THE MARKOV PROPERTY OF RANDOM β -EXPANSIONS

KARMA DAJANI

ABSTRACT. Let $\beta>1$, we show that if 1 has a finite greedy expansion in base β , $1=b_1/\beta+b_2/\beta^2+\dots b_n/\beta^n$ with $b_1\geq b_i\geq 1$ for $i=1,2,\dots,n$, then given an infinite coin toss, one can associate a new β -expansion of a point x in $[0,\frac{\lfloor\beta\rfloor}{\beta-1}]$. We show that all such expansions can be seen as realizations of an appropriate Markov Chain. We also discuss the uniqueness of the β -expansion of 1.

1. Introduction

Let $\beta>1$ be a non-integer. There are two well-known expansions of numbers x in $[0,\frac{|\beta|}{\beta-1}]$ of the form,

$$x = \sum_{i=1}^{\infty} b_i / \beta^i,$$

with $b_i \in \{0, 1, ..., \lfloor \beta \rfloor\}$. The largest in lexicographical order is the *greedy expansion*; [P], [R1], [R2], and the smallest is the *lazy expansion*; [JS], [EJK]. The greedy expansion is obtained by iterating the transformation T_{β} defined on $[0, \lfloor \beta \rfloor/(\beta - 1)]$ by

$$T_{\beta}(x) = \begin{cases} \beta x \pmod{1}, & 0 \le x < 1, \\ \beta x - \lfloor \beta \rfloor, & 1 \le x \le \lfloor \beta \rfloor / (\beta - 1). \end{cases}$$

The lazy expansion is obtained by iterating the map S_{β} on $[0, \lfloor \beta \rfloor/(\beta - 1)] \rightarrow [0, \lfloor \beta \rfloor/(\beta - 1)]$, and defined by

$$S_{\beta}(x) = \beta x - d$$
 for $x \in \Delta(d)$,

where

$$\Delta(0) = \left[0, \frac{\lfloor \beta \rfloor}{\beta(\beta - 1)}\right],$$

and

$$\Delta(d) = \left(\frac{\lfloor \beta \rfloor}{\beta - 1} - \frac{(\lfloor \beta \rfloor - d + 1)}{\beta}, \frac{\lfloor \beta \rfloor}{\beta - 1} - \frac{\lfloor \beta \rfloor - d}{\beta}\right]$$
$$= \left(\frac{\lfloor \beta \rfloor}{\beta(\beta - 1)} + \frac{d - 1}{\beta}, \frac{\lfloor \beta \rfloor}{\beta(\beta - 1)} + \frac{d}{\beta}\right], \quad d \in \{1, 2, \dots, \lfloor \beta \rfloor\}.$$

¹⁹⁹¹ Mathematics Subject Classification. 28D05.

Key words and phrases. greedy expansions, lazy expansions, Markov Chains.

We denote by μ , the *Parry* measure (see [P],[G]) on $[0, \lfloor \beta \rfloor/(\beta - 1)]$ which is absolutely continous with respect to Lebesque measure λ , and with density

$$h_{\beta}(x) = \begin{cases} \frac{1}{F(\beta)} \sum_{n=0}^{\infty} \frac{1}{\beta^n} 1_{[0,T^n(1))}(x) & 0 \le x < 1, \\ 0 & 1 \le x \le \lfloor \beta \rfloor / (\beta - 1), \end{cases}$$

where $F(\beta) = \int_0^1 (\sum_{x < T^n(1)} \frac{1}{\beta^n}) dx$ is a normalizing constant.

Define $\psi : [0, \lfloor \beta \rfloor / (\beta - 1)) \to (0, \lfloor \beta \rfloor / (\beta - 1)]$ by

$$\psi(x) = \frac{\lfloor \beta \rfloor}{\beta - 1} - x,$$

and consider the measure ρ defined on $[0, \lfloor \beta \rfloor/(\beta - 1)]$ by $\rho(A) = \mu(\psi(A))$ for every measurable set A. Then it is easy to see ([DK1]) that ψ is a measurable isomorphism between $([0, \lfloor \beta \rfloor/(\beta - 1)], \mu, T_{\beta})$ and $([0, \lfloor \beta \rfloor/(\beta - 1)], \rho, S_{\beta})$.

