THE MARKOV PROPERTY OF RANDOM B-EXPANSIONS

KARMA DAJANI

ABSTRACT. Let 8 > 1, we show that if 1 has a finite greedy expansion in
base 3, 1=b1/8 +b2/B% +...bn/B" with by > b; > 1 for i = 1,2,...,n, then
given an infinite coin toss, one can associate a new [-expansion of a point x

in [0, %} ‘We show that all such expansions can be seen as realizations of an
appropriate Markov Chain. We also discuss the uniqueness of the 3-expansion
of 1.

1. INTRODUCTION

Let 8 > 1 be a non-integer. There are two well-known expansions of numbers z
in [0, %] of the form,

i=1

with b; € {0,1,...,|8]}. The largest in lexicographical order is the greedy expan-
sion; [P], [R1], [R2], and the smallest is the lazy expansion; [JS], [EJK]. The greedy
expansion is obtained by iterating the transformation Tz defined on [0, | 3|/(8 — 1)]
by

Bx (mod 1), 0<z <1,

Ts(x) =

Be—|B],  1<z<[B]/(B-1).
The lazy expansion is obtained by iterating the map Sz on [0, |3|/(B—1)] —
0, 18)/(8 — 1)), and defined by

Sg(x) = fr—d for z € A(d),

where
P A
a0 = {0’ 56— 1)] ’
and
18] (8] —d+1 8] |B]—d
A(d) = (5_1 3 I ]
_ (sl d-1 |5 4
- (ﬁ(ﬁ—1)+ g ’ﬁ(ﬁ—l)Jrﬁ]’ de{l,2,.... 6]}
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We denote by p, the Parry measure (see [P],[G]) on [0, |8]/(8 — 1)] which is ab-
solutely continous with respect to Lebesque measure A, and with density

SR Torae) 05 <1
hs(z) =
! 1<a< |8/ 1),

where F(3) = fol (Zx<T"(1) ﬁLn)daz: is a normalizing constant.

Define ¢ : [0, |8]/(6 = 1)) — (0, [8]/(8 — 1)] by

18]
vla) = 55 =,
and consider the measure p defined on [0, |3]|/(8 — 1)] by p(A) = p(¢(A)) for every
measurable set A. Then it is easy to see ([DK1]) that ¢ is a measurable isomorphism
between ([07 Lﬁj/(ﬁ - 1)] ’MvTﬁ) and ([Oa Lﬁj/(ﬁ - 1)} ) Ps Sﬁ)

In [DK2], a random mixture of the greedy and the lazy expansions was in-
troduced, and it was shown that for special values of 3, the underlying random
[-transformation is isomorphic to a mixing Markov Chain. The result was shown
for 3 satisfying f2 = nB+k (with 1 <k <n)and " =p" 1 +...+3+1. In
this paper we show that the Markov property holds for all values of  satisfying
ﬂn = blﬂnil + b26n72 4+ ..+ bn,16 + bn, with by > b; > 1,i=1,...n. We first
outline the random procedure just mentioned.

If we super impose the greedy map and the corresponding lazy map on [0, | 3] /(58—
1)], we get | 3] overlapping regions of the form

e 8 e
B ED R

which we will refer to as switch regions. On Sy, the greedy map assigns the digit
£, while the lazy map assigns the digit £ — 1. Outside these switch regions both
maps are identical, and hence they assign the same digits. We will now define a
new random expansion in base 3 by randomizing the choice of the map used in the
switch regions. So, whenever z belongs to a switch region we flip a coin to decide
which map will be applied to z, and hence which digit will be assigned. To be more
precise, we partition the interval [0, |3]|/(8 —1)] into switch regions S, and equality
regions Ey, where

Se

B 1 e
EZ<6(6—1)+ 5B

), 0=1,...,|8] -1,

A (18l 1Bl-1 18]
EO_[O’B) 4 Bl (5(61)+ 5 B-1

Let
s =uls, and E=UlE,

and consider 2 = {0, 1} with product o-algebra. Let o : Q — Q be the left shift,
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and define K : Q x [0,|8]/(83—1)] — Q x [0, ]3] /(3 —1)] by

(1)
(w, Bz —0) x€FEy, £=0,1,...,]58],

K(w,z) = (o(w), Bz —¥) xeSy and w1 =1,0=1,...,[5],

(c(w),fx—€+1) 2€S, and w1 =0,¢=1,...,|6].

The elements of € represent the coin tosses (‘heads’=1 and ‘tails’=0) used every
time the orbit hits a switch region. We assume that the probability that the coin
lands heads is p with 0 < p < 1. Let

0 if e, £=0,1,...,|0],
or (w,l‘)E{wlzl}XSg, 6:1723 7L/BJ7

—1 if (w,z) €{w1 =0} xSy, £=1,2,...,|8],

then
(w,Bx —dy) if xeF,
K(w,z) =
(oc(w),Px—dy) if z€S8.

