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Abstract. Let β > 1, we show that if 1 has a finite greedy expansion in
base β, 1=b1/β + b2/β2 + . . . bn/βn with b1 ≥ bi ≥ 1 for i = 1, 2, . . . , n, then
given an infinite coin toss, one can associate a new β-expansion of a point x

in [0,
bβc
β−1

]. We show that all such expansions can be seen as realizations of an

appropriate Markov Chain. We also discuss the uniqueness of the β-expansion
of 1.

1. Introduction

Let β > 1 be a non-integer. There are two well-known expansions of numbers x

in [0, bβc
β−1 ] of the form,

x =

∞
∑

i=1

bi/β
i,

with bi ∈ {0, 1, . . . , bβc}. The largest in lexicographical order is the greedy expan-

sion; [P], [R1], [R2], and the smallest is the lazy expansion; [JS], [EJK]. The greedy
expansion is obtained by iterating the transformation Tβ defined on [0, bβc/(β − 1)]
by

Tβ(x) =







βx (mod 1), 0 ≤ x < 1,

βx− bβc, 1 ≤ x ≤ bβc/(β − 1).

The lazy expansion is obtained by iterating the map Sβ on [0, bβc/(β − 1)] →
[0, bβc/(β − 1)], and defined by

Sβ(x) = βx − d for x ∈ ∆(d),

where

∆(0) =

[

0,
bβc

β(β − 1)

]

,

and

∆(d) =

(

bβc

β − 1
−

(bβc − d+ 1

β
,

bβc

β − 1
−

bβc − d

β

]

=

(

bβc

β(β − 1)
+
d− 1

β
,

bβc

β(β − 1)
+
d

β

]

, d ∈ {1, 2, . . . , bβc}.
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We denote by µ, the Parry measure (see [P],[G]) on [0, bβc/(β − 1)] which is ab-
solutely continous with respect to Lebesque measure λ, and with density

hβ(x) =







1
F (β)

∑∞
n=0

1
βn 1[0,T n(1))(x) 0 ≤ x < 1,

0 1 ≤ x ≤ bβc/(β − 1),

where F (β) =
∫ 1

0 (
∑

x<T n(1)
1

βn )dx is a normalizing constant.

Define ψ : [0, bβc/(β − 1)) → (0, bβc/(β − 1)] by

ψ(x) =
bβc

β − 1
− x,

and consider the measure ρ defined on [0, bβc/(β − 1)] by ρ(A) = µ(ψ(A)) for every
measurable set A. Then it is easy to see ([DK1]) that ψ is a measurable isomorphism
between ([0, bβc/(β − 1)] , µ, Tβ) and ([0, bβc/(β − 1)] , ρ, Sβ).

In [DK2], a random mixture of the greedy and the lazy expansions was in-
troduced, and it was shown that for special values of β, the underlying random
β-transformation is isomorphic to a mixing Markov Chain. The result was shown
for β satisfying β2 = nβ + k (with 1 ≤ k ≤ n) and βn = βn−1 + · · · + β + 1. In
this paper we show that the Markov property holds for all values of β satisfying
βn = b1β

n−1 + b2β
n−2 + . . . + bn−1β + bn, with b1 ≥ bi ≥ 1, i = 1, . . . n. We first

outline the random procedure just mentioned.

If we super impose the greedy map and the corresponding lazy map on [0, bβc/(β−
1)], we get bβc overlapping regions of the form

S` =

[

`

β
,

bβc

β(β − 1)
+
`− 1

β

]

, ` = 1, . . . , bβc,

which we will refer to as switch regions. On S`, the greedy map assigns the digit
`, while the lazy map assigns the digit ` − 1. Outside these switch regions both
maps are identical, and hence they assign the same digits. We will now define a
new random expansion in base β by randomizing the choice of the map used in the
switch regions. So, whenever x belongs to a switch region we flip a coin to decide
which map will be applied to x, and hence which digit will be assigned. To be more
precise, we partition the interval [0, bβc/(β−1)] into switch regions S` and equality

regions E`, where

E` =

(

bβc

β(β − 1)
+
`− 1

β
,
`+ 1

β

)

, ` = 1, . . . , bβc − 1,

E0 =

[

0,
1

β

)

and Ebβc =

(

bβc

β(β − 1)
+

bβc − 1

β
,

bβc

β − 1

]

.