In [DK2], a random mixture of the greedy and the lazy expansions was introduced, and it was shown that for special values of β , the underlying random β -transformation is isomorphic to a mixing Markov Chain. The result was shown for β satisfying $\beta^2 = n\beta + k$ (with $1 \le k \le n$) and $\beta^n = \beta^{n-1} + \cdots + \beta + 1$. In this paper we show that the Markov property holds for all values of β satisfying $\beta^n = b_1 \beta^{n-1} + b_2 \beta^{n-2} + \ldots + b_{n-1} \beta + b_n$, with $b_1 \ge b_i \ge 1$, $i = 1, \ldots n$. We first outline the random procedure just mentioned.

If we super impose the greedy map and the corresponding lazy map on $[0, \lfloor \beta \rfloor/(\beta-1)]$, we get $\lfloor \beta \rfloor$ overlapping regions of the form

$$S_{\ell} = \left[\frac{\ell}{\beta}, \frac{\lfloor \beta \rfloor}{\beta(\beta - 1)} + \frac{\ell - 1}{\beta}\right], \quad \ell = 1, \dots, \lfloor \beta \rfloor,$$

which we will refer to as switch regions. On S_{ℓ} , the greedy map assigns the digit ℓ , while the lazy map assigns the digit $\ell-1$. Outside these switch regions both maps are identical, and hence they assign the same digits. We will now define a new random expansion in base β by randomizing the choice of the map used in the switch regions. So, whenever x belongs to a switch region we flip a coin to decide which map will be applied to x, and hence which digit will be assigned. To be more precise, we partition the interval $[0, \lfloor \beta \rfloor/(\beta-1)]$ into switch regions S_{ℓ} and equality regions E_{ℓ} , where

$$E_{\ell} = \left(\frac{\lfloor \beta \rfloor}{\beta(\beta - 1)} + \frac{\ell - 1}{\beta}, \frac{\ell + 1}{\beta}\right), \quad \ell = 1, \dots, \lfloor \beta \rfloor - 1,$$

$$E_0 = \left[0, \frac{1}{\beta}\right)$$
 and $E_{\lfloor \beta \rfloor} = \left(\frac{\lfloor \beta \rfloor}{\beta(\beta - 1)} + \frac{\lfloor \beta \rfloor - 1}{\beta}, \frac{\lfloor \beta \rfloor}{\beta - 1}\right]$.

Let

$$S = \bigcup_{\ell=1}^{\lfloor \beta \rfloor} S_{\ell}, \quad \text{and} \quad E = \bigcup_{\ell=0}^{\lfloor \beta \rfloor} E_{\ell},$$

and consider $\Omega = \{0,1\}^{\mathbb{N}}$ with product σ -algebra. Let $\sigma : \Omega \to \Omega$ be the left shift,

and define $K: \Omega \times [0, |\beta|/(\beta-1)] \to \Omega \times [0, |\beta|/(\beta-1)]$ by

$$K(\omega, x) = \begin{cases} (\omega, \beta x - \ell) & x \in E_{\ell}, \ \ell = 0, 1, \dots, \lfloor \beta \rfloor, \\ (\sigma(\omega), \beta x - \ell) & x \in S_{\ell} \text{ and } \omega_{1} = 1, \ \ell = 1, \dots, \lfloor \beta \rfloor, \\ (\sigma(\omega), \beta x - \ell + 1) & x \in S_{\ell} \text{ and } \omega_{1} = 0, \ \ell = 1, \dots, \lfloor \beta \rfloor. \end{cases}$$

The elements of Ω represent the coin tosses ('heads'=1 and 'tails'=0) used every time the orbit hits a switch region. We assume that the probability that the coin lands heads is p with $0 \le p \le 1$. Let

$$d_1 = d_1(\omega, x) = \begin{cases} \ell & \text{if } x \in E_\ell, \ \ell = 0, 1, \dots, \lfloor \beta \rfloor, \\ & \text{or } (\omega, x) \in \{\omega_1 = 1\} \times S_\ell, \ \ell = 1, 2, \dots, \lfloor \beta \rfloor, \end{cases}$$
en

then

$$K(\omega, x) = \begin{cases} (\omega, \beta x - d_1) & \text{if } x \in E, \\ (\sigma(\omega), \beta x - d_1) & \text{if } x \in S. \end{cases}$$

