that it
can be sufficiently well approximated by sparse matrices, it was proven that the adaptive
method has optimal computational complexity in the sense that it converges with the same
rate as the best N -term approximations for the solution assuming it would be explicitly
available. With the available results concerning compressibility however, this optimal-
ity was actually restricted to solutions with limited Besov regularity. In this paper we
derive improved results concerning compressibility, which imply that with wavelets that
have sufficiently many vanishing moments and that are sufficiently smooth, the adaptive
wavelet method has optimal computational complexity independent of the regularity of
the solution.

1. Introduction

As has been first observed in [BCR91], the stiffness matrix resulting from a Galerkin dis-
cretization of a singular integral operator, which using standard single scale bases is densely
populated, turns out to be close to a sparse matrix when wavelet bases are exploited. Re-
sponsible for this phenomenon is that the kernel of such an operator is increasingly smooth
away from the diagonal, and that the wavelets have vanishing moments. Quantitative
analyses in [Sch98, DHS02, vPS97] show that with wavelets that have a sufficient number
of vanishing moments, the stiffness matrix can be compressed to a sparse one, whose ap-
plication requires only O(n) operations with n being the number of unknowns, whereas
the order of convergence is maintained.

Compared to alternative approaches for compression as panel clustering ([HN89]) and
multipole expansions ([GR87]), the wavelet approach has the additional advantage that
properly scaled wavelets generate Riesz bases for a range of Sobolev spaces. So, in any
case for strongly elliptic equations, if the operator defines a boundedly invertible mapping
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between a Sobolev space in this range and its dual, then the stiffness matrices with respect
to the wavelet bases are well-conditioned uniformly in their sizes, allowing for a fast iterative
solution. In summary, with suitable wavelets the discretization error accuracy can be
realized in O(n) operations.

This Riesz basis property inspired Cohen, Dahmen en DeVore in [CDD01, CDD00] to
go one step further. Instead of first discretizing the problem, i.e. replacing the underlying
infinite dimensional space by some fixed finite dimensional one, and then solving the re-
sulting finite dimensional system by some iterative method, they transformed the original
problem into an equivalent well-posed infinite matrix-vector system. This system can be
solved iteratively, where in each iteration the application of the infinite matrix has to be
approximated. The main advantage of their approach is that in the course of the iteration
the spaces in which the approximations are sought, which are always spanned by a finite
linear combination of wavelets, will adapt to the solution in an optimal way. Because of
this adaptivity, the method is attractive for both integral- and differential equations in
variational form.

In the following we assume that the problem to be solved has the form

Lu = g,

where for some closed subspace H ⊂ H t, being a Sobolev space of order t ∈ IR, the linear
operator L : H → H′ is boundedly invertible, the right-hand side g ∈ H′, and thus the
unknown solution u ∈ H. With Ψ = {ψλ : λ ∈ Λ} being a Riesz basis for H of wavelet
type, the equivalent infinite matrix-vector problem reads as

(1.1) Mu = g,

where M := 〈Ψ, LΨ〉 : `2(Λ) → `2(Λ) is boundedly invertible, g := 〈Ψ, g〉 ∈ `2(Λ), with
〈 , 〉 denoting the duality product on H×H′, and u = uTΨ.

In [CDD01, CDD00], the quality of the proposed iterative method is assessed by com-
paring the `2(Λ)-error of the current approximation having N coefficients with that of a
best N-term approximation for u, i.e., a vector uN with at most N non-zero coefficients
that has distance to u less or equal to that of any vector with a support of that size. Recall
that since Ψ is a Riesz basis, the sizes of the error measured in `2(Λ) or H t-metric differ
at most a constant factor.

In any case for wavelets that are sufficiently smooth, the theory of non-linear approxi-
mation ([DeV98, Coh00]) learns that if both

0 < s < d−t
n
,

where n is the space dimension and d is the order of the wavelets, and u is in the Besov
space Bsn+t

τ (Lτ ) with τ = (1
2

+ s)−1, then

(1.2) sup
N∈IN

N s‖u − uN‖ <∞.

The potential here lies in the fact the condition involving Besov regularity is much milder
that the corresponding condition u ∈ Hsn+t involving Sobolev regularity that would be
needed to guarantee the same rate of convergence with linear approximation in the spaces
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spanned by N wavelets on the coarsest scales. Indeed, assuming a sufficiently smooth
right-hand side, for several boundary value problems it has been proved that the solution
has a much higher Besov- than Sobolev regularity ([DD97, Dah99]). Note that a rate
higher than d−t

n
can never be expected with wavelets of order d, except when the solution

u happens to be a finite linear combination of wavelets.
Returning to the adaptive wavelet algorithm from [CDD00], besides a clean-up step that

is applied after every K iterations to remove small coefficients in order to control the vector
length, the other crucial ingredient is the adaptive way in which in each iteration the appli-
cation of the infinite matrix M to a finitely supported vector is approximated. Given such a
vector, before multiplication each column of M that corresponds to a non-zero entry in this
vector is replaced by a finitely supported approximation within a tolerance that decreases
as function of the size of this coefficient. To be able to prove results about complexity,
information is needed about the number of entries that are necessary to approximate any
column within some given tolerance. We recall the following definition from [CDD00]:

Definition 1.1. M is called s∗-compressible, when for each j ∈ IN there exists an infinite
matrix M̃j with at most αj2

j non-zero entries in each row and column with
∑

j∈IN αj <∞,

such that for any s < s∗,
∑

j∈IN 2js‖M − M̃j‖ <∞.

An equivalent definition is obtained by requiring that for any s < s∗ and any N ∈ IN ,
there exists a matrix on distance of order N−s having at most N non-zeros in each row
and column.

The main theorem from [CDD00] now says that if (1.2) is valid for some s, and M
is s∗-compressible with s∗ > s, then the number of arithmetic operations and storage
locations used by the adaptive wavelet algorithm for computing an approximation for u
within tolerance ε is of the order ε−1/s. Since in view of (1.2) the same order of operations
is already needed to approximate u within this tolerance assuming that all its entries would
be explicitly known, this result shows that this solution method has optimal computational

complexity.
It remains to determine the value of s∗. First of all, note that even for a differential op-

erator, M itself is not sparse. Indeed, any two wavelets ψλ, ψλ′ from the infinite collection
with vol(suppψλ∩suppψλ) > 0 give rise to a generally non-zero entry. Furthermore, in con-
trast to the non-adaptive setting, here we do not have the possibility for the matrix-vector
multiplication to switch to a single-scale representation, which for differential operators
would be sparse. On the other hand, it can be shown that for wavelets that both have
vanishing moments and have some global smoothness, the modulus of an entry decreases
with increasing distance in scale of the involved wavelets. Assuming that for some σ > 0, L
and its adjoint L′ are bounded from H t+σ → H−t+σ, by substituting the estimates [Dah97,
(9.4.5), (9.4.8)] into [CDD01, Proposition 6.6.2] we infer that M is s∗-compressible with

(1.3) s∗ =
min{t + d̃, σ, γ − t}

n
−

1

2
,

where d̃ is the order of the dual wavelets, i.e., the number of vanishing moments, or more
generally, the order of cancellation properties of the primal wavelets, and γ = sups{Ψ ⊂
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Hs} (here we used that the condition σ < t+ γ̃ imposed for [Dah97, (9.4.8)] can actually

be relaxed to σ ≤ t + d̃). This result holds true for differential operators as well as for
singular integral operators. Note that in contrast to the non-adaptive setting discussed at
the beginning of this introduction, global smoothness of the wavelets is required.

The result (1.3) however is not satisfactory. Indeed, since γ < d and so s∗ ≤ γ−t
n

− 1
2
<

d−t
n

, on basis of (1.3) optimal computational complexity of the adaptive wavelet method
can be concluded only for solutions u that have limited Besov regularity. Indeed, when
u ∈ Bsn+t

τ (Lτ ) with τ = (1
2

+ s)−1 and s > s∗, then the best N -term approximations
converge at a rate higher than can be shown for the approximations yielded by the adaptive
wavelet method.

For the special case of L being the Laplace operator and spline wavelets, in [BBC+01,
DDU01] it has been proved that s∗ = γ−t

n
, which however is still less than d−t

n
.

The goal of this paper is to prove that for both differential as singular integral operators,
for wavelets that are sufficiently smooth and have cancellation properties of sufficiently high
order, M = 〈Ψ, LΨ〉 is actually s∗-compressible with s∗ > d−t

n
, showing that the adaptive

wavelet method has optimal computational complexity independent of the regularity of
u. The key to obtain this improved result is that on essential places we estimate directly
norms of blocks of the matrix M, instead of deriving such estimates in terms of the sizes
of the individual entries via the Schur lemma.

