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Abstract

Let E be a group extension of an abelian l.c.s.c. group A by an amenable
l.c.s.c. group G. We say that an ergodic action V of A is extendible to
an action W of E if V (A) is isomorphic to W (A). It turns out that the
extendibility property can be described in terms of cocycles over a skew
product taking values in A. For topologically trivial group extensions
E(G,A), we prove that the extendibility property is not generic. We give
an example of R-action that is not extendible to an action of R

∗

+ n R.
We answer the question of when two isomorphic actions of A can be
extended to isomorphic actions of E(G,A).

Introduction. Let A be an abelian locally compact second countable
(l.c.s.c.) group and let G be an amenable l.c.s.c. group acting on A by group
automorphisms. Denote by E the group extension of A by G. Then A can
be identified with a normal subgroup of E. The group extension concept
becomes more transparent in case of topologically trivial group extensions
Ef(G,A) with f : G × G → A being a 2-cocycle. An action V of A on a
measure space is called extendible to an action W of E if V (A) is isomorphic
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to W (A). In [B], the question when an action V of A can be extended to an
action W of Ef was answered. It turns out that the extendibility property
can be reformulated in terms of properties of cocycles with values in A. In
the present paper, we study a circle of problems that is concentrated around
actions of group extensions. It is worthy to note that we are mainly interested
in topologically trivial group extensions Ef because in this case one can prove
deeper results. On the other hand, we believe that the theorems may be
generalized to arbitrary group extensions as was done in [Dan] where some of
the results of [B] were extended. We first prove that the extendibility property
is not generic in some sense. In particular, it proves the existence of non-
extendible actions. We also give an explicit example of R-action that cannot
be extended to an action of the semi-direct product R∗

+ n R. Assuming that
G is countable, we also answer the question of when two isomorphic actions of
A can be extended to isomorphic actions of Ef .

Our study is based on two (important for us) results about actions of
amenable groups proved in [BG1, GS1, GS2]. The first result says that any
ergodic nonsingular action of an amenable l.c.s.c. group is isomorphic to the
Mackey action of this group defined by an ergodic countable approximately
finite (a.f.) group Γ of measure preserving automorphisms and a recurrent
cocycle over Γ. Moreover since all such automorphism groups are orbit equiv-
alent, we can fix some Γ, then the variety of Mackey actions is determined,
up to isomorphism, by classes of weakly equivalent cocycles. The other result
states that, roughly speaking, two Mackey actions are isomorphic if and only if
the corresponding cocycles are weakly equivalent (see Section 1 for exact defi-
nitions and references). Then one can determine the size of the set of cocycles
that generate extendible Mackey actions. It turns out that this set is nowhere
dense.

The outline of the paper is as follows. In Section 1, we collect all necessary
definitions and facts that are used in the article. Section 2 contains the basic
results about extendible and non-extendible actions. In the next section, we
study an example of a Mackey action of R that is not extendible to an action
of ax + b-group. The last section is devoted to the solution of the following
problem: find necessary and sufficient conditions under which two isomorphic
(extendible) actions of A can be extended to isomorphic actions of Ef .

We will use freely the notions of the full group and its normalizer, approx-
imative finiteness, cocycles, Mackey actions. The necessary definitions can
be found, for example, in [HO, Sch]. All equalities below hold a.e. on the
appropriate measure space.
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1 Preliminaries

We establish the following notations which we will use throughout the paper.

Notations:

• A is an abelian l.c.s.c. group that will be written additively;

• G is an amenable l.c.s.c. group with the identity e;

• (g, a)
R

−→ g · a : G × A
R

−→ A denotes a Borel action of G on A by
group automorphisms. R is jointly continuous by a theorem from [M];

• Γ is a countable ergodic group of automorphisms of a measure space
(X,B, µ) (as a rule, Γ is measure preserving);

• Z1(X × Γ, G) stands for the set of G-valued cocycles over Γ, (we say
c ∈ Z1(X ×Γ, G) if c(x, γ2γ1) = c(γ1x, γ2)c(x, γ1) for any γ1, γ2 ∈ Γ and
a.e. x ∈ X).

Let
1 −→ B

i
−→ E

j
−→ G −→ 1 (1.1)

be a topological group extension of a l.c.s.c. group B by G. This means that
(i) (1.1) is a short exact sequence where i is a homeomorphism from B onto
a normal closed subgroup i(B) ⊂ E, (ii) j is a homomorphism of E onto G
which induces a homeomorphism of E/i(B) and G such that a natural action
of G by conjugation on i(B) ' B coincides with the given action of G on B.
Throughout the paper we will identify B and i(B) and refer to E as a group
extension. Let q be a normalized Borel section from G into E, i.e. j ◦ q = id
and q(e) = e. Then every k ∈ E can be uniquely represented as k = q(g)b
where b ∈ B. If q can be chosen as a group homomorphism from G into E,
then we say that E splits. Given (1.1) and a Borel section q, we can define a
map f : G×G→ B, called a 2-cocycle, by:

f(g, h) = q(gh)−1q(g)q(h).

The above definitions become simplier in the case of topologically trivial
group extensions of an abelian group A by G. In this settings, we introduce the
set Z2(G,A) of continuous 2-cocycles: f ∈ Z2(G,A) if f(g, e) = f(e, g) = 0
and

g−1
3 · f(g1, g2) + f(g1g2, g3) = f(g2, g3) + f(g1, g2g3), (1.2)

where g, g1, g2, g3 ∈ G. We may equip E = G× A with the product topology
and for each f ∈ Z2(G,A) we define a group structure on E as follows:

(g1, a1)(g2, a2) = (g1g2, f(g1, g2) + g−1
2 · a1 + a2), (1.3)
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(g, a)−1 = (g−1, −f(g, g−1) − g · a). (1.4)

The set E, equipped with the group structure (1.3) and (1.4), is called a topo-
logically trivial group extension of A by means of G and denoted by Ef(G,A)
(or simply Ef). For a continuous map p : G → A, p(e) = 0, define the
2-cocycle fp ∈ Z2(G,A) by

fp(g1, g2) = −g−1
2 · p(g1) + p(g1g2) − p(g2). (1.5)

Then fp is called a 2-coboundary. The set of all 2-coboundaries is denoted
by B2(G,A). The quotient H2

c (G,A) = Z2(G,A)/B2(G,A) is the group of
continuous 2-cohomologies. It is well known that H2

c (G,A) is isomorphic to
Extt(G,A), the group of equivalence classes of topologically trivial group ex-
tensions. Note that Ef (G,A) is isomorphic to Ef ′(G,A) if and only if f −f ′ is
a 2-coboundary. The case when f = 0 (or f is a 2-coboundary) is of a crucial
importance. The group extension E0(G,A) is called a semi-direct product of
G and A. The notation Gn A is also used for E0(G,A).

Later we will use the following statement. Its proof is a slight modification
of an argument given by Banach [Ba].

Lemma 1.1. Let p be a normalized Borel map from G into A and let fp be
defined by (1.5). If fp : G × G → A is separately continuous, then p is also
continuous.

Proof. LetM be a meager set such that p(g) is continuous for all g ∈ G−M .
Take some g0 ∈ G and let gn → g0. We will show that p(gn) → p(g0). The set
M ′ = ∪nMg−1

n is also meager. Since G is of the second category, G −M ′ is
not empty and there is some g′ ∈ G −M ′. Then g′gn ∈ G −M for all n. It
follows from (1.5) that

p(gn) = −fp(g
′, gn) − g−1

n · p(g′) + p(g′gn).

Taking the limit as n→ ∞, we get

lim
n→∞

p(gn) = −fp(g
′, g0) − g−1

0 · p(g′) + p(g′g0) = p(g0).

2

We will use the notions of cocycles and H-cocycles over an automorphism
group Γ of (X,B, µ). H-cocycles appeared first in [U] and then studied in [B,
DaD, Da1, Da2]).

Definition 1.2. Let f ∈ Z2(G,A) and c ∈ Z1(X ×Γ, G). A measurable map
α : X × Γ → A is called an H-cocycles if it satisfies the following conditions
for γ1, γ2 ∈ Γ and a.e. x ∈ X:

α(x, I) = 0,
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α(x, γ2γ1) = f(c(γ1x, γ2), c(x, γ1)) + c(x, γ1)
−1 · α(γ1x, γ2) + α(x, γ1) (1.6)

where I is the identity map. The set of all H-cocycles is denoted by Z1
f,c(X ×

Γ, A) (or Z1
f,c(A)). If for an H-cocycle δ(x, γ) there exist a normalized Borel

map p : G→ A and a measurable map a : X → A such that

δ(x, γ) = p(c(x, γ)) + c(x, γ)−1 · a(γx) − a(x)

then δ is called an H-coboundary.

H-cocycles arise naturally in the following way. Let π be a cocycle over
X × Γ with values in Ef . Then π = (c, α) where c and α are the projections
of π onto G and A respectively. It is easily seen that c ∈ Z1(X × Γ, G) and
α ∈ Z1

f,c(X × Γ, A). The converse is also true [B, Da2].
Let K be a l.c.s.c. group with the Haar measure mK . Let Γ ⊂ Aut(X,B, µ),

and c ∈ Z1(X × Γ, K). Define the group of automorphisms Γ(c) ⊂ Aut(X ×
K,µ×mK) whose elements act by the formula:

γ(c)(x, k) = (γx, c(x, γ)k), (x, k) ∈ X ×K, γ ∈ Γ. (1.7)

The group Γ(c) is called the skew product. If Γ(c) is ergodic on (X×K,µ×mK),
then the cocycle c is said to be of dense range in K [Sch].