In Section 2, we use this dynamical view to give necessary and sufficient conditions for 1 to have a unique β -expansion. These necessary and sufficient conditions were also obtained independently, and by a different method in [KL, Theorem 3.1]. In Section 3, we extend the proof in [DK2] showing the Markov property for all bases β satisfying $\beta^n = b_1 \beta^{n-1} + b_2 \beta^{n-2} + \ldots + b_{n-1} \beta + b_n$, with $b_1 \geq b_i \geq 1$, $i=1,\ldots n.$

2. Uniqueness of the β -expansion of 1

Using the same notation as in the previous section, we first observe that 1 has a unique β -expansion if and only if $T^n_{\beta} 1 \in E_{b_{n+1}}$ for all $n \geq 0$. Further, $1 \in S_{\lfloor \beta \rfloor} \cup E_{\lfloor \beta \rfloor}$, and $1 \in E_{\lfloor \beta \rfloor}$ if and only if $\frac{b_1}{\beta-1} - 1 \in E_0$. The following proposition gives a characterization of each case in terms of the second digit of the greedy expansion of 1.

Proposition 1. Suppose 1 has a finite or infinite greedy expansion of the form $1 = b_1/\beta + b_2/\beta^2 + \dots$

- (i) If b_i = 0 for all i ≥ 3, then 1 ∈ E_{b1} if and only if b₂ ≥ 2. Moreover, if b₂ = 1, then 1 = |β|/|β-1| 1/|β|.
 (ii) If b_i ≥ 1 for some i ≥ 3, then 1 ∈ E_{b1} if and only if b₂ ≥ 1.

Proof. First observe that $\lfloor \beta \rfloor = b_1$, and that $1 = \frac{b_1}{\beta} + \frac{b_2}{\beta^2} + \frac{1}{\beta^2} T_{\beta}^2 1$. The latter implies that $\beta^2 - b_1 \beta = b_2 + T_{\beta}^2 1$. Now, by definition $1 \in E_{b_1}$ if and only if $1 > \frac{b_1}{\beta - 1} - \frac{1}{\beta}$, or equivalently $\beta^2 - b_1 \beta > 1$.

In case (i), we have $T_{\beta}^2 1 = 0$ which implies that $\beta^2 - b_1 \beta = b_2$. Hence, $1 \in E_{b_1}$ if and only if $b_2 \geq 2$. If $b_2 = 1$, then $\beta^2 - b_1\beta = 1$; equivalently, $1 = \frac{\lfloor \beta \rfloor}{\beta - 1} - \frac{1}{\beta}$. In case (ii), we have that $0 < T_{\beta}^2 1 < 1$. Hence, $\beta^2 - b_1\beta = b_2 + T_{\beta}^2 1 > 1$ if and

only if $b_2 \geq 1$.

Before we proceed to the characterization of the uniqueness of the β -expansion of 1, we need the following simple lemma.

Lemma 1. Suppose 1 has a finite or infinite greedy expansion of the form $1 = b_1/\beta + b_2/\beta^2 + \dots$ If $b_{n+1} \ge 1$, then $T_{\beta}^n 1 \in E_{b_{n+1}}$ if and only if $T_{\beta}^{n+1} 1 > \frac{b_1}{\beta-1} - 1$.

Proof. Notice that $T^n_{\beta}1 = \frac{b_{n+1}}{\beta} + \frac{1}{\beta}T^{n+1}_{\beta}1$. Since $T^{n+1}_{\beta}1 < 1$, we have that $T^n_{\beta}1 < \frac{b_{n+1}+1}{\beta}$. Thus, $T^n_{\beta}1 \in E_{b_{n+1}}$ if and only if $T^n_{\beta}1 > \frac{b_1}{\beta(\beta-1)} + \frac{b_{n+1}-1}{\beta}$. Rewriting one gets that $T^n_{\beta}1 \in E_{b_{n+1}}$ if and only if $T^{n+1}_{\beta}1 > \frac{b_1}{\beta-1} - 1$.

Note that if $b_{n+1} = 0$, then $T_{\beta}^{n} 1 \in E_{0}$.

The following theorem is an immediate consequence of the above lemma. We remark that this theorem was obtained independently, and via other methods in [KL, Theorem 3.1].

Theorem 1. Let $\beta > 1$, and suppose that 1 has an infinite greedy expansion of the form $1 = b_1/\beta + b_2/\beta^2 + \dots$. Then 1 has a unique expansion in base β if and only if for all $n \ge 1$ with $b_{n+1} \ge 1$, we have $T_{\beta}^{n+1} 1 > \frac{b_1}{\beta - 1} - 1$.