This paper is organized as follows: In §2 we prove s∗-compressibility with s∗ > d−t
n

for
differential operators on a domain.

In §3 we prove this result for a class of singular integral operators on a manifold, which
includes operators resulting from applying the boundary integral method. Since the reg-
ularity of the manifold imposes a limit to the smoothness of the wavelets, depending on
the other parameters it may restrict the compressibility. In §3.3, we give a general proof
of a decay estimate for entries corresponding to wavelets with disjoint supports, which
so far was only shown in specific situations. In §3.4, we prove a new decay estimate for
entries corresponding to wavelets, or more generally, corresponding to a linear combina-
tion of wavelets and another wavelet, that may have overlapping supports, but for which
the support of the linear combination has empty intersection with the singular support of
the other wavelet. In contrast to available estimates from [Sch98, DHS02], this estimate
benefits from global smoothness of the wavelets. Apart from its use in the analysis of
adaptive schemes, this estimate also may result in quantitatively better compression rates
when applied in the analysis of non-adaptive schemes.

At the end of this introduction, we fix some notations. We always think of the space
L2 of all measurable square integrable functions on a domain Ω or manifold Γ as being
equipped with the standard scalar product 〈 , 〉 and corresponding norm ‖ ‖, defined by
〈u, v〉 =

∫

Ω
u(x)v(x)dx or 〈u, v〉 =

∫

Γ
u(x)v(x)dµ(x), with dµ being the induced Lebesgue

measure.
For H being a Hilbert space embedded in L2 and any u ∈ L2, the mapping v 7→ 〈v, u〉

is continuous on H. This procedure defines an embedding of L2 into H ′, or equivalently, it
fixes an interpretation of a function in L2 as a functional in H ′. Different scalar products
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on L2, defining equivalent norms on L2, give rise to different embeddings of L2 into H ′, that
may lead to non-equivalent H ′-norms of L2-functions (cf. [NS01, §4]). This observation,
together with the fact that on a few places in the wavelet literature non-standard L2-scalar
are applied is the reason here to emphasize our choice of the L2-scalar product.

If H is dense in L2, then the above embedding of L2 into H ′ is dense, meaning that
the L2-scalar product restricted to H ×L2 has an unique extension to the duality product
on H × H ′. For such an H, without risk of confusion, we may use 〈 , 〉 to denote either
product.

For any countable index set Λ, the notations 〈 , 〉 and ‖ ‖ will also be used to denote the
standard scalar product and norm, as well as the resulting operator norm, on the space
`2(Λ) of square summable scalar sequences.

Finally, in order to avoid the repeated use of generic but unspecified constants, by C <
∼ D

we mean that C can be bounded by a multiple of D, independently of parameters which
C and D may depend on. Obviously, C >

∼ D is defined as D <
∼ C, and C =

∼ D as C <
∼ D

and C >
∼ D.

2. Compressibility of differential operators

For some domain Ω ⊂ IRn, t ∈ IN0 and ΓD ⊂ ∂Ω, possibly with ΓD = ∅, let

H t
0,ΓD(Ω) = closHt(Ω){u ∈ H t(Ω) ∩ C∞(Ω) : supp u ∩ ΓD = ∅},

and let L : H t
0,ΓD(Ω) → (H t

0,ΓD(Ω))′ be defined by

〈u, Lv〉 =
∑

|α|,|β|≤t

〈∂αu, aαβ∂
βv〉,

where aαβ ∈ L∞(Ω) so that L is bounded. Obviously L as an extension, that we will also
denote by L, as a bounded operator from H t(Ω) → H−t(Ω). For completeness, Hs(Ω) for
s < 0 denotes the dual of H−s(Ω).

We assume that there exists a σ > 0, such that

L, L′ : H t+σ(Ω) → H t−σ(Ω) are bounded.

Sufficient is that for arbitrary ε > 0, and all α, β with min{|α|, |β|} > m− σ, it holds that

aαβ ∈

{

W
σ−m+min{|α|,|β|}
∞ (Ω) when σ ∈ IN,

Cσ−m+min{|α|,|β|}+ε(Ω) when σ 6∈ IN.
Let

Ψ = {ψλ : λ ∈ Λ}

be a Riesz basis for H t
0,ΓD(Ω) of wavelet type. The index λ encodes both the level, denoted

by |λ| ∈ IN0, and the location of the wavelet ψλ.
We assume that the wavelets are local, in the sense that

diam(suppψλ) <∼ 2−|λ| and sup
x∈Ω,`∈IN0

#{|λ| = ` : x ∈ suppψλ} <∞,
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and that they are piecewise smooth, with which we mean that suppψλ\sing suppψλ is the
disjoint union of m open “uniformly Lipschitz” domains Ξλ,1, . . . ,Ξλ,m, with ∪mi=1Ξλ,i =
suppψλ, and that ψλ|Ξλ,i

is smooth with

(2.1) sup
x∈Ξλ,i

|∂βψλ(x)| <∼ 2(|β|+ n
2
−t)|λ|, (β ∈ INn

0 ).

Remark 2.1. Precisely, we will call a collection domains {Aν} ⊂ IRn to be uniformly

Lipschitz domains, when there exist affine mappings Bν with |DBν| <∼ vol(Aν)
−1 and

|(DBν)
−1| <∼ vol(Aν), such that the sets Bν(Aν) satisfy the condition of “minimal smooth-

ness” ([Ste70, Ch.VI, §3]) with uniform parameters “ε”, “N” and “M”. Examples are
given by, the interiors of, “non-degenerate” polygons.

For minimally smooth domains it is known ([Ste70]) that there exist universal extension
operators, with Sobolev norms only dependent on the aforementioned parameters. So in
particular, by first transforming ψλ|Ξλ,i

using such an affine mapping to a function on a

minimally smooth domain with volume one, then making the extension, and finally apply-
ing the inverse transformation, by (2.1) we conclude that there exists a smooth function
ϕλ,i on IRn, equal to ψλ on Ξλ,i, with for any s ≥ 0, p ∈ [1,∞],

‖ϕλ,i‖W s
p (IRn)

<
∼ 2(s−t+ n

2
−n

p
)|λ|
.

Furthermore, we assume that there exist γ > t, d̃ > −t such that for r ∈ [−d̃, γ), s < γ,

(2.2) ‖ · ‖Hr(Ω)
<
∼ 2`(r−s)‖ · ‖Hs(Ω), on W` := span{ψλ : |λ| = `}.

Remark 2.2. It is known that the above wavelet assumptions are satisfied by biorthogonal
wavelets when the primal and dual spaces have regularity indices γ > max{0, t}, γ̃ >

max{0,−t} and orders d > γ, d̃ > γ̃ respectively (cf. [Dah96, DS99c]), the primal spaces
consist of “piecewise” smooth functions, and finally, no boundary conditions are imposed
on the dual spaces (“complementary boundary conditions”, see [DS98]). In particular, (2.2)

for r ∈ [−d̃,−γ̃] can be deduced from the lines following (A.2) in [DS99c]. In Remark 2.5
we will comment on the case when the dual spaces satisfy the same boundary conditions
as the primal ones.

Theorem 2.3. Let M = 〈Ψ, LΨ〉. For j ∈ IN , and with k(j, n) :=

{

j
n−1

when n > 1,
2j when n = 1,

we define the infinite matrix Mj by replacing all entries Mλ,λ′ = 〈ψλ, Lψλ′〉 by zeros when
∣

∣|λ| − |λ′|
∣

∣ > k(j, n), or(2.3)

∣

∣|λ| − |λ′|
∣

∣ > j
n

and for some 1 ≤ i ≤ m,

{

suppψλ ⊂ Ξλ′,i when |λ| > |λ′|,
suppψλ′ ⊂ Ξλ,i when |λ| < |λ′|.

(2.4)

Then the number of non-zero entries in each row and column of Mj is of order 2j, and for

any

s ≤ min{ t+d̃
n
, σ
n
}, with s < γ−t

n−1
when n > 1,

it holds that ‖M − Mj‖ <∼ 2−sj.
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Remark 2.4. In view of Definition 1.1, by taking M̃j = Mdj+log(αj)e, with for example

αj = j−(1+ε) for some ε > 0, we infer that M is s∗-compressible with

s∗ = min{ t+d̃
n
, σ
n
, γ−t
n−1

}

(s∗ = min{t+ d̃, σ} when n = 1). So, with d being the order of the wavelets, if d̃ > d− 2t,
σ > d − t and when n > 1, γ−t

n−1
> d−t

n
, then indeed s∗ > d−t

n
. The condition involving γ

when n > 1 is satisfied for instance when d−t
n
> 1

2
and γ = d− 1

2
(spline wavelets).