Let us consider the action V of K on (X ×K,µ×mK):

V (h)(x, k) = (x, kh−1), h ∈ K.

Denote by ξ the measurable partition of X×K into Γ(c)-ergodic components.
The groups Γ(c) and V (K) pairwise commute. Therefore, V generates on
((X×K)/ξ, (µ×mK)/ξ) a new action W(Γ,c) of K which is called the Mackey
action (or the action associated to the pair (Γ, c)). Note that W(Γ,c)(K) is er-
godic if and only if Γ is ergodic.

Remark 1.3. Recall some results from [BG1, GS1, GS2] about Mackey actions
that will be used later on.

(1) It was proved that if U(K) is an amenable ergodic nonsingular action
of K on a measure space, then there exists a pair (Γ, d), where Γ is a countable
ergodic approximately finite (a.f.) group of measure preserving automorphisms
and d is a recurrent cocycle from Z1(X×Γ, K), such that U(K) and W(Γ,d)(K)
are isomorphic. In particular, Γ may be taken to be of the form Γ(c) where c
is a cocycle with dense range in some amenable l.c.s.c. group G.

(2) Let Γi be an ergodic a.f. measure preserving group of automorphisms
of (Xi,Bi, µi) and let di ∈ Z1(X × Γi, K) be a recurrent cocycle, i = 1, 2 .
Then, the Mackey actions W(Γ1,d1)(K) and W(Γ2,d2)(K) are isomorphic if and
only if there is an isomorphism R : X1 → X2 such that R[Γ1]R

−1 = [Γ2] and
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cocycles d1(x, γ1) and d2 ◦R(x, γ1) := d2(Rx,Rγ1R
−1), (x, γ1) ∈ X1 × Γ1, are

cohomologous, i.e. there exists a measurable map ϕ : X1 → K such that
d2 ◦ R(x, γ1) = ϕ(γ1x)d1(x, γ1)ϕ(x)−1. Such cocycles (or, more generally, the
pairs (Γ1, d1) and (Γ2, d2)) are called weakly equivalent. We will use the fact
that if c and c1 are cocycles with dense range over Γ, then they are weakly
equivalent.

(3) Let {U(K)} be the class of K-actions isomorphic to an action U of K.
Let Γ(c) be an ergodic countable a.f. measure preserving group where c is a
cocycle with dense range in G. It follows from the above facts that {W (K)}
contains the Mackey action W(Γ(c),d)(K) where d is a recurrent cocycle over
Γ(c) with values in K. Conversely, if Γ(c) is fixed, then every cocycle d over
Γ(c) determines a class of isomorphic K-actions. Furthermore, two cocycles
d and d1 over Γ(c) determine the same class if and only if they are weakly
equivalent.

We will also need the following statement.

Lemma 1.4. Let (X, µ) be a Lebesgue space and let K and H be l.c.s.c.
groups with the Haar measures mK and mH respectively. Suppose that F is a
measurable map from (X × K,µ×mK) into (H,mH) such that F (x, k) = h0

for a.e. (x, k) ∈ X ×K where h0 ∈ H. Assume that F is continuous in k for
µ-a.e. x ∈ X. Then there exists a measurable set D ⊂ X, µ(X − D) = 0,
such that F (x, k) = h0 for all (x, k) ∈ D ×K.

Proof. Let N = {(x, k) ∈ X ×K : F (x, k) 6= h0}, then (µ ×mK)(N) =
0. Denote N(x) = {k ∈ K : (x, k) ∈ N} and define D = {x ∈ X :
mK(N(x)) = 0} ∩ {x ∈ X : k 7→ F (x, k) is continuous in k}. Clearly,
µ(X−D) = 0. Let x0 ∈ D and k0 ∈ N(x). Since mK(N(x0)) = 0, there exists
a sequence {kn} ⊂ K such that kn → k0 and kn ∈ G−N(x0), n ∈ N. (If there
were no such a sequence, then N(x0) would contain a neighborhood of k0, i.e.
mK(N(x0)) would be greater than 0). Therefore for (x0, k0) ∈ D×K we have
F (x0, k0) = limn F (x0, kn) = h0. �

2 Extendible and non-extendible actions

In this section, we will answer the question whether the extendibilty property
is typical. We first give a precise definition of extendibility. As we mentioned
above, our prime interest is focused on topologically trivial group extensions.

Definition 2.1. Let V be an ergodic action of an abelian l.c.s.c. group A by

nonsingular automorphisms on a measure space (X,B, µ). Let 0 −→ A
i

−→
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E
j

−→ G −→ 1 be a group extension of A by an amenable l.c.s.c. group G.
We say that V is extendible to an action W of E if there exists an action of
E on (X,B, µ) such that V (A) is isomorphic to W (i(A)). In particular, E
can be taken as a topologically trivial group extension Ef (G,A) defined by a
continuous 2-cocycle f : G×G→ A.

Remark. Let W be an ergodic action of E (or Ef(G,A)) on a measure space
and let θ be a group automorphism of E that acts identically on A. We denote
the group of all such automorphisms by Aut(E;A). In Appendix 2, elements
from Aut(Ef ;A) are described explicitly. Given θ ∈ Aut(E;A), one can define
a new action θ∗(W ) of E by setting up θ∗(W )(k) = W (θ(k)), k ∈ E. It is
clear that W and θ∗(W ) have the same action of A. Moreover, if an action
V of A is extendible to an action W of E, then V is also extendible to the
action θ∗(W ) of E for any group automorphism θ ∈ Aut(E;A). Therefore, a
given extendible action V of A corresponds to a family of actions of E such
that each of them extends V . From this point of view, we may identify W and
θ∗(W ) for every group automorphism θ ∈ Aut(E;A).

Suppose that we are given a group extension 0 −→ A
i

−→ E
j

−→ G −→ 1.
It is natural to ask whether one can extend the translation of A onto itself to
an action of E? Clearly, such an action must be transitive on A.

We note that since A is considered as a subgroup of E, the group operation
in E (and hence in A) is written multiplicatively.

Theorem 2.2. Let T be the translation on A : T (a)(b) = ab, a, b ∈ A.
Then: (1) T is extendible to an action of E if and only if E splits. (2) If
E = Ef (G,A), then T is extendible to an action of Ef if and only if f is a
2-coboundary.

Proof. (1) Suppose that q : G → E is a group homomorphism such that
j ◦ q = id. We can easily find an action of E that extends T . Given k ∈ E find
g ∈ G, a ∈ A, such that k = q(g)a. Define g · a = q(g)aq(g)−1. Then set up

W (k)(b) = W (q(g)a)(b) = g · (ab), k ∈ E.

Clearly, W extends T . Next, if k1 = q(g1)a1, k2 = q(g2)a2, then

W (k1k2)(b) = W (q(g1)a1q(g2)a2))(b)

= W (q(g1g2)(g
−1
2 · a1)a2))(b)

= (g1g2) · [g
−1
2 · a1)a2b)]

= (g1 · a1)(g1g2) · (a2b)
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= g1 · [a1g2 · (a2b)]

= W (q(g1)a1)W (q(g2)a2)(b)

= W (k1)W (k2)(b).

Note that if k = q(g)a, then k−1 = q(g−1)(g · a−1). Therefore

W (k−1)(b) = g−1 · [(g · a−1)b]

= a−1(g−1 · b)

= W (k)−1(b)

since the map b 7→ a−1(g−1 · b) is inverse to b 7→ g · (ab). In this proof
we have not used that A is abelian.
To prove the converse we have to assume that A is abelian (the group oper-

ation in E and A will be again written multiplicatively). Let T be extendible
to an action W of E. Let q : G → E be a Borel normalized section. Denote
W (q(g)) = τ(g), then (g, b) 7→ τ(g)(b) is a Borel map from G× A into A that
leaves the Haar measure mA quasi-invariant for every g ∈ G. Then g ∈ G de-
fines a group homomorphism a 7→ g ·a where, by definition, g ·a = q(g)aq(g)−1.
Let f : G×G → A be a 2-cocycle such that q(g1g2)f(g1, g2) = q(g1)q(g2). Then
we get the following relations:

τ(g)T (a) = T (g · a)τ(g). (2.1)

τ(g1)τ(g2) = τ(g1g2)T (f(g1, g2)). (2.2)

(2.1) implies that τ(g)(ab) = (g · a)τ(g)(b) for all b ∈ A. Then, for b = 1, we
have

τ(g)(a) = (g · a)sg (2.3)

where sg = τ(g)(1) is a Borel map from G into A. In such a way, the W -
”action” of G (i.e. the maps τ(g)) can be found by (2.3). Note that (2.1)
holds automatically if (2.3) is true. Furthermore, it follows from (2.2) and
(2.3) that there is a connection between f and sg. We have

τ(g1)τ(g2)(b) = [(g1g2) · b](g1 · sg2
)sg1

τ(g1g2)T (f(g1, g2))(b) = [(g1g2) · b][(g1g2) · f(g1, g2)]sg1g2
.