Note that if 1 has a finite greedy expansion, then 1 has infinitely many expansions in base β .

Corollary 1. If 1 has an infinite greedy expansion of the form $1 = b_1/\beta + b_2/\beta^2 + \ldots$, with $b_i \ge 1$ for all $i \ge 1$. Then, 1 has a unique β -expansion.

Proof. Since $b_2 \geq 1$, it follows from Proposition 1 that $1 \in E_{b_1}$, and hence $\psi(1) = \frac{b_1}{\beta - 1} - 1 \in E_0$. Now, $b_i \geq 1$ for all $i \geq 1$, implies that $T_{\beta}^{n_1} > \frac{b_{n+1}}{\beta} > \frac{1}{\beta}$. Hence, $T_{\beta}^{n_1} > \frac{b_1}{\beta - 1} - 1$, for all $n \geq 1$. The result follows from Theorem 1.

Corollary 2. If 1 has a unique β -expansion, then there exists $k \geq 0$ such that in the greedy expansion of 1, every block of consecutive zeros consists of at most k terms.

Proof. Let $1=b_1/\beta+b_2/\beta^2+\ldots$ be the greedy expansion, then by Theorem 1 we have $\frac{b_1}{\beta-1}-1<\frac{1}{\beta}$. Hence, there exists a k such that $\frac{1}{\beta^{k+1}}<\frac{b_1}{\beta-1}-1<\frac{1}{\beta^k}$. If $b_{i-1}b_i\ldots b_j$ is a block with $b_{i-1}\geq 1,\,b_i=\ldots=b_j=0$ and $j-i+1\geq k+1$, then $T_\beta^{i-1}1<\frac{1}{\beta^{k+1}}<\frac{b_1}{\beta-1}-1$, contradicting Theorem 1.

Another immediate Corollary of Theorem 1, and Proposition 1 is the following.

Corollary 3. Suppose 1 has an infinite greedy expansion of the form $1 = b_1/\beta + b_2/\beta^2 + \dots$, with $b_2 \ge 1$. Let $k \ge 1$ be the unique integer such that $\frac{1}{\beta^{k+1}} < \frac{b_1}{\beta-1} - 1 < \frac{1}{\beta^k}$. If in the greedy expansion of 1, every block of consecutive zeros contains at most k-1 terms, then 1 has a unique β -expansion.

3. Finite greedy expansion of 1 with positive coefficients, and the Markov property of the random β -expansions

In this section we assume that the greedy expansion of 1 in base β satisfies $1 = b_1/\beta + b_2/\beta^2 + \ldots + b_n/\beta^n$ with $b_1 \geq b_i \geq 1$, and $n \geq 3$. We begin by a proposition that is an immediate consequence of Lemma 1, and which plays a crucial role in finding the Markov partition describing the dynamics of the map K, as defined in section 1.

Proposition 2. Suppose 1 has a finite greedy expansion of the form $1 = b_1/\beta + b_2/\beta^2 + \ldots + b_n/\beta^n$. If $b_j \geq 1$ for $1 \leq j \leq n$, then $T^i_{\beta}1 = S^i_{\beta}1 \in E_{b_{i+1}}$, $i = 0, 1, \ldots, n-2$

We remark that under the hypothesis of the above proposition, we also have that $T_{\beta}^{n-1}1=S_{\beta}^{n-1}1=\frac{b_n}{\beta}, T_{\beta}^n1=0$, and $S_{\beta}^n1=1$. Further, by Proposition 1 and Lemma 1, one has that $T_{\beta}^i1=S_{\beta}^i1>\frac{b_1}{\beta-1}-1$ for all $i=1,2,\ldots,n-1$. Similarly, $T_{\beta}^i(\frac{b_1}{\beta-1}-1)=S_{\beta}^i(\frac{b_1}{\beta-1}-1)<1$ for all $i=1,2,\ldots,n-1$.

We now extend the procedure descibed in [DK2] for the special cases β satisfying $\beta^2 = n\beta + k$ (with $1 \le k \le n$) and $\beta^n = \beta^{n-1} + \cdots + \beta + 1$. The analysis is a minor modification of that used in [DK2]. For this reason we shall describe the Markov Chain underlying the map K, and refer the reader to [DK2] for the details of the proof.