Proof of Theorem 2.3. Let λ be some given index. By the locality of the wavelets, the
number of indices λ′ with fixed |λ′| for which vol(suppψλ′ ∩ suppψλ) > 0 is of order
max{1, 2(|λ′|−|λ|)n}. By using in addition the piecewise smoothness of the wavelets, the
number of indices λ′ with fixed |λ′| > |λ| for which vol(suppψλ′ ∩ suppψλ) > 0 and
suppψλ′ is not contained in some Ξλ,i is of order 2(|λ′|−|λ|)(n−1). We conclude that the
number of non-zero entries in the λth row and column of Mj is of order

∑

||λ′|−|λ||≤ j
n

max{1, 2(|λ′|−|λ|)n} +
∑

j
n
<||λ′|−|λ||≤k(j,n)

max{1, 2(|λ′|−|λ|)(n−1)} =
∼ 2j.

Let M̂j be defined by (M− M̂j)λ,λ′ =

{

Mλ,λ′ when
∣

∣|λ| − |λ′|
∣

∣ > k(j, n),
0 otherwise.

The conti-

nuity assumptions on L, L′, together with (2.2) show that for

r ∈ (0, t+ d̃] ∩ (0, σ] ∩ (0, γ − t),

and w` ∈ W`, w`′ ∈ W`′,

|〈w`, Lw`′〉| <∼ ‖w`‖Ht−r(Ω)‖Lw`′‖H−t+r(Ω)

<
∼ ‖w`‖Ht−r(Ω)‖w`′‖Ht+r(Ω)

<
∼ 2r(`

′−`)‖w`‖Ht(Ω)‖w`′‖Ht(Ω),(2.5)

and analogously, |〈w`, Lw`′〉| = |〈L′w`, w`′〉| <∼ 2r(`−`
′)‖w`‖Ht(Ω)‖w`′‖Ht(Ω). So for arbitrary

c,d ∈ `2(Λ), we have

|〈c, (M− M̂j)d〉| = |
∑

|`−`′|>k(j,n)

〈
∑

|λ|=`

cλψλ, L
∑

|λ′|=`′

dλ′ψλ′〉|

<
∼

∑

|`−`′|>k(j,n)

2−r|`−`
′|‖

∑

|λ|=`

cλψλ‖Ht(Ω)‖
∑

|λ′|=`′

dλ′ψλ′‖Ht(Ω)

<
∼ 2−k(j,n)r

√

∑

`

‖
∑

|λ|=`

cλψλ‖2
Ht(Ω)

√

∑

`′

‖
∑

|λ′|=`′

dλ′ψλ′‖2
Ht(Ω)

=
∼ 2−k(j,n)r‖c‖‖d‖,

or ‖M − M̂j‖ <∼ 2−k(j,n)r .
Finally, we analyze the error as a consequence of dropping entries with indices that

satisfy criterion (2.4). For λ ∈ Λ, 1 ≤ i ≤ m and ` > |λ′|, let

A`,λ′,i := {|λ| = ` : suppψλ ⊂ Ξλ′,i}.
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For w`,λ′,i ∈ span {ψλ : λ ∈ A`,λ′,i} ⊂ W` and

q ∈ (0, t+ d̃] ∩ (0, σ],

we will prove that

(2.6) |〈w`,λ′,i, Lψλ′〉| <∼ 2q(|λ
′|−`)‖w`,λ′,i‖Ht(Ω).

Because of (2.5), it is sufficient to consider q ≥ γ − t ≥ −t. From Remark 2.1, recall that

ϕλ′,i is the extension of ψλ′ |Ξλ′,i
to a smooth function on IRn with for s ≥ 0, ‖ϕλ′,i‖Hs(IRn)

<
∼

2(s−t)|λ′|. From the locality and continuity of L, we conclude that

|〈w`,λ′,i, Lψλ′〉| = |〈w`,λ′,i, Lϕλ′,i〉| <∼ ‖w`,λ′,i‖Ht−q(Ω)‖Lϕλ′,i‖H−t+q(Ω)

<
∼ ‖w`,λ′,i‖Ht−q(Ω)‖ϕλ′,i‖Ht+q(Ω)

<
∼ 2−q(`−|λ′|)‖w`,λ′,i‖Ht(Ω).

For any c,d ∈ `2(Λ) and q ∈ (0, t+ d̃] ∩ (0, σ], from (2.6) we have

|
∑

j
n
<`−`′≤k(j,n)

∑

|λ′|=`′

dλ′〈
m

∑

i=1

∑

λ∈A`,λ′,i

cλψλ, Lψλ′〉|

<
∼

∑

j
n
<`−`′≤k(j,n)

∑

|λ′|=`′

|dλ′ |2
−q(`−`′)

m
∑

i=1

‖
∑

λ∈A`,λ′,i

cλψλ‖Ht(Ω)

<
∼

∑

j
n
<`−`′≤k(j,n)

2−q(`−`
′)

√

∑

|λ′|=`′

|dλ′ |2

√

√

√

√

√

∑

|λ′|=`′





m
∑

i=1

√

∑

λ∈A`,λ′,i

|cλ|2





2

<
∼

∑

j
n
<`−`′≤k(j,n)

2−q(`−`
′)

√

∑

|λ′|=`′

|dλ′ |2
√

∑

|λ|=`

|cλ|2 <∼ 2−
j
n
q‖d‖‖c‖,

where for the last line we have used that for fixed |λ′|, each λ is contained in at most a
uniformly bounded number of sets A|λ|,λ′,i.

Since, analogous to (2.6), |〈ψλ, Lw`′,λ,i〉| = |〈L′ψλ, w`′,λ,i〉| <∼ 2−q(`
′−|λ|)‖w`′,λ,i‖Ht(Ω) when

w`′,λ,i ∈ span {ψλ′ : λ′ ∈ A`′,λ,i}, and so

|
∑

j
n
<`′−`≤k(j,n)

∑

|λ|=`

cλ〈ψλ, L
m

∑

i=1

∑

λ′∈A`′,λ,i

dλ′ψλ′〉| <∼ 2−
j
n
q‖c‖‖d‖,

we conclude that ‖M̂j − Mj‖ <∼ 2−
j
n
q.

A combination of the estimates for M−M̂j and M̂j−Mj shows that for s ≤ min{ t+d̃
n
, σ
n
},

with s < γ−t
n−1

when n > 1, it holds that ‖M − Mj‖ <∼ 2−sj. �

Remark 2.5. Let us consider the situation that t ∈ IN , ΓD 6= ∅, and that Ψ is a biorthogonal
basis for H t

0,ΓD
(Ω), where now also the dual spaces satisfy homogeneous Dirichlet boundary

conditions on ΓD. Then since for s ≥ 0, Hs(Ω) ∩ H t
0,ΓD

(Ω) is only dense in Hs(Ω) when
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s < 1
2
, we can expect (2.2) only for r ∈ [−d̃, γ), s < γ with r > − 1

2
. As a consequence,

in the proof of Theorem 2.3, the range of r for which (2.5) holds is restricted to r ∈
(0, t+ d̃] ∩ (0, σ] ∩ (0, γ − t) ∩ (0, t+ 1

2
).

The same problems are encountered for proving (2.6). However, instead of restricting
the range of q, here another solution is possible. The homogeneous Dirichlet boundary
conditions on the dual spaces only affect wavelets with supports near ΓD. More precisely,
one can expect that there exists a constant θ > 0, such that for any r ∈ [−d̃, γ), s < γ,

(2.7) ‖ · ‖Hr(Ω)
<
∼ 2`(r−s)‖ · ‖Hs(Ω) on span{ψλ : |λ| = `, dist(suppψλ,ΓD) ≥ θ2−|λ|}.

Let us now add to the dropping criterium (2.4) the condition that dist(suppψλ,ΓD) ≥ θ2−|λ|

when |λ| > |λ′|, or dist(suppψλ′ ,ΓD) ≥ θ2−|λ′| when |λ| < |λ′|. Then it is easily verified
that the resulting Mj, although a little bit less sparse, still has at most order 2j non-zero
entries in each row and column. On the other hand, changing the definition of A`,λ′,i into

A`,λ′,i := {|λ| = ` : suppψλ ⊂ Ξλ′,i, dist(suppψλ,ΓD) ≥ θ2−|λ|},

for w` ∈ span{ψλ : λ ∈ A`,λ′,i} and q ∈ (0, t + d̃] ∩ (0, σ), using (2.7) we can prove

that |〈w`,λ′,i, Lψλ′〉| <∼ 2−q(`−|λ′|)‖w`,λ′,i‖Ht(Ω). By copying the remainder of the proof, we
conclude that for

s ≤ min{ t+d̃
n
, σ
n
}, with s < min{ γ−t

n−1
,
t+ 1

2

n−1
} when n > 1,

it holds that ‖M − Mj‖ <∼ 2−sj.