Thus, we get the following relation on A:

(g1g2) · f(g1, g2) = (g1 · sg2
)(sg1g2

)−1sg1

or
f(g1, g2) = (g−1

2 · sg2
)[(g1g2)

−1) · sg1g2
]−1[(g−1

2 g−1
1 ) · sg1

].
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Denote p(g) = (g−1 · sg)
−1. Then

f(g1, g2) = [g−1
2 · p(g1)]

−1p(g1g2)(p(g2))
−1.

Clearly, p(e) = 0. Therefore, E splits since f is a 2-coboundary.
(2) In the case E = Ef(G,A) the proof is the same. We should only note

that because f is continuous and p is Borel, then, by Lemma 1.1, we get that
p is a continuous map, and therefore, f is a 2-coboundary. �

Remark. The fact that τ(g) (in the proof of Theorem 2.2) must be actually
continuous we can get also from (2.3). Indeed, since τ(g)(a)(g · a)−1 does not
depend on a, we see that τ(g)(a)(τ(g)(b))−1 = g · (ab−1). The latter and con-
tinuity of G-action on A imply that τ(g) is continuous for every g ∈ G.

We recall some notations and results from [B] that will be used later on.
Let π : X × Γ → Ef (G,A) be a cocycle over a countable ergodic measure

preserving group of automorphisms Γ acting on (X,B, µ). Then π = (c, α)
where c ∈ Z1(X × Γ, G) and α ∈ Z1

f,c(X × Γ, A).
It can be easily verified that every α ∈ Z1

f,c(X × Γ, A) generates a cocycle
bα from Z1(X ×G× Γ(c), A) where

bα(x, h, γ(c)) = h−1 · α(x, γ) + f(c(x, γ), h), γ ∈ Γ. (2.4)

We obtain two simple consequences of this fact. Firstly, α 7→ bα defines
a map S from Z1

f,c(X × Γ, A) into Z1(X × G × Γ(c), A) where f ∈ Z2(G,A),
c ∈ Z1(X×Γ, G). Denote by I(f, c) the image of Z1

f,c(X×Γ, A) under the map
S. Then I(f, c) ⊂ Z1(X × G × Γ(c), A) and we will see below that cocycles
from I(f, c) produce extendible actions of A via the Mackey construction. One
can show (see [B]) that a cocycle d : X × G × Γ(c) → A belongs to I(f, c) if
and only if

d(x, h, γ(c)) = h−1 · d(x, e, γ(c)) + f(c(x, γ), h) (2.5)

for a.e. (x, h) ∈ X×G. Indeed, since the right hand side in (2.5) is continuous
in h, (2.5) holds for a.e. x ∈ X and all h ∈ G, due to Lemma 1.4. Define
α(x, γ) = d(x, e, γ(c)), then d = bα. Secondly, we can consider the Mackey
action W(Γ(c),bα) of A associated with (Γ(c), bα) as well as the Mackey action
W(Γ,π) of (e, A) associated with (Γ, π). It turns out that these two actions are
isomorphic.

Theorem 2.3. [B] Given a cocycle π = (c, α) : X × Γ → Ef (G,A), let bα be
defined by (2.4). Then, W(Γ(c),bα)(A) is isomorphic to W(Γ,π)(e, A).

We will study only ergodic actions of Ef and (e, A). Theorem 2.3 shows
that, in this case, cocycles c ∈ Z1(X × Γ, G) must necessarily be of dense
range.
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The next theorem answers the question when an ergodic action of A can be
extended to an action of Ef (G,A). The key point here is that, without loss of
generality, we may deal only with Mackey actions of A and Ef and therefore
use the results mentioned in Remark 1.3.

Theorem 2.4. [B] Let V be an ergodic nonsingular action of A on a mea-
sure space (Ω, m) and let f be a 2-cocycle from Z2(G,A). Then the following
statements are equivalent:

(i) V is extendible to an action of Ef(G,A);
(ii) for some cocycle c ∈ Z1(X×Γ, G) with dense range, there exists a cocy-

cle d ∈ I(f, c) such that V (A) is isomorphic to the Mackey action W(Γ(c),d)(A);
(iii) for every cocycle c ∈ Z1(X×Γ, G) with dense range, there exists a cocy-

cle d ∈ I(f, c) such that V (A) is isomorphic to the Mackey action W(Γ(c),d)(A).

The last statement of Theorem 2.4 asserts that extendibility of V (A) does
not depend on a choice of c. In other words, this property does not depend on
a realization of V (A) as an associated action.

To clarify Theorem 2.4, we note that if d ∈ I(f, c), then W(Γ(c),d)(A) is
extendible to an action of Ef(G,A). Indeed, since d = bα, we see by Theorem
2.3 that

W(Γ(c),d)(A) ' W(Γ(c),bα)(A) ' W(Γ,π)(e, A).

The last Mackey action is obviously extendible to the action W(Γ,π)(Ef ). To
see that (ii) and (iii) are equivalent, we can use the following statement proved
in [B]: If c and c1 are two cocycles from Z1(X ×Γ, G) with dense ranges in G,
then for any cocycle d ∈ I(f, c) ⊂ Z1(X ×G× Γ(c), A) there exists a cocycle
d1 ∈ I(f, c1) ⊂ Z1(X×G×Γ(c1), A) such that the Mackey actions W(Γ(c),d)(A)
and W(Γ(c1),d1)(A) are isomorphic.

The next proposition gives another approach to the extendibility problem.
We will work here with a group extension E of an abelian group A by G as in
Theorem 2.2. Let V be an ergodic action of the group A on a measure space
(X,B, µ), and suppose that τ : G → Aut(X,B, µ) is a map satisfying the
conditions: τ(g1)τ(g2) = τ(g1g2)V (f(g1, g2)) and τ(g−1) = τ(g)−1V (f(g, g−1))
(the latter is equivalent to τ(e) = I) where f is a 2-cocycle defined by a nor-
malized section g : G → E as in Section 1 and g, g1, g2 ∈ G. We call such a τ
an f -action of G with respect to V .

Proposition 2.5. An ergodic action V of A is extendible to an action W of
E if and only if there exists a f -action τ of G such that

τ(g)V (a)τ(g)−1 = V (g · a), g ∈ G, a ∈ A (2.6)
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where g · a = q(g)aq(g)−1.

Proof. Here we use the same notations as in Theorem 2.2. Assume that V
is extendible to an action W of E. Then it is straightforward to check that
τ(g) = W (q(g)), g ∈ G, is the required f -action of G. Conversely, suppose
that an f -action τ of G satisfying (2.6) is given. Every k ∈ E can be written
as k = q(g)a. Set up W (q(g)a) = τ(g)V (a). Let us check that W is the
action of E which extends V . Obviously, W (a) = V (a), a ∈ A. Next, given
k1 = q(g1)a1, k2 = q(g2)a2, we have

W (q(g1)a1)W (q(g2)a2) = V (g1 · a1)τ(g1)τ(g2)V (a2)

= V (g1 · a1)τ(g1g2)V (f(g1, g2)a2)

= τ(g1g2)V (g−1
2 · a1)V (f(g1, g2)a2)

= W (q(g1g2)f(g1, g2)(g
−1
2 · a1)a2)

= W (q(g1)q(g2)(g
−1
2 · a1)a2)

= W (q(g1)a1q(g2)a2)

and

W ((q(g)a)−1) = W (q(g)−1(g · a−1))

= W (q(g−1)[f(g, g−1)]−1(g · a−1))

= τ(g−1)V (f(g, g−1)−1)V (g · a−1)

= τ(g)−1V (g · a)−1

= (τ(g)V (a))−1

= W (q(g)a)−1.

2

Based on Theorem 2.2, we can deduce some results about extendibility
of Mackey actions associated to Γ(c)-coboundaries. We recall that cocycles
c ∈ Z1(X ×Γ, G) are assumed to be of dense range because we study ergodic
actions. From now, we work with topologically trivial group extensions.

Lemma 2.6. Let c ∈ Z1(X × Γ, G) be a cocycle with dense range and let
d ∈ Z1(X ×G×Γ(c), A) be a Γ(c)-coboundary. Then d ∈ I(0, c) if and only if
for a.e. x ∈ X and all h ∈ G there exists a measurable map ξ : X → A such
that

d(x, h, γ(c)) = (h−1c(x, γ)−1) · ξ(γx) − h−1 · ξ(x). (2.7)
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Proof. It is straightforward to check that if d satisfies (2.7), then d ∈ I(0, c).
Conversely, let d be a Γ(c)-coboundary, i.e. we assume that there exists a
measurable map s : X×G→ A such that d(x, h, γ(c)) = s(γ(c)(x, h))−s(x, h)
a.e. Since d ∈ I(0, c), we have from (2.5) that

s(γ(c)(x, h)) − s(x, h) = h−1 · s(γ(c)(x, e)) − h−1 · s(x, e)

or
s(γ(c)(x, h)) − h−1 · s(γ(c)(x, e)) = s(x, h) − h−1 · s(x, e).

In view of ergodicity of Γ(c), we see that there exists a ∈ A such that
s(x, h) = h−1 ·s(x, e)+a for a.e. x ∈ X and all h ∈ G (Lemma 1.4). Therefore,
d(x, h, γ(c)) has the desired form. 2

Theorem 2.7. Let d ∈ Z1(X × G × Γ(c), A) and suppose that d is a Γ(c)-
coboundary. Then W(Γ(c),d)(A) is extendible to an action Ef (G,A) if and only
if f is a 2-coboundary.