In Section 2, we use this dynamical view to give necessary and sufficient condi-
tions for 1 to have a unique B-expansion. These necessary and sufficient conditions
were also obtained independently, and by a different method in [KL, Theorem 3.1].
In Section 3, we extend the proof in [DK2] showing the Markov property for all
bases [ satisfying 8" = b1 4+ o2+ .+ bp1 S+ by, with by > b > 1,
1=1,...n.

2. UNIQUENESS OF THE ($-EXPANSION OF 1

Using the same notation as in the previous section, we first observe that 1 has a
unique [-expansion if and only if 751 € Ep,,, foralln > 0. Further, 1 € S5/ UE| 5/,
and 1 € E|g if and only if ﬁbjl — 1 € Ey. The following proposition gives a
characterization of each case in terms of the second digit of the greedy expansion
of 1.

Proposition 1. Suppose 1 has a finite or infinite greedy expansion of the form
L=0b1/B+b2/B°+....

(i) Ifb; = 0 for alli > 3, then 1 € Ey, if and only if by > 2. Moreover, if ba = 1,

then 1 = % - %

(ii) If b; > 1 for some i > 3, then 1 € Ey, if and only if by > 1.

Proof. First observe that | 3] = b1, and that 1 = %Jr%Jr%Tgl. The latter implies
that 82 — b8 = by + Tgl. Now, by definition 1 € Ej, if and only if 1 > ﬁb_ll — %,
or equivalently 52 — b3 > 1.

In case (i), we have Tgl = 0 which implies that 32 — b3 = bo. Hence, 1 € Ej,
if and only if by > 2. If by = 1, then 32 — by 8 = 1; equivalently, 1 = J25 — 1.

B
In case (ii), we have that 0 < T31 < 1. Hence, 3% — b18 = by + T51 > 1 if and

only if by > 1. O
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Before we proceed to the characterization of the uniqueness of the S-expansion
of 1, we need the following simple lemma.

Lemma 1. Suppose 1 has a finite or infinite greedy expansion of the form 1 =
bi/B+b2/B%+ ... . Ifbyy1 > 1, then Tyl e By

n+1

Proof. Notice that T§1 = b"gl lT"Jrll Since T"+11 < 1, we have that
Th1 < =24 Thus, Th1 € By, if and only if T§1 > 5biss +
one gets that g1 € By, ., if and only if T"Hl > bjl -1 O
Note that if b,,4+1 = 0, then TZ}l € Ey.

The following theorem is an immediate consequence of the above lemma. We

remark that this theorem was obtained independently, and via other methods in
[KL, Theorem 3.1].

n+1 1

. Rewriting

Theorem 1. Let 8 > 1, and suppose that 1 has an infinite greedy expansion of the
form 1 =0b1/B+b2/B%+.... Then 1 has a unique expansion in base 3 if and only
if for all n > 1 with b,y > 1, we have Tg"ﬂl > % —1.

Note that if 1 has a finite greedy expansion, then 1 has infinitely many expansions
in base f.

Corollary 1. If1 has an infinite greedy expansion of the form 1 =by/B8+ba/B* +
., with b; > 1 for all i > 1. Then, 1 has a unique B-expansion.

Proof. Since by > 1, it follows from Proposition 1 that 1 € Ej,, and hence
W(1) = #25 —1 € Ey. Now, b; > 1 for all i > 1, implies that T§1 > 222 > L.
Hence, T§'1 > % — 1, for all n > 1. The result follows from Theorem 1. O

Corollary 2. If1 has a unique (B-expansion, then there exists k > 0 such that in
the greedy expansion of 1, every block of consecutive zeros consists of at most k
terms.

Proof. Let 1 = bl/ﬁ +bo/B% + ... be the greedy expansion then by Theorem 1
we have % -1< ﬁ Hence, there exists a k such that 5k+1 < B L-1< ﬁ—lk If
bi_1b; . bj isablockwwhbl_l >1,b;=...=bj=0and j—i+1>k+1, then
TZ h< BM < B — 1, contradicting Theorem 1. O

Another 1mmed1ate Corollary of Theorem 1, and Proposition 1 is the following.

Corollary 3. Suppose 1 has an infinite greedy expansion of the form 1= bl/ﬁ +
bg/ﬁ2 .., withby > 1. Let k > 1 be the unique integer such that ﬁkﬂ < B L-1<
ﬁ fin the greedy expansion of 1, every block of consecutive zeros contains at most
k — 1 terms, then 1 has a unique B-expansion.

3. FINITE GREEDY EXPANSION OF 1 WITH POSITIVE COEFFICIENTS, AND THE
MARKOV PROPERTY OF THE RANDOM ﬂ—EXPANSIONS

In this section we assume that the greedy expansion of 1 in base 3 satisfies
1 =0/B+by/B+ ...+ b,/B" with by > b; > 1, and n > 3. We begin by
a proposition that is an immediate consequence of Lemma 1, and which plays a
crucial role in finding the Markov partition describing the dynamics of the map K,
as defined in section 1.
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Proposition 2. Suppose 1 has a finite greedy expansion of the form 1 = by/8 +
ba/B? + ...+ ba/B" Ifbj > 1 for 1 < j < n, then Tl = Shl € E
0,1,...,n—2

it1r U=

We remark that under the hypothesis of the above proposition, we also have
that Té’*ll = 5’5711 = %, T§1 =0, and Sj1 = 1. Further, by Proposition 1 and
Lemma 1, one has that Tj1 = 551 > 45 — 1 for all i = 1,2,...,n — 1. Similarly,
Tz — 1) =Sh(gg —1) <lforalli=1,2,....n— 1L

We now extend the procedure descibed in [DK2] for the special cases 3 satisfying
B%=nB+k (with1 <k <n)and 8" = "1 +...+ B+ 1. The analysis is a minor
modification of that used in [DK2]. For this reason we shall describe the Markov
Chain underlying the map K, and refer the reader to [DK2] for the details of the
proof.