Remark 2.6. As follows from Remark 2.4, to show s∗-compressibility with s∗ > d−t
n

, it

will be necessary that both d̃ and γ increase linearly as function of d. To benefit from
an often much higher regularity of the solution in Besov than in Sobolev scale, we are
interested to apply the adaptive method with a relatively large value of d− t. Indeed, for
small d − t, the adaptive method can give at most a small improvement in the order of
convergence compared to non-adaptive methods, which in practice might not compensate
for the overhead it requires.

Unfortunately, on general, non tensor product domains, smooth wavelets, i.e., with large
values of γ, are hard to construct. The approach from [DS99b] based on a non-overlapping
domain decomposition yields wavelet bases that in principal for any d satisfy all require-
ments concerning smoothness and cancellation properties to obtain s∗ > d−t

n
. Yet, since

suitable extension operators from one subdomain into neighboring subdomains enter the
construction, it seems not easy to implement. Other approaches based on non-overlapping
domain decomposition ([DS99a, CTU99, CM00]) yield wavelets which over the interfaces
between subdomains are only continuous. Note that although for non-adaptive wavelet
methods the fact that wavelets along some lower-dimensional interface are less smooth or
have reduced cancellation properties might not influence the overall complexity-accuracy
balance, for adaptive methods it generally does. Indeed, without assuming more than
membership of a Besov space on the “critical line”, i.e., a space that is only just embedded
in H t

0,ΓD
(Ω), it might happen that the solution is smooth everywhere except exactly along
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that interface, meaning that the adaptive method mainly produces coefficients correspond-
ing to wavelets with degenerated properties. Also finite element wavelets as constructed
in [DS99c, CES00, Ste00] are only continuous. For example for t = 1 and n = 2, with
continuous wavelets only for orders d ≤ 2, s∗ ≥ d−t

n
can be shown.

Still thinking of a non-overlapping decomposition of the domain into a number of sub-
domains or patches Ω1, . . . ,ΩM , as an alternative it seems not too difficult, in any case if
one refrains from having local dual wavelets which are not needed here anyway, to con-
struct wavelets of some given order d, which restricted to each patch are again wavelets
characterized by parameters γ ≤ d − 1

2
and d̃ (‘patchwise’ smoothness and cancellation

properties) that can be chosen at ones convenience. If in addition, these wavelets have
a sufficient global smoothness such that they generate a Riesz basis for H t

0,ΓD
(Ω), then

〈Ψ, LΨ〉 =
∑

q〈Ψ|Ωq
, LΨ|Ωq

〉. Theorem 2.3 now directly applies to the matrices in the sum

with conditions in terms of the ‘local’ γ and d̃, and so when these are sufficiently large,
s∗ > d−t

n
follows.

Finally, in [Ste02] we generalized the adaptive wavelet method from [CDD00] to the
case that Ψ is a frame for H t

0,ΓD
(Ω) instead of a Riesz basis. Writing the domain as an

overlapping union of subdomains Ωq, a suitable frame Ψ is given by ∪Mq=1ωqΨq, where Ψq is
a Riesz basis of wavelet type order d for a Sobolev space of order t on Ωq, and ωq a smooth
weight function that vanishes at the internal boundary of Ωq. As in the Riesz basis case, the
optimal computational complexity of this adaptive solution method was proven when (1.2)
is valid for some s, necessarily with s ≤ d−t

n
, and M := 〈Ψ, LΨ〉 =

∑

q,q′〈ωqΨq, Lωq′Ψq′〉, or
equivalently, any of these matrices in the sum are s∗-compressible for some s∗ > s. Since
both the presence of smooth weight functions and the fact that for q 6= q ′, Ψq and Ψq′

are different are harmless, Theorem 2.3 directly applies to all these matrices. Indeed, note
that we have not used that the wavelets are piecewise smooth with respect to partitions
that are nested as function of the level. The advantage of this frame approach is that
smoothness requirements on the wavelets Ψq are easily satisfied, since this construction
requires no linking of functions from different subdomains over interfaces, and so s∗ > d−t

n
can easily be realized.

3. Compressibility of boundary integral operators

3.1. Definitions and main result. For some µ ∈ IN , let Γ be a patchwise smooth,
compact n-dimensional, globally Cµ−1,1 manifold in IRn+1. Following [DS99b], we assume
that Γ = ∪Mq=1Γq, with Γq ∩ Γq′ = ∅ when q 6= q′, and that for each 1 ≤ q ≤ M , there
exists

• a domain Ωq ⊂ IRn and a C∞-parametrization κq : IRn → IRn+1 with Im(κq|Ωq
) = Γq,

• a domain IRn ⊃ Ω̂q ⊃⊃ Ωq, and an extension of κq|Ωq
to a Cµ−1,1 parametrization

κ̂q : Ω̂q → Im(κ̂q) ⊂ Γ.
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For |s| ≤ µ, the Sobolev spaces Hs(Γ) are well-defined, where for s < 0, Hs(Γ) is the
dual of H−s(Γ). For some |t| ≤ µ, let L be a bounded operator from H t(Γ) → H−t(Γ),
where in this section we have in mind a singular integral operator of order 2t. Let

Ψ = {ψλ : λ ∈ Λ}

be a Riesz basis for H t(Γ) of wavelet type.
We assume that the wavelets are local, in the sense that

diam(suppψλ) <∼ 2−|λ| and sup
x∈Γ,`∈IN0

#{|λ| = ` : x ∈ suppψλ} <∞,

and that they are piecewise smooth, with which we mean that suppψλ\sing suppψλ is
the disjoint union of sets Ξλ,1, . . . ,Ξλ,m, with ∪mi=1Ξλ,i = suppψλ, such that each Ξλ,i is
contained in some Γq, κ

−1
q (Ξλ,i) are uniformly Lipschitz domains, and (ψλ ◦ κq)|κ−1

q (Ξλ,i)
is

smooth with

(3.1) sup
ξ∈κ−1

q (Ξλ,i)

|∂β(ψλ ◦ κq)(ξ)| <∼ 2(|β|+ n
2
−t)|λ|, (β ∈ Nn

0 ).

We assume that the wavelets on levels ` > 0 have the cancellation property of order

d̃ ∈ IN . That is, there exists an η > 0, and for all ` ∈ IN a linear mapping P`, such that
for all sufficiently smooth functions v on Γ and any x ∈ Γ,

(3.2)







〈v, ψλ〉 = 〈(I − P|λ|)v, ψλ〉,

|(I − P|λ|v)(x)| <
∼ 2−d̃|λ| sup

|β|=d̃, 1≤q≤M,ξ∈κ−1
q (B(x;2−|λ|η)∩Γq)

|∂β(v ◦ κq)(ξ)|,

where for A ⊂ IRn+1 and ε ≥ 0, B(A; ε) := {y ∈ IRn+1 : dist(A, y) ≤ ε}.

Remark 3.1. In the biorthogonal setting, one may think of P|λ| as being an interpolator on
the dual space (cf. [DS99c, Prop. 4.7], [NS01, Prop. 3.4]). Noting that 〈v, ψλ〉 only depends
on v|suppψλ

, for the combination of both formulas from (3.2), v outside suppψλ can be any

suitable extension of v|suppψλ
. In case B(suppψλ; 2

−|λ|η) is contained in one patch Γq, and

assuming that {ξ : (ψλ ◦ κq)(ξ) 6= 0} is a uniformly Lipschitz domain, a smooth extension

can be chosen that yields the bound |〈v, ψλ〉| <∼ 2−d̃|λ| sup|β|=d̃, ξ∈κ−1
q (suppψλ) |∂

β(v ◦ κq)(ξ)|.

Yet, for the general case it is not clear whether |〈v, ψλ〉| can be bounded in terms of

derivatives of order d̃ of v on suppψλ only, and we will have to deal with the technical
complication of a bound involving derivatives in a small neighborhood of supp v.

Furthermore, for some k ∈ IN 0 ∪ {−1}, with k < µ and

(3.3) γ := k + 3
2
> t,

we assume that all ψλ ∈ Ck(Γ), where k = −1 means no global continuity condition, and

that for all r ∈ [−d̃, γ), s < γ, with |s|, |r| ≤ µ,

(3.4) ‖ · ‖Hr(Γ)
<
∼ 2`(r−s)‖ · ‖Hs(Γ) on W` := span{ψλ : |λ| = `}.
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Finally, we assume that for all 1 ≤ q ≤M , and r ∈ [−d̃, γ), s < γ,

(3.5) ‖ · ‖Hr(Γq)
<
∼ 2`(r−s)‖ · ‖Hs(Γq) on span{ψλ : |λ| = `, B(suppψλ; 2

−`η) ⊂ Γq}.