Proof. The assertion is a direct consequence of Theorem 2.2 because
W(Γ(c),d)(A) is isomorphic to the translation T on A. 2

Corollary 2.8. Let B1(X ×G× Γ(c), A) ⊂ Z1(X ×G× Γ(c), A) be the sub-
group of all Γ(c)-coboundaries. Then (i) B1(X×G×Γ(c), A)∩ I(0, c) 6= ∅ and
(ii) B1(X ×G× Γ(c), A) ∩ I(f, c) = ∅ if f is not a 2-coboundary.

Proof. The statements follow immediately from Theorem 2.7. Here we will
give a direct proof of the corollary where we assume for simplicity that G is
countable.

Let d ∈ I(f, c) be a Γ(c)-coboundary. This means that there exists a
measurable function ξ : X × Γ → A such that

d(x, h, γ(c)) = ξ(γ(c)(x, h)) − ξ(x, h)

and d satisfies (2.5). Then

ξ(γ(c)(x, h))− ξ(x, h) = h−1 · ξ(γ(c)(x, e))−h−1 · ξ(x, e)+ f(c(x, γ), h). (2.8)

Let Γ0 = {γ ∈ [Γ] : c(x, γ) = e a.e.}, then Γ0 is ergodic (recall that G is
countable and Γ(c) is ergodic). We get from (2.8) that for γ0 ∈ Γ0,

ξ(γ0x, h) − ξ(x, h) = h−1 · ξ(γx, e) − h−1 · ξ(x, e).

It follows from ergodicity of Γ0 that

ξ(x, h) = h−1 · ζ(x) + r(h) (2.9)
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where ζ(x) = ξ(x, e), and r is a normalized Borel map from G into A. If we
substitute (2.9) into (2.8), then we get

f(c(x, γ), h) = −h−1 · r(c(x, γ)) + r(c(x, γ)h) − r(h) (2.10)

Let G = {gi : i ∈ N} and let γi ∈ [Γ] be such that c(x, γi) = gi a.e. Taking
γ = γi in (2.10), we get that f is a 2-coboundary. 2

We consider on Z1(X×G×Γ(c), A) the topology of convergence in measure.
It is well known that Z1(X × G × Γ(c), A) is a Polish space in this topology
and the set of all Γ(c)-coboundaries is dense in Z1(X × G × Γ(c), A) when Γ
is approximately finite [Sch].

As we mentioned in Remark 1.3, every ergodic nonsingular A-action is
isomorphic to the associated action W(Γ(c),d)(A) where an ergodic group Γ(c)
may be chosen a priori and d is a cocycle from Z1(X ×G× Γ(c), A). If d is of
the form (2.5), then this action is extendible to an action of Ef . Our goal now
is to answer the question: How typical is such a cocycle d? In other words, we
want to find out if the extendibility property is typical or not. Theorem 2.9
(below) gives the answer: The extendibility property is ”nowhere dense”.

Let [d] denote the set of cocycles from Z1(X×G×Γ(c), A) weakly equivalent
to d. Then [I(f, c)] is formed by all classes [d] where d ∈ I(f, c). Let

I(c) =
⋃

f∈Z2(G,A)

I(f, c), [I(c)] =
⋃

f∈Z2(G,A)

[I(f, c)].

Since I(f, c) + I(f1, c) = I(f + f1, c), we get that I(c) is a subgroup in
Z1(X × G × Γ(c), A). Note that I(f, c) ∩ I(f1, c) = ∅ when f 6= f1. In
[B], we showed that I(c) does not depend on c up to isomorphism. If d ∈ I(c),
then d defines (explicitly, see (2.4) and Theorem 2.3) an extendible action for
some Ef . If d ∈ [I(c)], then there exists f ∈ Z2(G,A) such that the associ-
ated action defined by d is isomorphic to an A-action that can be explicitely
extended to an action of Ef .

Theorem 2.9. Let Γ be an ergodic a.f. group of measure preserving auto-
morphisms and let c ∈ Z1(X × Γ, G) be a cocycle with dense range. Then
[I(c)] is nowhere dense in Z1(X × G × Γ(c), A) endowed with the topology of
convergence in measure. In other words, a typical action of A is not extendible
to an action of Ef .

Proof. We first note that I(0, c) is a closed subgroup in Z1(X×G×Γ(c), A).
For this, take dk ∈ I(0, c) such that dk → d (in measure), k ∈ N. We see from
Lemma 1.4 that the relation dk(x, h, γ(c)) = h−1 · dk(x, e, γ(c)) holds for all
k ∈ N and all (x, h) ∈ D×G where µ(X−D) = 0. Taking the pointwise limit
in the above relation, we obtain that d ∈ I(0, c).
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Then, the formula
I(f, c) = df + I(0, c) (2.10)

showes that I(f, c) is also closed where df is some fixed cocycle from I(f, c).
Note that the map f 7→ df : Z2(G,A) → Z1(X × G× Γ(c), A) can be chosen
continuous. Indeed, since Γ is an a.f. group of automorphisms, we can take
Γ = {T n : n ∈ N} [CFW]. Let u : X → A be a measurable function. For given
f ∈ Z2(G,A), we set

αf(x, T ) = u(x),

αf(x, T 2) = f(c(Tx, T ), c(x, T )) + c(x, T )−1 · u(Tx) + u(x)

and so on. In such a way, we define an H-cocycle αf (see (1.6)). Denote

df(x, h, T
n(c)) = h−1 · αf(x, T n) + f(c(x, T n), h).

Clearly, df ∈ I(f, c) and the map f 7→ df is continuous. Therefore I(c) is a
closed subgroup in Z1(X×G×Γ(c), A). Since Γ (hence Γ(c)) is a.f., the set of
all Γ(c)-coboundaries, B1(X ×G× Γ(c), A), is dense in Z1(X ×G× Γ(c), A).
It follows from Corollary 2.8 that I(f, c) is nowhere dense when f is not
a 2-coboundary. Although the sets I(0, c) and I(fp, c) can contain some
Γ(c)-coboundaries (Lemma 2.6), relation (2.10) proves that they are also
nowhere dense. Note that [d] contains a Γ(c)-coboundary if and only if d
is a coboundary. Therefore the same argument works for [I(f, c)] proving that
this set is also nowhere dense. Next, it follows from the proved facts that
Z1(X ×G× Γ(c), A)− I(c) and Z1(X ×G× Γ(c), A)− [I(c)] are dense. This
remark implies that [I(c)] is nowhere dense. 2

Let us consider the case of a countable group G. The next theorem gives
a sufficient condition for a cocycle d ∈ Z1(X × G × Γ(c), A) to belong to
I(c). In other words, for d satisfying the condition of the theorem, there exists
f ∈ Z2(G,A) such that W(Γ(c),d)(A) may be extended to an action of Ef .

Theorem 2.10. Let Γ be an ergodic a.f. countable group of automorphisms of
(X,B, µ) and let c be a cocycle over Γ with dense range in a countable amenable
group G. Assume that for given d ∈ Z1(X×G×Γ(c), A) there exists a subset
N ⊂ X, µ(N) = 0, such that d(x, h, γ(c)) − h−1 · d(x, e, γ(c)) does not depend
on x ∈ X −N . Then d ∈ I(c).

Proof. It follows from [BG2] that Γ is generated by ergodic subgroup Γ0 =
{γ ∈ [Γ] : c(x, γ) = e for a.e. x ∈ X} and the automorphisms γg ∈ [Γ]∩N [Γ0]
such that c(x, γg) = g for a.e. x ∈ X and g ∈ G. Set γe = I. Then, for
any γ ∈ Γ and a.e. x ∈ X, there are g = g(x) ∈ G and γ0 ∈ Γ0 such that
γx = γgγ0x. We also note that, without loss of generality, Γ may be taken as
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a free a.f. group automorphisms. It allows one to extend d to the full group
[Γ]. By the assumption of the theorem, we may define

F (γ, h) = d(x, h, γ(c)) − h−1 · d(x, e, γ(c)), (2.11)

where γ ∈ Γ and x ∈ X − N, µ(N) = 0. We note that when h is fixed and
γ runs over the full subgroup Γ0 ⊂ [Γ], the function F (γ, h) defines a group
homomorphism Fh from Γ0 into A. Furthermore, Fh is continuous with respect
to the uniform topology. Thus, the kernel of Fh, ker(Fh), must be a normal
closed subgroup in the ergodic group Γ0. It follows from [Dye] that ker(Fh)
is either {I} or Γ0. But if for γ1, γ2 ∈ Γ0, µ({x ∈ X : γ1x = γ2x}) > 0, then
Fh(γ1) = Fh(γ2). This shows that ker(Fh) = Γ0. In other words, we proved
that for all γ0 ∈ Γ0

d(x, h, γ0(c)) − h−1 · d(x, e, γ0(c)) = 0. (2.12)

Define
f(g, h) = F (γg, h), g, h ∈ G. (2.13)

Note that f(e, g) = f(g, e) = 0, g ∈ G. Next, take γ ∈ G, then γx = γgγ0x
where g depends on x and γ0 ∈ Γ0. We get for a.e. x ∈ X that

d(x, h, γ(c)) − h−1 · d(x, e, γ(c))

= d(x, h, γg(c)γ0(c)) − h−1 · d(x, e, γg(c)γ0(c))

= d(γ0x, h, γg(c)) − h−1 · d(γ0x, e, γg(c))
+d(x, h, γ0(c)) − h−1d(x, e, γ0(c))

= f(g, h) (in view of (2.12), (2.13))

= f(c(γ0x, γg)c(x, γ0), h)

= f(c(x, γ), h).