To find the Markov Chain behind the map K, one starts by refining the partition

$$\mathcal{E} = \{E_0, S_1, E_1, \dots, S_{b_1-1}, E_{b_1-1}, E_{b_1}\}$$

of $[0, \frac{b_1}{\beta-1}]$, using the orbits of 1 and $\frac{b_1}{\beta-1}-1$ under the transformation T_{β} . We place the end points of \mathcal{E} together with $T^i_{\beta}1$, $T^i_{\beta}(\frac{b_1}{\beta-1}-1)$, $i=0,1,\ldots b_1-1$, in increasing order. We use these points to form a new partition \mathcal{C} which is a refinement of \mathcal{E} . We write \mathcal{C} as

$$\mathcal{C} = \{C_0, C_1, \dots, C_L\}.$$

Notice that each element of $\mathcal C$ is an interval which is either open, half-open or closed. From the above discussion, we choose $\mathcal C$ so that $C_0 = [0, \frac{b_1}{\beta-1} - 1) \subset E_0$, $C_L = (1, \frac{b_1}{\beta-1}]$, and $E_i = \cup_{j \in L_i} C_j$ for $i = 0, 1, \ldots, b_1$ with $L_0, L_1, \ldots, L_{b_1}$ finite disjoint subsets of $\{0, 1, \ldots L\}$. Further, for each S_i there corresponds exactly one $j \in \{0, 1, \ldots, L\} \setminus \bigcup_{i=0}^{b_1} L_i$ such that $S_i = C_j$. This is possible since the T_β orbits of 1 and $\frac{b_1}{\beta-1} - 1$ never hit the interior of $\bigcup_i^{b_1} S_i$. Finally, in case $C_j \subset E_i$, then $T_\beta(C_j) = S_\beta(C_j)$ is a finite disjoint union of elements of $\mathcal C$, and in case $C_j = S_i$, then $T_\beta(C_j) = C_0$ and $S_\beta(C_j) = C_L$.

We now use C, the dynamics of K and Lebesque measure λ , in order to define a Markov Chain that describes the map K.

Consider the Markov Chain with state space the set $\mathcal{I} = \{c_0, c_1, \dots, c_L\}$. The transition probabilities are defined as follows,

$$p_{ij} = \begin{cases} \lambda(C_i \cap T_{\beta}^{-1}C_j)/\lambda(C_i) & \text{if } C_i \subset \bigcup_{k=0}^{b_1} E_k, \\ \\ p & \text{if } C_i \subset \bigcup_{k=1}^{b_1} S_k \text{ and } j = 0, \\ \\ 1 - p & \text{if } C_i \subset \bigcup_{k=1}^{b_1} S_k \text{ and } j = L. \end{cases}$$

It is easy to see that the above finite state Markov Chain is irreducible and recurrent, hence positively recurrent. Let Y be the space of all realizations of the Markov Chain, and σ_Y the left shift on Y. Denote by π the stationary distribution, and by P the stationary probability measure on Y determined by π , and the transition probabilities p_{ij} . For ease of notation, we denote by $s_1, s_2, \ldots, s_{b_1}$ the states $c_{j_1}, \cdots, c_{j_{b_1}}$ corresponding to the switch regions $S_1, S_2, \ldots, S_{b_1}$ respectively.

We now define P a.e. a map $\phi: Y \to \Omega \times [0, \frac{b_1}{\beta - 1}]$ in the following way.

For $y \in Y$, we associate a sequence

$$b_j = \begin{cases} i & \text{if } y_j = c_l \text{ and } l \in L_i, \\ i & \text{if } y_j = s_i \text{ and } y_{j+1} = c_0, \\ i - 1 & \text{if } y_j = s_i \text{ and } y_{j+1} = c_L. \end{cases}$$

Define a point $x \in \left[0, \frac{n}{\beta - 1}\right]$ by

$$(2) x = \sum_{j=1}^{\infty} \frac{b_j}{\beta^j}.$$

To define a point $\omega \in \Omega$, we first locate the indices $n_i = n_i(y)$ where the realization y of the Markov Chain is in state s_{ℓ} for some $\ell \in \{1, \ldots, b_1\}$. That is, let $n_1 < \infty$ $n_2 < \cdots$ be the indices such that $y_{n_i} = s_{\ell}$ for some $\ell = 1, \ldots, b_1$. Define

$$\omega_j = \begin{cases} 1 & \text{if } y_{n_j+1} = c_0, \\ 0 & \text{if } y_{n_j+1} = c_L. \end{cases}$$