Remark 3.2. For the case that each parametrization κq has a constant Jacobian, in [DS99c]
a simple construction is given of continuous finite element wavelets, i.e., k = 0 and so γ = 3

2
,

that in principal for any d̃ and order d satisfies the above assumptions. This restriction
on the Jacobians was removed in [NS01], however here wavelets with supports that extend
to more than one patch have the cancellation property of only order 1. In a forthcoming
paper, we will remove this inconvenience for the application in adaptive methods, and
construct wavelets that all have the cancellation property of order d̃.

As in the domain case, wavelets that satisfy the assumptions for in principal any d, d̃ and
smoothness permitted by both d and the regularity of the manifold were constructed in
[DS99b]. As will appear from Theorem 3.3, via several parameters this regularity however
seems to impose a principal barrier to the compressibility. In case of differential operators,
we could reduce conditions concerning smoothness and cancellation properties to corre-
sponding patchwise conditions. Yet, the arguments used for that do not carry over to the
case of non-local, integral operators.

With the constructions from [DS99a, CTU99, CM00], biorthogonality was realized with
respect to a modified L2(Γ)-scalar product. As a consequence, with the interpretation of
functions as functionals via the Riesz mapping with respect to the standard L2(Γ) scalar
product, for negative t the wavelets only generate a Riesz basis for H t(Γ) when t > −1

2
(cf. [NS01, §4]), and likewise wavelets with supports that extend to more than one patch
generally have no cancellation properties in the sense of (3.2).

The frame approach discussed in the previous section seems to be even more attractive
in the compact manifold case. Because of the absence of a boundary, all wavelet bases on
the overlapping patches may satisfy periodic boundary conditions. One may verify that
Theorem 3.3 given below formulated for the Riesz basis case, as well as the verification of
the estimates (3.6) and (3.7), extend to any of the matrices 〈ωqΨq, Lωq′Ψq′〉. It is easy to
construct collections Ψq with any smoothness permitted by the regularity of the manifold.

In the following theorem, we assume two decay estimates (3.6) and (3.7) that in §3.3,
§3.4 will be verified for an important class of singular integral operators. For (3.7), we will

need the additional condition that d̃ > γ− 2t, which will be needed anyway in Remark 3.4
to conclude s∗-compressibility with s∗ > d−t

n
.

Theorem 3.3. Let L : H t(Γ) → H−t(Γ) be bounded, such that for some σ ∈ (0, µ − t],
both L and its adjoint L′ are bounded from H t+σ(Γ) → H−t+σ(Γ). For Ψ being a Riesz

basis for H t(Γ) as described above with d̃+ t > 0, let M = 〈Ψ, LΨ〉.
For any λ, λ′ ∈ Λ, let

(3.6) |〈ψλ, Lψλ′〉| <∼

(

2−||λ|−|λ′||/2

δ(λ, λ′)

)n+2d̃+2t

when δ(λ, λ′) ≥ 3η,

where

δ(λ, λ′) := 2min{|λ|,|λ′|}dist(suppψλ, suppψλ′),
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and η is from (3.2).
For some τ ≥ σ, and with

δ̃(λ, λ′) := 2min{|λ|,|λ′|} ×

{

dist(suppψλ, sing suppψλ′) when|λ| > |λ′|,
dist(sing suppψλ, suppψλ′) when|λ| < |λ′|,

for any ` > |λ′|, ε > 0 and

w`,λ′,ε ∈ span{ψλ; |λ| = `, 1 >∼ δ̃(λ, λ′) ≥ max{ε, 2η2|λ′|−`}},

let

(3.7)
|〈w`,λ′,ε, Lψλ′〉|
|〈L′ψλ′ , w`,λ′,ε〉|

}

<
∼ ‖w`,λ′,ε‖Ht(Γ) max

{

2(|λ′|−`)(d̃+t)

ε2t+d̃−γ
, 2(|λ′|−`)τ

}

.

Let α ∈ (1
2
, 1) and bi := (1 + i)−1−ε for some ε > 0. Then for j ∈ IN , and with

k(j, n) :=

{

j
n−1

when n > 1,
2j when n = 1,

we define the infinite matrix Mj by replacing all entries

Mλ,λ′ = 〈ψλ, Lψλ′〉 by zeros when

∣

∣|λ| − |λ′|
∣

∣ > k(j, n), or(3.8)
∣

∣|λ| − |λ′|
∣

∣ ≤ j
n

and δ(λ, λ′) ≥ max{3η, 2α( j
n
−||λ|−|λ′||)}, or(3.9)

∣

∣|λ| − |λ′|
∣

∣ > j
n

and δ̃(λ, λ′) ≥ max{2n( j
n
−||λ|−|λ′||)b||λ|−|λ′||− j

n
, 2η2−||λ|−|λ′||}.(3.10)

Then the number of non-zero entries in each row and column of Mj is of order 2j, and for

any

s ≤ min
{

t+d̃
n
, τ
n

}

, with s < γ−t
n−1

, s ≤ σ
n−1

and s ≤ t+µ
n−1

when n > 1,

it holds that ‖M − Mj‖ <∼ 2−sj.

Remark 3.4. As in Remark 2.4, we infer that M is s∗-compressible with

s∗ = min{ t+d̃
n
, τ
n
, γ−t
n−1

, σ
n−1

, t+µ
n−1

}

(s∗ = min{t + d̃, τ} when n = 1). So, if d̃ > d − 2t, τ > d − t, and when n > 1,
min{γ−t,σ,t+µ}

n−1
> d−t

n
, then s∗ > d−t

n
.

Proof. Let λ be some given index. Since Γ is a Lipschitz manifold, by the locality of the
wavelets, the number of indices λ′ with fixed |λ′| ≥ |λ| and dist(suppψλ, suppψλ′) ≤ R is
of order (2|λ

′|(2−|λ| +R))n. By using in addition the piecewise smoothness of the wavelets,
the number of indices λ′ with fixed |λ′| > |λ| and dist(sing suppψλ, suppψλ′) ≤ R, where

2−|λ′| <
∼ R <

∼ 2−|λ| is of order 2(|λ′|−|λ|)(n−1)2|λ
′|R. From this, one may infer that the number
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of non-zero entries in the λth row or column of Mj is of order
∑

−k(j,n)≤|λ′|−|λ|<0

1 +
∑

0≤|λ′|−|λ|≤ j
n

(2|λ
′|(2−|λ| + 2−|λ| max{3η, 2α( j

n
−|λ′|+|λ|}))n +

∑

j
n
<|λ′|−|λ|≤k(j,n)

2(|λ′|−|λ|)(n−1)2|λ
′|2−|λ| max{2n( j

n
−|λ′|+|λ|)b|λ′|−|λ|− j

n
, 2η2|λ|−|λ′|} =

∼ 2j,

because of α < 1 and
∑

i bi <∞.

Let M̂j be defined by (M− M̂j)λ,λ′ =

{

Mλ,λ′ when
∣

∣|λ| − |λ′|
∣

∣ > k(j, n),
0 otherwise.

The conti-

nuity assumptions on L, L′, together with (3.4) show that for

r ∈ (0, t+ d̃] ∩ (0, t+ µ] ∩ (0, σ] ∩ (0, γ − t),

and w` ∈ W`, w`′ ∈ W`′,

|〈w`, Lw`′〉| <∼ ‖w`‖Ht−r(Γ)‖Lw`′‖H−t+r(Γ)

<
∼ ‖w`‖Ht−r(Γ)‖w`′‖Ht+r(Γ)

<
∼ 2r(`

′−`)‖w`‖Ht(Γ)‖w`′‖Ht(Γ),

and analogously, |〈w`, Lw`′〉| = |〈L′w`, w`′〉| <∼ 2r(`−`
′)‖w`‖Ht(Γ)‖w`′‖Ht(Γ). As in the proof

of Theorem 2.3, we conclude that ‖M − M̂j‖ <∼ 2−k(j,n)r.

As a second step, let M̃j be defined by

(M̂j − M̃j)λ,λ′ =
{

Mλ,λ′ when δ(λ, λ′) ≥ max{1, 3η, 2α( j
n
−||λ|−|λ′||)} and

∣

∣|λ| − |λ′|
∣

∣ ≤ k(j, n),
0 otherwise.