(2.14)

If we proves that f is a 2-cocycle, then (2.14) would imply that d ∈ I(f, c) ⊂
I(c). Thus, it remains to show that f ∈ Z2(G,A). We have for g1, g2, g3 ∈ G
that

g−1
3 · f(g1, g2) = g−1

3 · d(x, g2, γg1
(c)) − g−1

3 g−1
2 · d(x, e, γg1

(c)),

f(g1g2, g3) = d(x, g3, γg1g2
(c)) − g−1

3 · d(x, e, γg1g2
(c)),

f(g2, g3) = d(x, g3, γg2
(c)) − g−1

3 · d(x, e, γg2
(c)),

f(g1, g2g3) = d(x, g2g3, γg1
(c)) − g−1

3 g−1
2 · d(x, e, γg1

(c)).
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To see that the 2-cocycle identity (1.2) holds, we have to show that

g−1
3 · d(x, g2, γg1

(c)) + d(x, g3, γg1g2
(c)) − g−1

3 · d(x, e, γg1g2
(c))

= d(x, g3, γg2
(c)) − g−1

3 · d(x, e, γg2
(c) + d(x, g2g3, γg1

(c)). (2.15)

is true. It is easily seen that γg1g2
(c) = γg1

(c)γg2
(c)γ0(c) for some γ0 from Γ0.

Therefore, we can get from (2.12) and the assumption of the theorem that

d(x, g3, γg1
(c)γg2

(c)γ0(c)) − g−1
3 · d(x, e, γg1

(c)γg2
(c)γ0(c))

= d(γ0x, g3, γg1
(c)γg2

(c)) + d(x, g3, γ0(c))
−g−1

3 · d(γ0x, e, γg1
(c)γg2

(c)) − g−1
3 · d(x, e, γ0(c))

= d(γ0x, g3, γg1
(c)γg2

(c)) − g−1
3 · d(γ0x, e, γg1

(c)γg2
(c))

= d(γg2
γ0x, g2g3, γg1

(c)) + d(γ0x, g3, γg2
(c))

−g−1
3 · d(γg2

γ0x, g2, γg1
(c)) − g−1

3 · d(γ0x, e, γg2
(c))

= d(γg2
γ0x, g2g3, γg1

(c)) − g−1
3 · d(γg2

γ0x, g2, γg1
(c))

+d(x, g3, γg2
(c)) − g−1

3 · d(x, e, γg2
(c)).

(2.16)

It follows from (2.16) that (2.15) may be transformed into the following rela-
tion:

d(γg2
γ0x, g2g3, γg1

(c)) − g−1
3 · d(γg2

γ0x, g2, γg1
(c))

= d(x, g2g3, γg1
(c)) − g−1

3 · d(x, g2, γg1
(c)). (2.17)

To see that (2.17) is true, let us add and subtract g−1
3 g−1

2 · d(γ2γ0x, e, γg1
(c))

from the left-hand side of (2.17), and g−1
3 g−1

2 ·d(x, e, γg1
(c)) from the right-hand

side. Then

d(γg2
γ0x, g2g3, γg1

(c)) − g−1
3 g−1

2 · d(γ2γ0x, e, γg1
(c))

−g−1
3 ·

[

d(γ2γ0x, g2, γg1
(c)) − g−1

2 · d(γ2γ0x, e, γg1
(c))

]

= d(x, g2g3, γg1
(c)) − g−1

3 g−1
2 · d(x, e, γg1

(c))

−g−1
3 ·

[

d(x, g2, γg1
(c)) − g−1

2 · d(x, e, γg1
(c))

]

.

Clearly, the last relation (and therefore (2.15)) holds. 2

3 Example

In this section we consider the case when A = R, G = R∗

+, and E0 = R∗

+ n R.
Our aim is to find an explicit example of R-action that cannot be extended to
an action of R∗

+ n R.

16



Let Γ be a group of automorphism of (X,B, µ), µ(X) = ∞, that is gen-
erated by three pairwise commuting automorphisms S, T1, and T2. We will
assume that S is ergodic and measure preserving. Let λ1 and λ2 be positive real
numbers such that λ1 > λ2 > 1 and log λ1, log λ2 are rationally independent,
i.e. {λn

1 , λ
m
2 | n,m ∈ Z} is dense in R∗

+. We assume that Ti is an automorphism
of X such that µ ◦Ti = λ−1

i µ, i = 1, 2. Define a cocycle c : X ×Γ → R
∗

+ by its
values on generators S, T1, T2:

c(x, S) = 1, c(x, T1) = λ1, c(x, T2) = λ2. (3.1)

Then the skew product Γ(c) acts on (X×R∗

+, µ×du) (here du is the Lebesgue
measure on R∗

+). The generators of Γ(c) are measure preserving automor-
phisms defined by formulae:

S(c)(x, p) = (Sx, p), Ti(c)(x, p) = (Tix, λip) (3.2)

where (x, p) ∈ X × R∗

+ and i = 1, 2. Obviously, Γ(c) is ergodic since c has a
dense range in R∗

+.
Define now a cocycle d over X × R

∗

+ × Γ(c) with values in R. We set for
i = 1, 2

d(x, p, S(c)) = 0, d(x, p, Ti(c)) = 1. (3.3)

Then, d can be extended to a cocycle over Γ(c). In fact, d is a homomorphism
of the orbit equivalence relation generated by Γ(c) into Z2. Let us write down
the generators of Γ(c)(d). This group acts on (X × R∗

+ × R, µ× ν+ × ν) and
the generators can be written down as

S(c)(d)(x, p, u) = (Sx, p, u)

Ti(c)(d)(x, p, u) = (Tix, λip, u+ 1), i = 1, 2.

We need to find the partition P into ergodic components of Γ(c)(d) and the
quotient space (X × R

∗

+ × R)/P.

Lemma 3.1. (X × R∗

+ × R)/P is isomorphic to Y = [1, α) × [0, 1) where
α = λ1λ

−1
2 .

Proof. It follows from ergodicity of S that a Γ(c)(d)-ergodic component that
intersects X ×{1}× {0} must contain X ×{1}× {0}. Then (X ×R∗

+ ×R)/P
is isomorphic to (R∗

+ × R)/E where E is equivalence relation defined by

T̃i(p, u) = (λip, u + 1), i = 1, 2. Obviously, E is of type I∞ since T̃1 and
T̃2 commute. Let us show that Y is a fundamental set for E . Take some point
(p, u) ∈ Y . Then T̃ n

i (R∗

+ × [0, 1)) = R∗

+ × [n, n + 1), ∀n ∈ Z, i = 1, 2.

This means that T̃ n
i (6= I) cannot send (p, u) to Y . On the other hand,
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T̃1T̃
−1
2 (R∗

+ × {p}) = R∗

+ × {p} for all p. Thus, T̃1T̃
−1
2 acts on R∗

+ by multipli-

cation by α = λ1λ
−1
2 . It follows that T̃1T̃

−1
2 is again of type I∞ and [1, α) × R

is a fundamental set for T̃1T̃
−1
2 . To complete the proof, we note that every

Γ(c)(d)-orbit meets the set Y only once. �

We have shown that the Mackey action of R associated to the pair
(Γ(c), d) is defined on Y . Let us compute W(Γ(c),d)(R). The translation

V (a) : (x, p, u) 7→ (x, p, u + a) determines the transformation Ṽ (a) of
R∗

+ × R : Ṽ (a)(p, n) = (p, u + a). Obviously, Ṽ (·) commutes with T̃i. This

means that Ṽ generates the Mackey action of R on Y . Given (p, u) ∈ Y , find
the unique point (p1, u1) ∈ Y such that (p, u+ a) and (p1, u1) are in the same
Γ(c)(d)-orbit. Let [x] ( {x}) denote the integer (resp. fractional) part of x ∈ R.
Take n = [u+a], then T̃−n

1 (p, u+a) = (λ−n
1 p, u+a− [u+a]) = (λ−n

1 p, {u+a})
belongs to R

∗

+ × [0, 1). To return the found point into Y , we determine
m ∈ Z such that λ−n

1 p1 ∈ [α−m, α−m+1). Then αmλ−n
1 ∈ [1, α). Therefore

for (p, u) ∈ Y and a ∈ R, we get

W(Γ(c),d)(a)(p, u) = (αmλ−n
1 p, {u+ a}) = (λm−n

1 λ−m
2 p, {u+ a}) (3.4)

Thus, we have proved the following statement.

Proposition 3.2. The Mackey action W(Γ(c), d)(R) associated to (Γ(c), d)
with the pair (Γ(c), d) defined by (3.1) − (3.3), is isomorphic to the special
flow W(Q,ϕ)(R) built under the constant ceiling function ϕ = 1 and with base
automorphism Q : [1, α) → [1, α) such that Qp = αmλ−1

1 p, m = m(p) where
m is defined by (3.4). (See Appendix 1 for an explicit description of Q). �

Theorem 3.3. W(Γ(c),d)(R) is not extendible to an action of R∗

+ n R.