To find the Markov Chain behind the map K, one starts by refining the partition
&= {EOa Sla Ela cee aSb1—1a Eb1_1’ Ebl}

of [0, %], using the orbits of 1 and ﬁb_ll — 1 under the transformation T;3. We place

the end points of £ togther with T41, Té(ﬁbjl —1),i=0,1,...b; — 1, in increasing
order. We use these points to form a new partition C which is a refinement of £.
We write C as

C={Co,Cy,...,CL}.

Notice that each element of C is an interval which is either open, half-open or
closed. From the above discussion, we choose C so that Cy = [0, % —1) C Ey,

Cr = (1,324}, and E; = Ujer,Cy for i = 0,1,... by with Lo, L1, ..., Ly, finite
disjoint subsets of {0,1,...L}. Further, for each S; there corresponds exactly one
je{o,1,...,L}\ Ui-’;OLi such that S; = Cj. This is possible since the Tz orbits
of 1 and ﬁbjl — 1 never hit the interior of U?l S;. Finally, in case C; C E;, then
T3(C;) = Sp(Cj) is a finite disjoint union of elements of C, and in case C; = S;,
then Tﬁ(Cj) = CO and Sﬁ(C]> = OL.

We now use C, the dynamics of K and Lebesque measure )\, in order to define a
Markov Chain that describes the map K.

Consider the Markov Chain with state space the set Z = {cp,c1,...,cr}. The

transition probabilities are defined as follows,

)\(C‘z n Tﬁ_lC’])/x\(CZ) if C;C UZIZOE}C,
Dij = p if C; C UzlzlSk andj =0,

1—p if C; Uy, Sy and j = L.

It is easy to see that the above finite state Markov Chain is irreducible and re-
current, hence positively recurrent. Let Y be the space of all realizations of the
Markov Chain, and oy the left shift on Y. Denote by 7 the stationary distribution,
and by P the stationary probability measure on Y determined by 7, and the tran-
sition probabilities p;;. For ease of notation, we denote by s1, s2,... , s, the states
Cjyy o 5 Cj,, corresonding to the switch regions Sy, Sz, ... , Sy, respectively.

We now define P a.e. amap ¢:Y — Q x [0, %] in the following way.
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For y € Y, we associate a sequence

i if yj=candle L;,
bj = ) if Yj = S and Yj+1 = Co,
1—1 if Y = S and Yj+1 = CL-

Define a point x € [0, %} by

(2) xzzb—?.

j=1

To define a point w € Q, we first locate the indices n; = n;(y) where the realization
y of the Markov Chain is in state sy for some ¢ € {1,...,b;}. That is, let n; <
ng < --- be the indices such that y,, = sy for some £ =1,... ,b;. Define

wo = 4 1 i yn=co,
’ 0 if yp;41=cr.

Now set ¢(y) = (w,z), and define a measure v on Q x [0, %] by setting v =
Po¢~t. We will show that ¢ is a measurable isomorphism between (Y, P, oy ) and
(@ x]o, %], v, K). The proof is a slight modification of the argument in [DK2]. We
will outline the proof in the form of two lemmas, and refer the reader to [DK2] for
the proofs. These two Lemmas reflect the fact that the dynamics of K is essentially

the same as that of the Markov Chain Y.

Lemma 2. Lety € Y be such that ¢(y) = (w,z). Then,
(i) y1 = ¢ for some k € U?lzlLi = x € (k.
(i) y1 =84, y2=c0 = x€S; andwy; =1 fori=1,... b;.

(i) yp =85, y2=cp = x€8S; andwy =0 fori=1,...,b;.

Lemma 3. For P a.e. y €Y, we have

pooy(y) = Kop(y)
Using these two lemmas one can easily show the following theorem

Theorem 2. The map ¢ is a measurable isomorphism between (Y, P,oy) and (X
[0, %], v, K).
Remark: In this section, we have assumed that the greedy expansion of 1 satisfies
1="0b1/8+b2/B%+ ...+ b,/B" with by > b; > 1, and n > 3. Using Proposition 1
and Lemma 1, one easily sees that the results of this section also hold in two other
situations. Namely,
(i) when in the greedy expansion of 1 = by/3+ba/3? +...+b, /", some of the
coefficients are zero, yet Tél € By, foralli=0,1,...n—2;
(ii) 1 has an ultimately periodic infinite greedy expansion, and the orbit of 1
satisfies Tél € Ey,,, foralli>0.

i1
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