Let us recall the Schur lemma: If, for some positive scalars ωλ,
∑

λ′
ωλ|bλ,λ′ |

ωλ′
≤ c, and

∑

λ

ωλ′ |bλ,λ′ |

ωλ
≤ c, then ‖(bλ,λ′)λ,λ′∈Λ‖ ≤ c. We apply this lemma onto M̂j − M̃j with

ωλ = 2|λ|
n
2 . By the locality of the wavelets, for each λ, `′, R >

∼ 1 and β > n, one has
∑

{λ′:|λ′|=`′, δ(λ,λ′)>R}

δ(λ, λ′)−β <∼ R−β+n2nmax{0,`′−|λ|}.

Because of d̃+ t > 0, from the decay estimate (3.6) we obtain that
∑

λ′

ωλ|(M̂j−M̃j)λ,λ′ |

ωλ′

<
∼

∑

|λ′|

2(|λ|−|λ′|) n
2 2−||λ|−|λ′||( n

2
+d̃+t)

(

max{1, 2α( j
n
−||λ|−|λ′||)}

)−(2d̃+2t)

2nmax{0,|λ′|−|λ|}

=
∼ 2−

j
n

(d̃+t),

by α > 1
2
. By the symmetry of the right-hand side of (3.6) in λ, λ′, analogously we have

∑

λ

ωλ|(M̂j−M̃j)λ,λ′ |

ωλ′

<
∼ 2−

j
n

(d̃+t), and so ‖M̂j − M̃j‖ <∼ 2−
j
n

(d̃+t).
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Given λ′ and ` > |λ′|, let

A`,λ′ = {|λ| = ` : δ̃(λ, λ′) ≥ max{2n( j
n
−`+|λ′|)b`−|λ′|− j

n
, 2η2|λ

′|−`}, δ(λ, λ′) < max{1, 3η}}.

Since for
∣

∣|λ| − |λ′|
∣

∣ > j
n
, entries Mλ,λ′ with δ(λ, λ′) ≥ max{1, 3η} were already been

removed from M̂j, we have

(M̂j − Mj)λ,λ′ =







Mλ,λ′

{

when j
n
< |λ| − |λ′| ≤ k(j, n) and λ ∈ A|λ|,λ′,

or j
n
< |λ′| − |λ| ≤ k(j, n) and λ′ ∈ A|λ′|,λ,

0 otherwise.

So from the decay estimate (3.7), for any c,d ∈ `2(Λ) we have

|
∑

j
n
<`−`′≤k(j,n)

∑

|λ′|=`′

dλ′〈
∑

λ∈A`,λ′

cλψλ, Lψλ′〉|

<
∼

∑

j
n
<`−`′≤k(j,n)

∑

|λ′|=`′

|dλ′ |max{
2(`′−`)(d̃+t)

(2n( j
n
−`+`′)b`−`′− j

n
)2t+d̃−γ

, 2(`′−`)τ}‖
∑

λ∈A`,λ′

cλψλ‖Ht(Γ)

<
∼

∑

j
n
<`−`′≤k(j,n)

max{
2(`′−`)(d̃+t)

(2n( j
n
−`+`′)b`−`′− j

n
)2t+d̃−γ

, 2(`′−`)τ}

√

∑

|λ′|=`′

|dλ′|2
√

∑

|λ′|=`′

∑

λ∈A`,λ′

|cλ|2

<
∼

∑

j
n
<`−`′≤k(j,n)

max{
2(`′−`)(d̃+t)

(2n( j
n
−`+`′)b`−`′− j

n
)2t+d̃−γ

, 2(`′−`)τ}

√

∑

|λ′|=`′

|dλ′|2
√

∑

|λ|=`

|cλ|2,

where for the last line we have used that for fixed |λ′|, each λ is contained in at most
a uniformly bounded number of sets A|λ|,λ′. Since the analogous estimate is valid with

interchanged roles of ` and `′, and for s ≤ min{ t+d̃
n
, τ
n
}, with s < γ−t

n−1
when n > 1,

k(j,n)− j
n

∑

m=1

max{2−(m+ j
n

)(d̃+t)
(

2−mnbm
)γ−2t−d̃

, 2−(m+ j
n

)τ} <∼ 2−sj,

we conclude that for such s, ‖M̃j − Mj‖ <∼ 2−sj.

A combination of the estimates for M − M̂j, M̂j − M̃j and M̃j − Mj shows that

for s ≤ min{ t+d̃
n
, τ
n
}, with for n > 1, s < γ−t

n−1
, s ≤ σ

n−1
and s ≤ t+µ

n−1
, it holds that

‖M − Mj‖ <∼ 2−sj. �

3.2. Singular integral operators. In §3.3, §3.4, we verify the decay estimates (3.6) and
(3.7) for operators

Lu(x) =

∫

Γ

K(x, y)u(y)dΓy, (x ∈ Γ),

with kernels that satisfy for all 1 ≤ q, q′ ≤M , ξ ∈ Ωq, η ∈ Ωq′,

(3.11) |∂αξ ∂
β
ηK(κq(ξ), κq′(η))| <∼ dist(κq(ξ), κq′(η)))

−(n+2t+|α|+|β|), (n+2t+ |α|+ |β| > 0),
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(cf. [DHS02, Def. 2.1]). Following [DHS02], we emphasize that (3.11) requires patchwise
smoothness but no global smoothness of Γ. Only assuming global Lipschitz continuity of
Γ, the kernel of a boundary integral operator of order 2t can be shown to satisfy (3.11).

If Γ is a C∞-manifold, then these boundary integral operators are known to be pseudo-
differential operators, meaning that for any σ ∈ IR they define bounded mappings from
H t+σ(Γ) → H−t+σ(Γ). In this case we may conclude that M is s∗-compressibility with s∗ =

min{ t+d̃
n
, γ−t
n−1

}. For Γ being only Lipschitz continuous, for the classical boundary integral

equations the question of continuity in Sobolev spaces has been answered in [Cos88]. With
increasing smoothness of Γ one may expect larger ranges of σ for which boundedness from
H t+σ(Γ) → H−t+σ(Γ) is valid. Little results in this direction seem yet available.

3.3. Decay estimate (3.6). This estimate for singular integral operators with wavelets

that satisfy the cancellation property (3.2) of order d̃ has first been proved in [Sch98] for
C∞-manifolds. In [DS99c], it has been shown for Lipschitz manifolds for a specific wavelet
construction. For convenience, in this subsection we recall the arguments used there, and
show that they also apply to the general setting discussed in this paper.

With η from (3.2), let λ, λ′ ∈ Λ with δ(λ, λ′) ≥ 3η and δ(λ, λ′) > 0. Then with
Γλ,η := B(suppψλ; 2

−|λ|η), it holds that

2min{|λ|,|λ′|}dist(Γλ,η,Γλ′,η) ≥
1
3
δ(λ, λ′) > 0.

Because of

n+ 2t+ 2d̃ > 0,

from (3.2), (3.11) and
∫

Γ
|ψλ|dΓ <

∼ 2−|λ|n
2 2−|λ|t (by the locality and (3.4)), we infer that

|〈ψλ, Lψλ′〉| = |

∫

Γ

ψλ(x)

∫

Γ

K(x, y)ψλ′(y)dΓydΓx|

= |

∫

Γ

ψλ(x)

∫

Γ

[(I − P|λ′|)K(x, ·)](y)ψλ′(y)dΓydΓx|

= |

∫

Γ

ψλ(x)(I − P|λ|)[x 7→

∫

Γ

[(I − P|λ′|)K(x, ·)](y)ψλ′(y)dΓy]dΓx|

<
∼ 2−(d̃+n

2
+t)|λ| sup

|α|=d̃,1≤q≤M,

ξ∈κ−1
q (Γλ,η∩Γq)

|∂αξ

∫

Γ

[(I − P|λ′|)K(κq(ξ), ·)](y)ψλ′(y)dΓy|
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= 2−(d̃+n
2
+t)|λ| sup

|α|=d̃,1≤q≤M,

ξ∈κ−1
q (Γλ,η∩Γq)

|

∫

Γ

[(I − P|λ′|)∂
α
ξ K(κq(ξ), ·)](y)ψλ′(y)dΓy|

<
∼ 2−(d̃+n

2
+t)(|λ|+|λ′|) sup

|α|=d̃,1≤q≤M,

ξ∈κ−1
q (Γλ,η∩Γq)

sup
|β|=d̃,1≤q′≤M,

ζ∈κ−1

q′
(Γλ′,η∩Γq′ )

|∂αξ ∂
β
ζK(κq(ξ), κq′(ζ))|

<
∼ 2−(d̃+n

2
+t)(|λ|+|λ′|)(2−min{|λ|,|λ′|}δ(λ, λ′))−(n+2t+2d̃)

=

(

2−||λ|−|λ′||/2

δ(λ, λ′)

)n+2d̃+2t

.