Proof. To prove that W(Γ(c),d)(R) ' W(Q,1)(R) is not extendible to an action
of R

∗

+ n R, we will show that Proposition 2.5 fails. Let us assume that there
exists an action τ of R∗

+ on Y = [1, α) × [0, 1) such that for (x, u) ∈ Y, p ∈
R∗

+, t ∈ R, one has

τ(p)W (t)(x, u) = W (pt)τ(p)(x, u) (3.5)

where W (t) = W(Q,1)(t). Note that W (1)(x, u) = (Qx, u), (x, u) ∈ Y . If t = 1,
then we get from in (3.5) that

τ(p)(Qx, 0) = W (p)τ(p)(x, 0). (3.6)

Denote τ(p)(x, 0) = (Tp(x), vp(x)) where x 7→ Tp(x) and x 7→ vp(x) are mea-
surable.
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Assume for definiteness that p < 1. Let us find the properties of Tp. We
see that the τ(p)-image of {x} × [0, 1) is either a subinterval in {Tp(x)} ×
[0, 1) of length p (when vp(x) + p < 1) or the union of two subintervals from
({Tp(x)} × [0, 1))∪ ({QTp(x)} × [0, 1)) of total length p (when vp(x) + p ≥ 1).
It is clear that, for every p ∈ R∗

+, τ(p) is a nonsingular automorphism defined
everywhere on Y that preserves the partition into W -orbits. Then Tp is a
measurable map of X that sends Q-orbits onto Q-orbits. It is easily seen that
Tp is not one-to-one and ν(TpD) > 0 if and only if ν(D) > 0 where ν is the
Lebesgue measure on Z = [1, α).

We claim that Tp : Z → Z is onto. Indeed, let y = Tp(x). Then we observe
that every part of W -orbit of (y, 0) that lies between Z × {0} and Z × {1}
contains at least one point from τ(p)(Z × {0}). Since every W -orbit is dense
in Y as well as every Q-orbit is dense in Z (see Appendix 1), we obtain that
Tp(Z) = Z.

Next, let Ky(p) = {x ∈ Z : Tp(x) = y}, y ∈ Z. Take p = 1/n where n is
an integer greater than 1. We note that for every y ∈ Z, the set Ky(1/n) has
exactly n points that belong to the same Q-orbit. This fact follows from (3.6)
and from the observation that every subinterval {y} × [(i − 1)/n, i/n), i =
1, ..., n, contains exactly one point from τ(1/n)(Z × {0}).

Let Yi = Z × [(i− 1)/n, i/n), i = 1, ..., n. Denote by

Zi = {x ∈ Z |
i− 1

n
≤ v1/n(x) <

i

n
}.

One can easily seen that T1/n(Zi) = Z, i = 1, ..., n. In such a way, the above
remarks allows one to describe the image of Z × {0} under the map τ(p).

We state that for p = 1/n, the set Z is partitioned into Zi, i = 1, ..., n, and

Q(Zi) = Zi+1, Q(Zn) = Z1, (3.7)

i.e. (Zi : i = 1, ..., n) form a Q-tower. In fact, it follows from the following
remark: If τ(1/n)(x, 0) ∈ Yi, then τ(1/n)(Qx, 0) ∈ Yi+1 for i = 1, ..., n−1 (the
case i = n is considered analogously).

We get from relation (3.7) that Qn(Z1) = Z1. This contradicts the ergod-
icity of Qn (see again Appendix 1). 2

Remark 3.4. (1) Theorem 3.3 may be reformulated in terms of cocycles. In
other words, it has been proved that the cocycle d, defined by (3.3), cannot
be weakly equivalent to any cocycle d1 from I(0, c), i.e. for all R ∈ N [Γ],
d ◦ R(x, p, γ(c)) is not Γ(c)-cohomologous to d1(x, p, γ(c)) = p−1d1(x, 1, γ(c))
(see (2.5) for f = 0).

(2) Relation (3.5) (or, more generally, (2.6)) shows that, for every p ∈ R∗

+

and t ∈ R, the automorphisms W (t) and W (pt) must be isomorphic. This
simple observation allows us to produce a family of R-actions that cannot be
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extended to actions of R∗

+ n R. Let W(Q,ϕ)(R) be an ergodic special flow of
measure preserving automorphisms such that the entropy h(Q) > 0. Then
W(Q,ϕ)(R) is not extendible to an action R∗

+ n R since W (t) and W (pt) have
different entropies. On the other hand, suppose we are given by an ergodic
measure preserving action U of R∗

+nR. Then the automorphism group U({1}×
R) has the property: the entropy of every U({1}× t), t ∈ R, is either 0 or ∞.

(3) Let U(t) be the horocycle flow and let ψ(s) be the geodesic flow in the
Poincaré half plane {z ∈ C : Im(z) > 0}, s, t ∈ R. It is well known that they
are related in the following way:

ψ(s)U(t)ψ(−s) = U(tes). (3.8)

Define τ(p) = ψ(log p). Then we see that (3.8) is transformed into (2.6). By
Proposition 2.5, the horocycle flow can be extended to the action of R∗

+ n R

defined by τ and U .

4 Isomorphic actions of group extensions

This section is devoted to the solution of the following problem: Suppose we are
given by two isomorphic actions of A, V1 and V2. Assume they are extendible
to actions U1 and U2 of Ef (G,A). The question is: Under what conditions U1

and U2 are isomorphic?
It was remarked in Section 2 that we can represent any ergodic nonsin-

gular action of Ef as the Mackey action W(Γ,π)(Ef) where Γ is an ergodic
measure preserving a.f. countable group of automorphisms of (X,B, µ) and
π : X × Γ → Ef is a cocycle. The following proposition is a direct corollary of
the results from [GS1, GS2] discussed in Section 1.

Proposition 4.1. Let U1 and U2 be two isomorphic ergodic actions of
Ef . Then there exist pairs (Γ, π1) and (Γ, π2) such that Ui is isomorphic
to W(Γ,πi), i = 1, 2, and cocycles π1, π2 are weakly equivalent, i.e. there is
R ∈ N [Γ] such that π1 ◦R is cohomologous to π2 where Γ is an ergodic count-
able a.f. group of measure preserving automorphisms.

We start with a theorem that solves the problem which is converse to the
question formulated above.

Theorem 4.2. Let W(Γ,π) and W(Γ,π1) be isomorphic ergodic actions of Ef

where π = (c, α) and π1 = (c1, α1) are cocycles with values in Ef (G,A). Then
there exists an automorphism R′(x, h) = (Rx, k(x)h) of (X×G, µ×mG), R ∈
N [Γ], such that cocycles bα ◦R′ and bα1

are Γ(c1)-cohomologous.
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Proof. It follows from Proposition 4.1 that there exist a measurable function
Φ(x) = (k(x), u(x)) : X → Ef and an automorphism R ∈ N [Γ] such that for
any γ ∈ Γ and a.e. x ∈ X,

π ◦R(x, γ) = Φ(γx)π1(x, γ)Φ(x)−1.

In view of (1.4), Φ(x)−1 = (k(x)−1, −f(k(x), k(x)−1) − k(x) · u(x)). Then

π ◦R(x, γ) = (c ◦R(x, γ), α ◦R(x, γ))

= (k(γx), u(γx))(c1(x, γ), α1(x, γ))(k(x)
−1, −f(k(x), k(x)−1) − k(x) · u(x)),

and therefore
c ◦R(x, γ) = k(γx)c1(x, γ)k(x)

−1, (4.1)

α ◦R(x, γ) = f(k(γx)c1(x, γ), k(x)
−1) + k(x) · f(k(γx), c1(x, γ))

+k(x)c1(x, γ)
−1 · u(γx) + k(x) · α1(x.γ)− f(k(x), k(x)−1)− k(x) · u(x). (4.2)

Applying (1.2), we get

k(x) · f(k(γx), c1(x, γ)) + f(k(γx)c1(x, γ), k(x)
−1)

= f(k(γx), c1(x, γ)k(x)
−1) + f(c1(x, γ), k(x)

−1)

and (4.2) is transformed into

α ◦R(x, γ) = f(k(γx), c1(x, γ)k(x)
−1) + f(c1(x, γ), k(x)

−1) − f(k(x), k(x)−1)

+k(x) · α1(x, γ) + k(x)c1(x, γ)
−1 · u(γx) − k(x) · u(x). (4.3)

It is easy to check that if α ∈ Z1
f,c(A), then α ◦R ∈ Z1

f,c◦R(A).
Define the automorphism R′ ∈ Aut(X×G, µ×mG) by setting up R′(x, h) =

(Rx, k(x)h). Let us show that

R′γ(c1)(R
′)−1 = RγR−1(c). (4.4)

Indeed, we obtain from (4.1) that

R′γ(c1)(R
′)−1(x, h)

= (RγR−1, k(γR−1x)c1(R
−1x, γ)k(R−1x)−1h)

= (RγR−1x, c ◦R(R−1x, γ)h)

= (RγR−1x, c(x,RγR−1)h)

= RγR−1(c)(x, h).
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To compute bα ◦R′ and bα1
we use (2.4), (4.3), and (4.4):

bα1
(x, h, γ(c1)) = h−1 · α1(x, γ) + f(c1(x, γ), h)

bα ◦R′(x, h, γ(c1))

= bα(Rx, k(x)h, R′γ(c1)(R
′)−1)

= h−1k(x)−1 · α(Rx,RγR−1) + f(c(Rx,RγR−1), k(x)h)

= h−1k(x)−1 · f(k(γx), c1(x, γ)k(x)
−1) + h−1k(x)−1 · f(c1(x, γ), k(x)

−1)
−h−1k(x)−1 · f(k(x), k(x)−1) + h−1 · α1(x, γ) + h−1c1(x, γ)

−1 · u(γx)
−h−1 · u(x) + f(c ◦R(x, γ), k(x)h).