Let

S = ∪
bβc
`=1S`, and E = ∪

bβc
`=0E`,

and consider Ω = {0, 1}N with product σ-algebra. Let σ : Ω → Ω be the left shift,
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and define K : Ω × [0, bβc/(β − 1)] → Ω × [0, bβc/(β − 1)] by

K(ω, x) =























(ω, βx− `) x ∈ E`, ` = 0, 1, . . . , bβc,

(σ(ω), βx − `) x ∈ S` and ω1 = 1, ` = 1, . . . , bβc,

(σ(ω), βx − `+ 1) x ∈ S` and ω1 = 0, ` = 1, . . . , bβc.

(1)

The elements of Ω represent the coin tosses (‘heads’=1 and ‘tails’=0) used every
time the orbit hits a switch region. We assume that the probability that the coin
lands heads is p with 0 ≤ p ≤ 1. Let

d1 = d1(ω, x) =















` if x ∈ E`, ` = 0, 1, . . . , bβc,
or (ω, x) ∈ {ω1 = 1} × S`, ` = 1, 2, . . . , bβc,

`− 1 if (ω, x) ∈ {ω1 = 0} × S`, ` = 1, 2, . . . , bβc,

then

K(ω, x) =







(ω, βx− d1) if x ∈ E,

(σ(ω), βx − d1) if x ∈ S.

In Section 2, we use this dynamical view to give necessary and sufficient condi-
tions for 1 to have a unique β-expansion. These necessary and sufficient conditions
were also obtained independently, and by a different method in [KL, Theorem 3.1].
In Section 3, we extend the proof in [DK2] showing the Markov property for all
bases β satisfying βn = b1β

n−1 + b2β
n−2 + . . . + bn−1β + bn, with b1 ≥ bi ≥ 1,

i = 1, . . . n.

2. Uniqueness of the β-expansion of 1

Using the same notation as in the previous section, we first observe that 1 has a
unique β-expansion if and only if T n

β 1 ∈ Ebn+1
for all n ≥ 0. Further, 1 ∈ Sbβc∪Ebβc,

and 1 ∈ Ebβc if and only if b1
β−1 − 1 ∈ E0. The following proposition gives a

characterization of each case in terms of the second digit of the greedy expansion
of 1.

Proposition 1. Suppose 1 has a finite or infinite greedy expansion of the form

1 = b1/β + b2/β
2 + . . . .

(i) If bi = 0 for all i ≥ 3, then 1 ∈ Eb1 if and only if b2 ≥ 2. Moreover, if b2 = 1,

then 1 = bβc
β−1 − 1

β
.

(ii) If bi ≥ 1 for some i ≥ 3, then 1 ∈ Eb1 if and only if b2 ≥ 1.

Proof. First observe that bβc = b1, and that 1 = b1
β

+ b2
β2 + 1

β2T
2
β1. The latter implies

that β2 − b1β = b2 + T 2
β1. Now, by definition 1 ∈ Eb1 if and only if 1 > b1

β−1 − 1
β
,

or equivalently β2 − b1β > 1.
In case (i), we have T 2

β1 = 0 which implies that β2 − b1β = b2. Hence, 1 ∈ Eb1

if and only if b2 ≥ 2. If b2 = 1, then β2 − b1β = 1; equivalently, 1 = bβc
β−1 − 1

β
.

In case (ii), we have that 0 < T 2
β1 < 1. Hence, β2 − b1β = b2 + T 2

β1 > 1 if and
only if b2 ≥ 1. �
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Before we proceed to the characterization of the uniqueness of the β-expansion
of 1, we need the following simple lemma.

Lemma 1. Suppose 1 has a finite or infinite greedy expansion of the form 1 =
b1/β+ b2/β

2 + . . . . If bn+1 ≥ 1, then T n
β 1 ∈ Ebn+1

if and only if T n+1
β 1 > b1

β−1 − 1.

Proof. Notice that T n
β 1 = bn+1

β
+ 1

β
Tn+1

β 1. Since Tn+1
β 1 < 1, we have that

Tn
β 1 < bn+1+1

β
. Thus, Tn

β 1 ∈ Ebn+1
if and only if T n

β 1 > b1
β(β−1) + bn+1−1

β
. Rewriting

one gets that T n
β 1 ∈ Ebn+1

if and only if T n+1
β 1 > b1

β−1 − 1. �

Note that if bn+1 = 0, then Tn
β 1 ∈ E0.

The following theorem is an immediate consequence of the above lemma. We
remark that this theorem was obtained independently, and via other methods in
[KL, Theorem 3.1].

Theorem 1. Let β > 1, and suppose that 1 has an infinite greedy expansion of the

form 1 = b1/β + b2/β
2 + . . . . Then 1 has a unique expansion in base β if and only

if for all n ≥ 1 with bn+1 ≥ 1, we have T n+1
β 1 > b1

β−1 − 1.

Note that if 1 has a finite greedy expansion, then 1 has infinitely many expansions
in base β.