3.4. Decay estimate (3.7). Let Γ = ∪Mq=1Γq be a compact n-dimensional, globally Cµ−1,1-

manifold in IRn+1, where Γq are C∞-manifolds as described in §3.1. For some |t| ≤ µ, let
L be singular integral operator of order 2t as described in §3.2, which is bounded from
H t(Γ) → H−t(Γ), and for which there exists a σ > 0 such that L, L′ : H t+σ(Γ) → H−t+σ(Γ)
are bounded. Let Ψ be a Riesz basis for H t(Γ) as described in §3.1, consisting of local

and piecewise smooth Ck(Γ) wavelets, that have cancellation properties of order d̃, where
k ∈ IN0 ∪ {−1}, k < µ and γ := k + 3

2
> t.

In addition, in this subsection we assume that

(3.12) d̃ > γ − 2t.

Furthermore, with H̃s(Γq) :=

{

Hs(Γq) when s ≥ 0,
(H−s

0 (Γq))
′ when s < 0,

we assume that there exists a

τ ∈ (0, µ− t] such that for all 1 ≤ q ≤M ,

(3.13) L : H t+τ (Γ) → H̃−t+τ (Γq) is bounded.

Remark 3.5. Since for any |s| ≤ µ, the restriction of functions on Γ to Γq is a bounded

mapping from Hs(Γ) to H̃s(Γq), from the boundedness of L : H t+σ(Γ) → H−t+σ(Γ), it
follows that in any case (3.13) is valid for τ = σ. So for example for Γ being a C∞-
manifold, (3.13) is valid for any τ ∈ IR. Yet, in particular when t < 0, for Γ being less
smooth it might happen that (3.13) is valid for a τ that is strictly larger that any σ for
which L : H t+σ(Γ) → H−t+σ(Γ) is bounded.

Proposition 3.6. In the above setting, for any ` > |λ′|, ε > 0, and

w`,λ′,ε ∈ span{ψλ : |λ| = `, δ̃(λ, λ′) ≥ max{ε, 2η2|λ′|−`}},

with δ := 2|λ
′|diam(suppw`,λ′,ε) it holds that

|〈w`,λ′,ε, Lψλ′〉|
|〈L′ψλ′ , w`,λ′,ε〉|

}

<
∼

‖w`,λ′,ε‖Ht(Γ) max
{

2(|λ′|−`)(d̃+t)ε−2t−d̃+k+1δ
n−1

2 min{ε, δ}
1

2 , 2(|λ′|−`) min{τ,t+d̃}
}

.
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By substituting δ <∼ 1 and by using that k + 3
2

= γ, the decay estimate (3.7) is obtained.

Remark 3.7. If for some |λ| > |λ′|, dist(suppψλ, sing suppψλ′) ≥ 2η2−|λ|, then by substi-
tuting w`,λ′,ε = ψλ in Proposition 3.6, and so δ = 2|λ′|−|λ|, we obtain that
(3.14)

|〈ψλ, Lψλ′〉|
|〈L′ψλ′ , ψλ〉|

}

<
∼ max

{

2(|λ′|−|λ|)(d̃+t+ n
2
)

(2|λ′|dist(suppψλ, sing suppψλ′))2t+d̃−(k+1)
, 2(|λ′|−|λ|)min{τ,t+d̃}

}

.

In [Sch98], for the case of a C∞-manifold, and in [DHS02], for the case of a piecewise
smooth, globally Lipschitz manifold, it was proved that

|〈ψλ, Lψλ′〉|
|〈L′ψλ′ , ψλ〉|

}

<
∼

2(|λ′|−|λ|)(d̃+t+ n
2
)

(2|λ′|dist(suppψλ, sing suppψλ′))2t+d̃
.

An adaptation of these proofs using Lemma 3.8 show that in the general situation of
Proposition 3.6, it holds that

|〈w`,λ′,ε, Lψλ′〉|
|〈L′ψλ′ , w`,λ′,ε〉|

}

<
∼ ‖w`,λ′,ε‖Ht(Γ)2

(|λ′|−`)(d̃+t)ε−2t−d̃δ
n−1

2 min{ε, δ}
1

2 .

A comparison of these results shows that for k > −1, the bounds derived in this paper are
sharper when ε or dist(suppψλ, sing suppψλ′) are sufficiently small. Moreover they improve
with increasing k which is essential to be able to prove s∗-compressibility with s∗ > d−t

n
for

relative large d− t. The estimates from [Sch98, DHS02] do not exploit global smoothness
of the wavelets, but on the other hand, the continuity assumption (3.13) is avoided. Recall
that in Theorem 3.3 we make no use of (3.14), but instead apply Proposition 3.6 for w`,λ′,ε
with δ = 2|λ

′|diam(suppw`,λ′,ε) =
∼ 1, with which we estimate directly norms of rows of

M̂j − Mj, i.e., not via estimates of the individual entries using the Schur lemma.

To prove Proposition 3.6 we start with a lemma.

Lemma 3.8. For any ` ∈ IN , λ′ ∈ Λ, J ⊂ {1, . . . , m}, let either E = ∪i∈JΞλ′,i or

E = Γ\ ∪i∈J Ξλ′,i. Then for any v ∈ L∞(Γ), w ∈ L2(Γ) with suppw ⊂ E, supp v ⊂ Γ\E,

ε := 2|λ
′|dist(suppw, ∂E) ∈ (0,∞) ∩ 2|λ′|−`[2η,∞), and

|v(y)| <∼ 2(k+1+ n
2
−t)|λ′|dist(y, E)k+1,

with δ := 2|λ
′|diam(suppw) it holds that

|

∫

Γ

w(x)(I−P`)[x 7→

∫

Γ

K(x, y)v(y)dΓy]dΓx| <∼ ‖w‖2−`d̃2|λ
′|(d̃+t)ε−2t−d̃+k+1δ

n−1

2 min{ε, δ}
1

2 .

Proof. By applying (3.2) and (3.11), interchanging the order of differentiation and integra-
tion, and by using that dist(B(x; 2−`η), y) ≥ 1

2
|x − y| for any x ∈ suppw, y ∈ supp v, it

follows that the expression in the statement of the lemma can be bounded by a multiple of

(3.15) 2−`d̃2(k+1+ n
2
−t)|λ′|

∫

suppw

|w(x)|

∫

supp v

|x− y|−(n+2t+d̃)|x− y|k+1dΓydΓx.
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Because of −2t− d̃+ k + 1 < 0 by (3.12), for all x 6∈ supp v,
∫

supp v

|x− y|k+1−(n+2t+d̃)dΓy <∼

∫

z∈IRn, |z|≥dist(x,supp v)

|z|k+1−(n+2t+d̃)dz

=
∼ dist(x, supp v)−2t−d̃+k+1.

By applying the Cauchy-Schwarz inequality, (3.15) can now be bounded by a multiple of

(3.16) 2−`d̃2(k+1+ n
2
−t)|λ′|‖w‖

√

∫

suppw

dist(x, supp v)−4t−2d̃+2k+2dΓx.

Since −4t− 2d̃+ 2k + 2 < −1 by (3.12), because of the geometry of E we may estimate
∫

suppw

dist(x, supp v)−4t−2d̃+2k+2dΓx

<
∼ diam(suppw)n−1

∫ dist(suppw,∂E)+diam(suppw)

dist(suppw,∂E)

z−4t−2d̃+2k+2dz

=
∼ (2−|λ′|δ)n−1[(2−|λ′|ε)−4t−2d̃+2k+3 − (2−|λ′|(ε+ δ))−4t−2d̃+2k+3]

=
∼ 2|λ

′|(4t+2d̃−2k−2−n)δn−1ε−4t−2d̃+2k+2 min{ε, δ}.

By substituting this result into (3.16) the proof is completed. �

Proof of Proposition 3.6. (I). Let λ′ ∈ Λ, ` > |λ′| and ε > 0, and let

w`,λ′,ε ∈ span{ψλ : |λ| = `, δ̃(λ, λ′) ≥ max{ε, 2η2|λ′|−`}},

and put δ := 2|λ
′|diam(suppw`,λ′,ε). It suffices to prove the bound for 〈w`,λ′,ε, Lψλ′〉, since

the proof for 〈L′ψλ′ , w`,λ′,ε〉 is similar.

For 1 ≤ i ≤ m, we define w
(i)
`,λ′,ε by

w
(i)
`,λ′,ε(x) =

{

w`,λ′,ε(x) when x ∈ Ξλ′,i,
0 elsewhere,

and put w
(0)
`,λ′,ε = w`,λ′,ε −

∑m
i=1 w

(i)
`,λ′,ε, meaning that suppw

(0)
`,λ′,ε ∩ suppψλ′ = ∅.