(4.5)
We use (1.2) three times to get

h−1k(x)−1 · f(k(γx), c1(x, γ)k(x)
−1)

= −f(k(γx)c1(x, γ)k(x)
−1, k(x)h) + f(c1(x, γ)k(x)

−1, k(x)h)
+ f(k(γx), c1(x, γ)h),

h−1k(x)−1 · f(c1(x, γ), k(x)
−1)

= −f(c1(x, γ)k(x)
−1, k(x)h) + f(c1(x, γ), h) + f(k(x)−1, k(x)h),

h−1k(x)−1 · f(k(x), k(x)−1) = −f(k(x)−1, k(x)h) − f(k(x), h)

Substitute the three formulae into (3.5). Then

bα ◦R′(x, h, γ(c1)) = f(k(γx), c1(x, γ)h) + f(c1(x, γ), h)

−f(k(x), h) + h−1 · α1(x, γ) + h−1c1(x, γ)
−1 · u(γx) − h−1 · u(x).

Thus,
bα ◦R′(x, h, γ(c1)) − bα1

(x, h, γ(c1))

= f(k(γx), c1(x, γ)h) − f(k(x), h) + h−1c1(x, γ)
−1 · u(γx) − h−1 · u(x).

Denote by ξ(x, h) = f(k(x), h) + h−1 · u(x). To complete the proof, we note
that

bα ◦R′(x, h, γ(c1)) − bα1
(x, h, γ(c1)) = ξ(γ(c1)(x, h)) − ξ(x, h).

2
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Remark 4.3. It is not surprising that cocycles bα and bα1
are weakly equiv-

alent since, as it follows from Theorem 4.2, the Mackey actions W(Γ(c),bα)(A)
and W(Γ(c1),bα1

)(A) must be isomorphic by Theorem 2.3. The non-trivial part
of Theorem 4.2 consists of explicit description of the automorphism R′ that
implements the isomorphism of these Mackey actions.

Now our goal is to prove the converse statement. To do this, we will have
to assume that G is countable.

It is known [GS2] that if c and c1 are cocycles over an ergodic a.f. automor-
phism group Γ both with dense ranges in G, then they are weakly equivalent,
i.e. there exist an R ∈ N [Γ] and a measurable map k : X → G such that
c ◦R(x, γ) = k(γx)c1(x, γ)k(x)

−1, (x, γ) ∈ X × Γ.

Theorem 4.4. Let G be a countable amenable group and let c, c1, R, and
k(x) be as above. Define R′(x, h) = (Rx, k(x)h), (x, h) ∈ X × G. For given
α ∈ Z1

f,c(A) and α1 ∈ Z1
f,c1

(A), assume that the cocycles bα ◦ R′ and bα1

are Γ(c1)-cohomologous, that is W(Γ(c),α)(A) and W(Γ(c1),α1)(A) are isomorphic.
Then there exists a group automorphism θ of Ef such that the Mackey ac-
tions W(Γ,π1)(Ef) and θ∗(W )(Γ,π)(Ef)) are isomorphic where π = (c, α) and
π1 = (c1, α1).

Proof. It follows from our assumption that there exists a measurable map
q : X ×G→ A such that for any γ ∈ Γ and a.e. (x, h) ∈ X ×G

bα ◦R′(x, h, γ(c1)) − bα1
(x, h, γ(c1)) = q(γ(c1)(x, h)) − q(x, h).

By (2.4), we have

h−1k(x)−1 · α ◦R(x, γ) + f(c ◦R(x, γ), k(x)h) − h−1 · α1(x, γ) − f(c1(x, γ), h)

= q(γ(c1)(x, h)) − q(x, h)

or
k(x)−1 · α ◦R(x, γ) − α1(x, γ)

= h·f(c1(x, γ), h)−h·f(c◦R(x, γ), k(x)h)+h·q(γ(c1)(x, h))−h·q(x, h). (4.6)

The right-hand side in (4.6) does not depend on h ∈ G. Therefore, we can set
h = e in (4.6). We then have

k(x)−1 · α ◦R(x, γ) − α1(x, γ)

= −f(k(γx)c1(x, γ)k(x)
−1, k(x)) + q(γ(c1)(x, e)) − q(x, e)

or

h · f(c1(x, γ), h) − h · f(c ◦R(x, γ), k(x)h) + h · q(γ(c1)(x, h)) − h · q(x, h)
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= −f(k(γx)c1(x, γ)k(x)
−1, k(x)) + q(γ(c1)(x, e)) − q(x, e). (4.7)

Since
h · f(c1(x, γ), h) = −f(c1(x, γ)h, h

−1) + f(h, h−1),

and
−h · f(c ◦R(x, γ), k(x)h)

= f(k(γx)c1(x, γ)h, h
−1) − f(k(x)h, h−1) − f(k(γx)c1(x, γ)k(x)

−1, k(x)),

relation (4.7) can be written in the following form:

q(γ(c1)(x, e)) − q(x, e)

= −f(c1(x, γ)h, h
−1) + f(h, h−1) + f(k(γx)c1(x, γ)h, h

−1)
−f(k(x)h, h−1) + h · q(γ(c1)(x, h)) − h · q(x, h).

(4.8)

We use (1.2):

f(k(γx)c1(x, γ)h, h
−1) − f(c1(x, γ)h, h

−1)
= −h · f(k(γx), c1(x, γ)h) + f(k(γx), c1(x, γ)),

f(k(x)h, h−1) − f(h, h−1) = −h · f(k(x), h).

Then it follows from (4.8) that

−h ·f(k(γx), c1(x, γ)h)+f(k(γx), c1(x, γ))+h · q(γ(c1)(x, h))− q(γ(c1)(x, e))

= −h · f(k(x), h) + h · q(x, h) − q(x, e). (4.9)

Consider the measurable function F : X × Ef → A

F (x, h) = −h · f(k(x), h) + h · q(x, h) − q(x, e). (4.10)

Note that for every fixed h ∈ G, F is constant a.e. on X. To see this, define
the ergodic subgroup Γ0 = {γ ∈ [Γ] : c1(x, γ) = 0 for a.e. x ∈ X}. For
h ∈ G, γ ∈ Γ0, we get from (4.9) that F (γx, h) = F (x, h), i.e. F (x, h) = ϕ(h)
a.e.

We show that ϕ(h) satisfies the relation

ϕ(gh) = ϕ(g) + g · ϕ(h). (4.11)

Indeed, let γg ∈ [Γ] be chosen such that c1(x, γg) = g, g ∈ G where x ∈
X −N, µ(N) = 0. Denote y = γgx. Then we get from (4.9) and (4.10) that

ϕ(h) = −h · f(k(y), gh) + f(k(y), g) + h · q(y, gh)− q(y, g)

= g−1[−(gh) · f(k(y), gh) + g · f(k(y), g) + gh · q(y, gh)− g · q(y, g)]

= g−1 · (ϕ(gh) − ϕ(g)).
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It follows from (4.11) that ϕ(h) generates a group automorphism θ ∈
Aut(Ef ;A) defined by θ(h, a) = (h, a− ϕ(h−1)) (see Appendix 2).

Finally, let us define the measure space isomorphism Φ : X×Ef → X×Ef

as follows:
Φ(x, h, a) = (Rx, k(x)h, a + q(x, h)).

Note that, due to (4.10), Φ can be written in the following form

Φ(x, h, a) = (Rx, k(x)h, a+ h−1 · q(x, e) − ϕ(h−1) + f(k(x), h))

Recall that the translation on X × Ef by the group Ef is defined by

T(h,a)(x, g, b) = (x, (g, b)(h, a)−1)
= (x, gh−1, h · b + f(g, h−1) − f(h, h−1) − h · a)

Claim 1. Φ · T(h,a) = Tθ(h,a) · Φ

We compute

Φ · T(h,a)(x, g, b)

= (Rx, k(x)gh−1, f(g, h−1) + h · b− f(h, h−1) − h · a
+hg−1 · q(x, e) − ϕ(hg−1) + f(k(x), gh−1))

and

Tθ(h,a) · Φ(x, g, b)

= (Rx, k(x)gh−1, h · b + hg−1 · q(x, e) − h · ϕ(g−1) + h · f(k(x), g)
+f(k(x)g, h−1) − f(h, h−1) − h · a+ h · ϕ(h−1))

Note that f(k(x), gh−1) = −f(g, h−1)+h ·f(k(x), g)+f(k(x)g, h−1). To com-
pare the third coordinates in ϕ · T(h,a)(x, g, b) and Tθ(h,a) · Φ(x, g, b), we notice
that their difference is equal to −ϕ(hg−1) + h · ϕ(g−1) − h · ϕ(h−1) = 0. The
claim is proved.