Corollary 1. If 1 has an infinite greedy expansion of the form 1 = b1/β+ b2/β
2 +

. . . , with bi ≥ 1 for all i ≥ 1. Then, 1 has a unique β-expansion.

Proof. Since b2 ≥ 1, it follows from Proposition 1 that 1 ∈ Eb1 , and hence

ψ(1) = b1
β−1 − 1 ∈ E0. Now, bi ≥ 1 for all i ≥ 1, implies that T n

β 1 > bn+1

β
> 1

β
.

Hence, Tn
β 1 > b1

β−1 − 1, for all n ≥ 1. The result follows from Theorem 1. �

Corollary 2. If 1 has a unique β-expansion, then there exists k ≥ 0 such that in

the greedy expansion of 1, every block of consecutive zeros consists of at most k
terms.

Proof. Let 1 = b1/β + b2/β
2 + . . . be the greedy expansion, then by Theorem 1

we have b1
β−1 − 1 < 1

β
. Hence, there exists a k such that 1

βk+1 <
b1

β−1 − 1 < 1
βk . If

bi−1bi . . . bj is a block with bi−1 ≥ 1, bi = . . . = bj = 0 and j − i+ 1 ≥ k + 1, then

T i−1
β 1 < 1

βk+1 <
b1

β−1 − 1, contradicting Theorem 1. �

Another immediate Corollary of Theorem 1, and Proposition 1 is the following.

Corollary 3. Suppose 1 has an infinite greedy expansion of the form 1 = b1/β +
b2/β

2+. . . , with b2 ≥ 1. Let k ≥ 1 be the unique integer such that 1
βk+1 <

b1
β−1−1 <

1
βk . If in the greedy expansion of 1, every block of consecutive zeros contains at most

k − 1 terms, then 1 has a unique β-expansion.

3. Finite greedy expansion of 1 with positive coefficients, and the

Markov property of the random β-expansions

In this section we assume that the greedy expansion of 1 in base β satisfies
1 = b1/β + b2/β

2 + . . . + bn/β
n with b1 ≥ bi ≥ 1, and n ≥ 3. We begin by

a proposition that is an immediate consequence of Lemma 1, and which plays a
crucial role in finding the Markov partition describing the dynamics of the map K,
as defined in section 1.
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Proposition 2. Suppose 1 has a finite greedy expansion of the form 1 = b1/β +
b2/β

2 + . . . + bn/β
n. If bj ≥ 1 for 1 ≤ j ≤ n, then T i

β1 = Si
β1 ∈ Ebi+1

, i =
0, 1, . . . , n− 2

We remark that under the hypothesis of the above proposition, we also have
that Tn−1

β 1 = Sn−1
β 1 = bn

β
, Tn

β 1 = 0, and Sn
β 1 = 1. Further, by Proposition 1 and

Lemma 1, one has that T i
β1 = Si

β1 > b1
β−1 − 1 for all i = 1, 2, . . . , n − 1. Similarly,

T i
β( b1

β−1 − 1) = Si
β( b1

β−1 − 1) < 1 for all i = 1, 2, . . . , n− 1.

We now extend the procedure descibed in [DK2] for the special cases β satisfying
β2 = nβ+k (with 1 ≤ k ≤ n) and βn = βn−1 + · · ·+β+1. The analysis is a minor
modification of that used in [DK2]. For this reason we shall describe the Markov
Chain underlying the map K, and refer the reader to [DK2] for the details of the
proof.

To find the Markov Chain behind the map K, one starts by refining the partition

E = {E0, S1, E1, . . . , Sb1−1, Eb1−1, Eb1}

of [0, b1
β−1 ], using the orbits of 1 and b1

β−1 −1 under the transformation Tβ. We place

the end points of E togther with T i
β1, T i

β( b1
β−1 − 1), i = 0, 1, . . . b1 − 1, in increasing

order. We use these points to form a new partition C which is a refinement of E .
We write C as

C = {C0, C1, . . . , CL}.

Notice that each element of C is an interval which is either open, half-open or
closed. From the above discussion, we choose C so that C0 = [0, b1

β−1 − 1) ⊂ E0,

CL = (1, b1
β−1 ], and Ei = ∪j∈Li

Cj for i = 0, 1, . . . , b1 with L0, L1, . . . , Lb1 finite

disjoint subsets of {0, 1, . . . L}. Further, for each Si there corresponds exactly one

j ∈ {0, 1, . . . , L} \ ∪b1
i=0Li such that Si = Cj . This is possible since the Tβ orbits

of 1 and b1
β−1 − 1 never hit the interior of ∪b1

i Si. Finally, in case Cj ⊂ Ei, then

Tβ(Cj) = Sβ(Cj) is a finite disjoint union of elements of C, and in case Cj = Si,
then Tβ(Cj) = C0 and Sβ(Cj) = CL.