Now set $\phi(y) = (\omega, x)$, and define a measure ν on $\Omega \times [0, \frac{b_1}{\beta - 1}]$ by setting $\nu =$ $P \circ \phi^{-1}$. We will show that ϕ is a measurable isomorphism between (Y, P, σ_Y) and $(\Omega \times [0, \frac{b_1}{\beta-1}], \nu, K)$. The proof is a slight modification of the argument in [DK2]. We will outline the proof in the form of two lemmas, and refer the reader to [DK2] for the proofs. These two Lemmas reflect the fact that the dynamics of K is essentially the same as that of the Markov Chain Y.

Lemma 2. Let $y \in Y$ be such that $\phi(y) = (\omega, x)$. Then,

- (i) $y_1 = c_k \text{ for some } k \in \bigcup_{i=1}^{b_1} L_i \Rightarrow x \in C_k$. (ii) $y_1 = s_i, y_2 = c_0 \Rightarrow x \in S_i \text{ and } \omega_1 = 1 \text{ for } i = 1, \dots, b_1$.
- (iii) $y_1 = s_i$, $y_2 = c_L \implies x \in S_i$ and $\omega_1 = 0$ for $i = 1, \ldots, b_1$.

Lemma 3. For P a.e. $y \in Y$, we have

$$\varphi \circ \sigma_Y(y) = K \circ \varphi(y).$$

Using these two lemmas one can easily show the following theorem

Theorem 2. The map ϕ is a measurable isomorphism between (Y, P, σ_Y) and $(\Omega \times \sigma_Y)$ $[0, \frac{b_1}{\beta - 1}], \nu, K).$

Remark: In this section, we have assumed that the greedy expansion of 1 satisfies $1 = b_1/\beta + b_2/\beta^2 + \ldots + b_n/\beta^n$ with $b_1 \ge b_i \ge 1$, and $n \ge 3$. Using Proposition 1 and Lemma 1, one easily sees that the results of this section also hold in two other situations. Namely,

- (i) when in the greedy expansion of $1 = b_1/\beta + b_2/\beta^2 + \ldots + b_n/\beta^n$, some of the coefficients are zero, yet $T^i_{\beta} 1 \in E_{b_{i+1}}$ for all $i = 0, 1, \dots, n-2$;
- (ii) 1 has an ultimately periodic infinite greedy expansion, and the orbit of 1 satisfies $T^i_{\beta} 1 \in E_{b_{i+1}}$ for all $i \geq 0$.

References

- [DK1] Dajani, K., Kraaikamp, C. From Greedy to Lazy Expansions, and their driving dynamics, to appear in Expos. Math.
- [DK2] Dajani, K., Kraaikamp, C. On random β -expansions, to appear in ergodic the. and dyn. sys.
- [EJK] Erdös, P., Joó, I. and Komornik, V. Characterization of the unique expansions $1 = \sum_{i=1}^{\infty} q^{-n_i}$ and related problems, Bull. Soc. Math. France **118** (1990), no. 3, 377–390. MR 91j:11006
- [JS] Joó, I., Schnitzer, F.J. Expansions with respect to non-integer bases, Grazer Mathematische Berichte, **329**. Karl-Franzens-Universität Graz, Graz, 1996. MR 98e:11090
- [G] Gel'fond, A.O. A common property of number systems, Izv. Akad. Nauk SSSR. Ser. Mat. 23 (1959) 809–814. MR 22 #702
- [KL] Komornik V., Loreti P. Subexpansions, superexpansions and uniqueness properties in non-integer bases, preprint.
- [P] Parry, W. On the β -expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401–416. MR 26 #288
- [R1] Rényi, A. Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957), 472-493. MR 20 #3843
- [R2] Rényi, A. On algorithms for the generation of real numbers, Magyar Tud. Akad. Mat. Fiz. Oszt. Kzl. 7 (1957), 265–293. MR 20 #4113

Universiteit Utrecht, Fac. Wiskunde en Informatica and MRI, Budapestlaan 6, P.O. Box $80.000,\,3508$ TA Utrecht, the Netherlands

E-mail address: dajani@math.uu.nl