Claim 2. Let x ∈ X and let γ and γ ′ ∈ Γ, be such that γ′Rx = Rγx. Then
Φ(γ(π1)(x, h, a)) = γ′(π)Φ(x, h, a).

To show this, set y = γx. Then

Φ(γ(π1)(x, h, a))

= Φ(y, c1(x, γ)h, bα1
(x, h, γ(c1)) + a)

= (Ry, k(y)c1(x, γ)h, bα1
(x, h, γ(c1)) + a+ q(y, c1(x, γ)h))
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and

γ′(π)Φ(x, h, a)

= γ′(π)(Rx, k(x)h, a + q(x, h))

= (γ′Rx, c(Rx, γ′)k(x)h, bα(Rx, k(x)h, γ′(c)) + a + q(x, h))

Since γ′(c) = R′γ(c1)(R
′)−1, we have that

bα(Rx, k(x)h, γ′(c)) − bα1
(x, h, γ(c1)) = q(γx, c1(x, γ)h) − q(x, h).

Thus the proof of the claim is complete.

Now let us return to the theorem proof. Claims 1 and 2 imply that the
map Φ sends every Γ(π1)-ergodic component to a Γ(π)-ergodic component. We
denote by Φ̃ the map, induced by Φ, from the quotient space (X×Ef )/ξ(Γ(π))
onto (X×Ef)/ξ(Γ(π1)) where ξ(Γ(π)) and ξ(Γ(π1)) are partitions into ergodic
components of Γ(pi) and Γ(π1) respectively. Then the map Φ̃ gives a conjugacy
between the Mackey actions, that is,

Φ̃W(Γ,π1)(h, a) = θ∗(W )(Γ,π)(Φ̃(h, a)), for all (h, a) ∈ Ef .

2

The following statement is an immediate consequence of Theorems 4.2 and
4.4. Recall that any ergodic nonsingular action V of A can be represented as
the Mackey action W(Γ(c),d)(A) where Γ(c) is an ergodic a.f. measure preserv-
ing group of automorphisms, c : X ×Γ → G is a cocycle with dense range and
d ∈ Z1(X ×G× Γ(c), A). We consider the case of a countable group G.

Theorem 4.5. Assume that two ergodic nonsingular actions V and V1 of A
are isomorphic, and they are extendible to actions of Ef(G,A). This means
that for the corresponding Mackey actions W(Γ(c),d)(A) and W(Γ(c1),d1)(A), there
exists an automorphism R′ on X × G such that R′[Γ(c1)](R

′)−1 = [Γ(c)] and
d ◦ R′ is Γ(c1)-cohomologous to d1. Then the actions of Ef extended from
W(Γ(c),d)(A) and W(Γ(c1),d1)(A) are isomorphic if and only if R′ is of the skew
product form, i.e. R′(x, h) = (Rx, k(x)h).

Proof. It follows from Theorem 2.4 that the Mackey actions W(Γ(c),d)(A)
and W(Γ(c1),d1)(A) can be chosen such that d ∈ I(f, c) and d1 ∈ I(f, c1), i.e.
d = bα and d1 = bα1

. Therefore, the automorphism R′ satisfies the conditions
of Theorem 4.4, and we get that the theorem holds. 2
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Remark 4.6. It is not difficult to point out nonisomorphic actions of Ef(G,A)
that have isomorphic actions of A. Assume, for simplicity, that G and A are
countable groups. For every f ∈ Z2(G,A) consider a Bernoulli action U of
Ef with infinite entropy. Then the subgroup U(e, A) also has infinite entropy.
Therefore if f1 and f2 non-cohomologous (i.e. Ef1

and Ef2
are nonisomorphic)

the corresponding Bernoulli actions U1(e, A) and U2(e, A) of A are isomorphic.

Appendix 1

To complete our study of the associated action W(Γ(c),d)(R) described in Sec-
tion 3, let us find the explicit form of Q. It follows immediately from ergodicity
of Γ(c) that Q is ergodic. Denote Is = [α−s, α−s+1), then I0 = [1, α). Note
that if λ−1

1 ∈ Is, then λ−1
2 ∈ Is−1 because αIs = Is−1 and αλ−1

1 = λ−1
2 . Find a

formula for s, in terms of λ1λ2, such that λ−1
1 ∈ Is.

Lemma A1.1.

s = 1 +

[

log λ1

logα

]

.

Proof. We have that α−s ≤ λ−1
1 < α−s+1, then

λs
2 ≤ λs−1

1 < λs−1
2 λ1 (A1.1)

¿From the left inequality in (A1.1), s(log λ1 − logλ2) ≥ logλ1 and

s ≥

[

log λ1

logα

]

.

¿From the right inequality in (A1.1),

s(log λ1 − logλ2) ≤ 2 logλ1 − logλ2,

s ≤ 1 +
log λ1

logα
.

Hence

s = 1 +

[

log λ1

logα

]

.

�

To clarify the definition of Q, we note that the map l1 : p 7→ λ−1
1 p sends

I0 = [1, α) onto [λ−1
1 , λ−1

2 ) and this interval has a non-empty intersection with

Is and Is−1. Let r ∈ I0 be such that rλ−1
1 = α−s+1. Then [1, r)

l1−→ [λ−1
1 , α−s+1)

and [r, α)
l1−→ [α−s+1, α−s+2). By definition of Q, we get

Qp =

{

qp, 1 ≤ p < r
α−1qp, r ≤ p < α

(A1.2)
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where q = αsλ−1
1 . Then Q is the automorphism of I0 = [1, α) such that

Q : [1, r) → [q, α) and Q : [r, α) → [1, q).
Note that our assumption on λ1, λ2 implies that r 6= q and log q, logα are

rationally independent.
In fact, the map Q depends on two parameters (q, α) (or (q, r)) which in

turn can be written in terms of λ1 and λ2. If we identify [1, α) and the circle S,
of the circumference α, then Q can be represented as a homeomorphism of S.
The dynamics of Q is completely determined by the following theorem proved
by M. Misiurewicz.

Theorem A1.2. The rotation number of Q on S is ρ = (logα)−1 log q.

It follows from the theorem that Q is a minimal homeomorphism of S be-
cause ρ is irrational. In particular, Qn is ergodic for every n ∈ N .

Appendix 2: on automorphisms of group
extensions

Let 0 −→ A
i

−→ E
j

−→ G −→ 1 be a group extension of an abelian group A
by G. If q : G→ E is a normalized section of E, j ◦ q = id, q(e) = e, then we
denote g · a = q(g)aq(g)−1. Now we are going to describe the group Aut(E;A)
of all Borel (continuous) group automorphisms of E that leave A fixed. Let
Z1(G,A) denote the group of algebraic 1-cocycles, i.e. p ∈ Z1(G,A) if and
only if p(gh) = h−1 · p(g)p(h) and p(e) = e.

Theorem A2.1. Assume that G ”acts” freely on A, i.e. if g · a = a for some
a 6= 0, then g = e. Then θ ∈ Aut(E;A) if and only if there exists p ∈ Z1(G,A)
such that

θ(g, a) = (g, a+ p(g)). (A2.1)

Proof. Let θ be as in (A2.1). Then, it is straightforward to check that
θ ∈ Aut(E;A):

θ[q(g1)a1q(g2)a2] = θ[q(g1)q(g2)(g
−1
2 · a1)a2]

= θ[q(g1g2)f(g1, g2)(g
−1
2 · a1)a2]

= q(g1g2)f(g1, g2)(g
−1
2 · a1)a2p(g1g2)

= q(g1)q(g2)(g
−1
2 · a1p(g1))a2p(g2)

= [q(g1)a1p(g1)][q(g2)a2p(g2)]

= θ[q(g1)a1]θ[q(g2)a2]

and

θ[(q(g)a)−1] = θ[q(g)−1g · a−1]
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= θ[q(g−1)f(g, g−1)−1g · a−1]

= q(g−1)f(g, g−1)−1(g · a−1) · p(g−1)

= q(g)−1(g · a−1)p(g−1))

= (ap(g))−1q(g)−1

= θ[q(g)ap(g)]−1.

Conversely, let θ ∈ Aut(E;A). Denote θ[q(g)a] = q(g ′)a′ where g′ =
g′(g, a), a′ = a′(g, a). It is easily seen that for any q(g)a ∈ E and b ∈ A

(q(g)a)b(q(g)a)−1 = g · b.

Thus
θ[(q(g)a)b(q(g)a)−1] = θ(g · b) = g · b.

On the other hand,

theta[(q(g)a)b(q(g)a)−1] = (q(g′)a′)b(q(g′)a′)−1

= g · b.

Therefore g · b = g′ · b which implies g′ = g. Now we can denote θ[q(g)] =
q(g)p(g) where p(g) ∈ A. Then

θ[q(g)a] = θ[q(g)]θ[a] = q(g)ap(g).

It remains to check that p ∈ Z1(G,A). The fact that p(e) = 0 is obvious. Take
g1, g2 ∈ G, then

θ[q(g1)q(g2)] = q(g1g2)f(g1, g2)p(g1g2) (A2.2)

and

θ[q(g1)]θ[q(g2)] = [q(g1)p(g1)][q(g2)p(g2)]

= q(g1g2)f(g1, g2)(g
−1
2 · p(g1))p(g2).

Then (A2.2) and the last relation show that p(g) ∈ Z1(G,A). �
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