We now use C, the dynamics of K and Lebesque measure λ, in order to define a
Markov Chain that describes the map K.

Consider the Markov Chain with state space the set I = {c0, c1, . . . , cL}. The
transition probabilities are defined as follows,

pij =























λ(Ci ∩ T
−1
β Cj)/λ(Ci) if Ci ⊂ ∪b1

k=0Ek,

p if Ci ⊂ ∪b1
k=1Sk and j = 0,

1 − p if Ci ⊂ ∪b1
k=1Sk and j = L.

It is easy to see that the above finite state Markov Chain is irreducible and re-
current, hence positively recurrent. Let Y be the space of all realizations of the
Markov Chain, and σY the left shift on Y . Denote by π the stationary distribution,
and by P the stationary probability measure on Y determined by π, and the tran-
sition probabilities pij . For ease of notation, we denote by s1, s2, . . . , sb1 the states
cj1 , · · · , cjb1

corresonding to the switch regions S1, S2, . . . , Sb1 respectively.

We now define P a.e. a map φ : Y → Ω × [0, b1
β−1 ] in the following way.
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For y ∈ Y , we associate a sequence

bj =







i if yj = cl and l ∈ Li,
i if yj = si and yj+1 = c0,
i− 1 if yj = si and yj+1 = cL.

Define a point x ∈
[

0, n
β−1

]

by

x =
∞
∑

j=1

bj
βj
.(2)

To define a point ω ∈ Ω, we first locate the indices ni = ni(y) where the realization
y of the Markov Chain is in state s` for some ` ∈ {1, . . . , b1}. That is, let n1 <
n2 < · · · be the indices such that yni

= s` for some ` = 1, . . . , b1. Define

ωj =

{

1 if ynj+1 = c0,
0 if ynj+1 = cL.

Now set φ(y) = (ω, x), and define a measure ν on Ω × [0, b1
β−1 ] by setting ν =

P ◦ φ−1. We will show that φ is a measurable isomorphism between (Y, P, σY ) and

(Ω× [0, b1
β−1 ], ν,K). The proof is a slight modification of the argument in [DK2]. We

will outline the proof in the form of two lemmas, and refer the reader to [DK2] for
the proofs. These two Lemmas reflect the fact that the dynamics of K is essentially
the same as that of the Markov Chain Y .

Lemma 2. Let y ∈ Y be such that φ(y) = (ω, x). Then,

(i) y1 = ck for some k ∈ ∪b1
i=1Li ⇒ x ∈ Ck.

(ii) y1 = si, y2 = c0 ⇒ x ∈ Si and ω1 = 1 for i = 1, . . . , b1.

(iii) y1 = si, y2 = cL ⇒ x ∈ Si and ω1 = 0 for i = 1, . . . , b1.

Lemma 3. For P a.e. y ∈ Y , we have

ϕ ◦ σY (y) = K ◦ ϕ(y).

Using these two lemmas one can easily show the following theorem

Theorem 2. The map φ is a measurable isomorphism between (Y, P, σY ) and (Ω×
[0, b1

β−1 ], ν,K).

Remark: In this section, we have assumed that the greedy expansion of 1 satisfies
1 = b1/β + b2/β

2 + . . . + bn/β
n with b1 ≥ bi ≥ 1, and n ≥ 3. Using Proposition 1

and Lemma 1, one easily sees that the results of this section also hold in two other
situations. Namely,

(i) when in the greedy expansion of 1 = b1/β+ b2/β
2 + . . .+ bn/β

n, some of the
coefficients are zero, yet T i

β1 ∈ Ebi+1
for all i = 0, 1, . . . n− 2;

(ii) 1 has an ultimately periodic infinite greedy expansion, and the orbit of 1
satisfies T i

β1 ∈ Ebi+1
for all i ≥ 0.
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[JS] Joó, I., Schnitzer, F.J. – Expansions with respect to non-integer bases, Grazer Mathema-

tische Berichte, 329. Karl-Franzens-Universität Graz, Graz, 1996. MR 98e:11090
[G] Gel’fond, A.O. – A common property of number systems, Izv. Akad. Nauk SSSR. Ser.

Mat. 23 (1959) 809–814. MR 22 #702
[KL] Komornik V., Loreti P. – Subexpansions, superexpansions and uniqueness properties in

non-integer bases, preprint.
[P] Parry, W. – On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11

(1960), 401–416. MR 26 #288
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