We assume that δ̃(λ, λ′) ≥ max{ε, 2η2|λ′|−|λ|} implies that either suppψλ ⊂ Ξλ′,i for some
1 ≤ i ≤ m, or suppψλ ∩ suppψλ′ = ∅. In the very unlikely situation that this does not
hold “automatically”, we can always increase the parameter η such that this is true, since

diam(suppψλ) <∼ 2−|λ|. Under this assumption, for all i we have that w
(i)
`,λ′,ε ∈ W`, and so

‖w
(i)
`,λ′,ε‖

<
∼ 2−`t‖w

(i)
`,λ′,ε‖Ht(Γ)

<
∼ ‖w`,λ′,ε‖Ht(Γ)

(II). We consider 〈w
(0)
`,λ′,ε, Lψλ′〉. Let E = Γ\suppψλ′ . If i is such that Ξλ′,i ∩ E 6= ∅,

then because of ψλ′ ∈ Ck(Γ) and (3.1) it follows that

(3.17) |ψλ′(y)| <∼ 2(k+1+ n
2
−t)|λ′|dist(y, E)k+1, (y ∈ Ξλ′,i).
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If Ξλ′,i ∩ E = ∅, then by the “shape regularity” of all sets Ξλ′,i′ for i′ 6= i, we have

dist(Ξλ′,i, E) >∼ 2−|λ′|, and so (3.17) follows from |ψλ′(y)| <∼ 2( n
2
−t)|λ′|. From an application

of Lemma 3.8 with w = w
(0)
`,λ′,ε and v = ψλ′ , we conclude that

|〈w
(0)
`,λ′,ε, Lψλ′〉| = |

∫

Γ

w
(0)
`,λ′,ε(x)(I − P`)[x 7→

∫

Γ

K(x, y)ψλ′(y)dΓy]dΓx| <∼

‖w`,λ′,ε‖Ht(Γ)2
(|λ′|−`)(d̃+t)ε−2t−d̃+k+1δ

n−1

2 min{ε, δ}
1

2 .(3.18)

(III). Let 1 ≤ i ≤ m, and let 1 ≤ q ≤ M such that Ξλ′,i ⊂ Γq. From (3.5), for

r ∈ [−d̃, γ), s < γ, we have ‖w
(i)
`,λ′,ε‖Hr(Γq)

<
∼ 2`(r−s)‖w

(i)
`,λ′,ε‖Hs(Γq).

(a). If τ < γ − t, and so τ ≤ t + d̃ by (3.12), then by τ ≤ t− µ, the continuity of L as

stated in (3.13), and when t− τ > 0 in addition by w
(i)
`,λ′,ε ∈ H t−τ

0 (Γq), we have

|〈w(i)
`,λ′,ε, Lψλ′〉|

<
∼ ‖w(i)

`,λ′,ε‖Ht−τ (Γq)‖Lψλ′‖H̃τ−t(Γq)

<
∼ 2(t−τ)`‖w

(i)
`,λ′,ε‖‖ψλ′‖Hτ+t(Γ)

<
∼ 2(|λ′|−`)τ‖w`,λ′,ε‖Ht(Γ),

which completes the proof in this case.
(b). Let now τ + t ≥ γ ≥ 0. By assumption, ψλ′ ◦ κq is smooth on κ−1

q (Ξλ′,i), which is
a uniformly Lipschitz domain. From (3.1) and Remark 2.1, we learn that ψλ′ ◦ κq|κ−1

q (Ξλ′,i)

has an extension to a smooth function ϕλ′,i, with for s ≥ 0 and p ∈ [1,∞], ‖ϕλ′,i‖W s
p (IRn)

<
∼

2(s−t+ n
2
−n

p
)|λ′|. By multiplying ϕλ′,i by a smooth function that is one on Ωq, and has

support inside the “extended” domain Ω̂q, we may assume that suppϕλ′,i ⊂ Ω̂q, so that

ϕλ′,i ◦ κ̂
−1
q ∈ Hµ(Γ) with for s ∈ [0, µ], ‖ϕλ′,i ◦ κ̂

−1
q ‖Hs(Γ)

<
∼ 2(s−t)|λ′|. With max{0,−t} ≤

s := min{τ, t+ d̃} ≤ µ− t, the same arguments as applied in (a) show that

|〈w
(i)
`,λ′,ε, L(ϕλ′,i ◦ κ̂

−1
q )〉| <∼ ‖w

(i)
`,λ′,ε‖Ht−s(Γq)‖L(ϕλ′,i ◦ κ̂

−1
q )‖H̃s−t(Γq)

<
∼ 2(t−s)`‖w

(i)
`,λ′,ε‖‖ϕλ′,i ◦ κ̂

−1
q ‖Hs+t(Γ)

<
∼ 2(|λ′|−`)s‖w`,λ′,ε‖Ht(Γ).(3.19)

There remains to estimate |〈w
(i)
`,λ′,ε, L(ψλ′ − ϕλ′,i ◦ κ̂

−1
q )〉| which we will do by applying

Lemma 3.8. Recall that suppw
(i)
`,λ′,ε ⊂ Ξλ′,i, whereas ψλ′ −ϕλ′ ,i ◦ κ̂

−1
q vanishes on Ξλ′,i. The

global smoothness of ψλ′ will ensure that directly outside Ξλ′,i, ψλ′ is sufficiently close to
the smooth extension ϕλ′,i ◦ κ̂

−1
q of ψλ′ |Ξλ′,i

. We have to distinguish between a number of
cases.

Suppose i′ 6= i with Ξλ′,i′ ∩ Ξλ′,i 6= ∅, and let q′ such that Ξλ′,i′ ⊂ Γq′. Then from

(a) supξ∈κ−1

q′
(Ξλ′,i′ )

|∂β(ψλ′ ◦ κq′)(ξ)| <∼ 2(|β|+ n
2
−t)|λ′|, (β ∈ IN0) ((3.1)),

(b) κ−1
q′ ◦ κ̂q ∈ Cµ−1,1(κ̂−1

q (Γq′ ∩ Im κ̂q)), where µ > k,

(c) supξ∈Ω̂q
|∂βϕλ′,i(ξ)| <∼ 2(|β|+ n

2
−t)|λ′|, (β ∈ IN0),

(d) ψλ′ ◦ κ̂q − ϕλ′,i ∈ Ck(Ω̂q), and it vanishes on κ̂−1
q (Ξλ′,i),
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one infers that |(ψλ′◦κ̂q−ϕλ′,i)(ξ)| <∼ 2(k+1+ n
2
−t)|λ′|dist(ξ, κ̂−1

q (Ξλ′,i))
k+1 when ξ ∈ κ̂−1

q (Ξλ′,i′∩
Im κ̂q), and so for y ∈ Ξλ′,i′ ∩ Im κ̂q,

(3.20) |(ψλ′ − ϕλ′,i ◦ κ̂
−1
q )(y)| <∼ 2(k+1+ n

2
−t)|λ′|dist(y,Ξλ′,i)

k+1.

If Γ\suppψλ′,i∩Ξλ′,i 6= ∅, then (c), (d) show that (3.20) is also valid for y ∈ (Γ\suppψλ′,i)∩
Im κ̂q. For the remaining cases that either y ∈ Ξλ′,i′ with Ξλ′,i′ ∩ Ξλ′,i = ∅, or y ∈

(Γ\suppψλ′,i)∩ Im κ̂q whereas Γ\suppψλ′,i ∩Ξλ′,i = ∅, or y 6∈ Im κ̂q, then the “shape regu-

larity” of all sets Ξλ′ ,̌ı show that dist(y,Ξλ′,i) >∼ 2−|λ′|, and so from |(ψλ′ −ϕλ′,i ◦ κ̂
−1
q )(y)| <∼

2( n
2
−t)|λ′|, we conclude that (3.20) is valid for all y ∈ Γ\Ξλ′,i. An application of Lemma 3.8

with E = Ξλ′,i, w = w
(i)
`,λ′,ε and v = ψλ′ − ϕλ′,i ◦ κ̂

−1
q now shows that

|〈w
(i)
`,λ′,ε, L(ψλ′ − ϕλ′,i ◦ κ̂

−1
q )〉| <∼ ‖w`,λ′,ε‖Ht(Γ)2

(|λ′|−`)(d̃+t)ε−2t−d̃+k+1δ
n−1

2 min{ε, δ}
1

2 ,

which together with (3.18) and (3.19) completes the proof for the case that τ + t ≥ γ. �
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