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1 Introduction

Suppose we draw observations

Xi = θi + ε ξi, i = 1, 2, . . . , (1)

where the noise variables ξi’s are independent standard Gaussian and ε > 0 is a small
parameter. The parameter θ = (θ1, θ2 . . .) ∈ `2 is unknown, and the goal is estimate
a linear functional of θ, say Φ = Φ(θ). In the minimax setting, when θ is assumed to
lie in a given symmetric convex set Θ ⊂ `2, this problem was thoroughly investigated
by Ibragimov and Hasminskii (1984). Pinsker (1980) studied the problem of minimax
estimation of θ in `2-norm, for ellipsoidal parameter sets Θ.
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The interest to this problem is motivated by the following. Consider the proto-
typical white noise model:

dXε(t) = f(t)dt + ε dW (t), 0 ≤ t ≤ 1, (2)

where Xt(·) is the noise-corrupted observation process, f(·) ∈ L2([0, 1]) is the un-
known signal, W (t) is a standard Brownian motion and ε > 0 is a small parameter.
The statistical estimation problem is to recover the signal f(t) at a given point t0,
based on the observation Xε(t). The above model arises as the limiting experiment
in different curve estimation problems, where typically ε = n−1/2, with n being the
sample size; see Nussbaum (1996) and Klemelä and Nussbaum (1998) for density
estimation; Brown and Low (1996) for non-parametric regression.

Suppose that φi(·), i = 1, 2, . . ., form an orthonormal basis of L2[0, 1]. Then
the problem can be transformed to the equivalent sequence model (1) in which
Xi =

∫ 1
0 φi(t)dXε(t) are the observations, θi =

∫ 1
0 φi(t)f(t)dt – the unknown Fourier

coefficients and ξi =
∫ 1
0 φi(t)dW (t). Then the signal can be recovered from the

basis expansion f(t) =
∑∞

i=1 θiφi(t), with convergence in L2-sense. If this series
converges pointwisely, signal f(t0) at point t0 is a given linear functional of the
infinitely dimensional normal mean vector θ: f(t0) =

∑∞
i=1 θiφi(t0) = Φt0(θ).

Thinking of estimates such as
∑N̂

i=1 Xiφi(t0), it is often the structure of the
vector θ, such as the rate at which θi → 0, which defines the proper estimates,
rather then the basis functions φi. In an adaptive setting, the choice of N̂ can be
driven by the data Xi. In both cases, the functions φi(t) play a subordinate role,
although in the end they will affect the accuracy of estimation; e.g. |φk(t0)|2’s will
appear in the mean square error of the resulting estimate. Artiles (2001) provides a
good introduction into this kind of problems.

To simplify our approach, we will concentrate on estimating

Φ(θ) =
∞

∑

i=1

θi , θ ∈ `1 . (3)

When the classical trigonometric basis φk(x) = ei2πkx, k = 0,±1, ±2, . . ., is used, a
minor technical adjustment is needed to reduce the problem again to (1) using the
relations θk = θ̄−k, k = ±1,±2, . . . . In this special case we can assume, without
loss of generality, that t0 = 0 (indeed |φk(t)|2 = |φk(0)|2 = 1) so that again our
functional takes on the form (3).

From now on we focus on estimation of the functional (3) based on the model
(1) and assuming that θ ∈ `1. Moreover, in this paper we will be dealing exclusively
with the quadratic risk function

Rε(Φ̂, θ) = E
(ε)
θ (Φ̂ − Φ(θ))2.

Here by E
(ε)
θ we mean the conditional expectation given θ. From now on we suppress

the dependence of the expectation and some other quantities on ε.
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There are basically two approaches most often used to study this problem: the
classical Bayes approach often invoked within the framework of stationary random
processes, and, more recently, the minimax approach which gained popularity after
its use in Pinsker (1980). In fact, Pinsker (1980) combined both approaches, and it
is this interplay that we will discuss next.

In the minimax approach, it is assumed that the vector θ belongs to Θ, a given
compact symmetric subset of `2. To simplify our discussion, consider the special case
of a given hyper-rectangle H = Ha = {θ : |θk| ≤ ak , k = 1, 2, . . .}, for a positive
a = (a1, a2, . . .), ak → 0 as k → ∞, and a general linear estimate Φ̄ =

∑∞
k=1 hkXk.

Assuming that the corresponding series are converging, the minimax risk, under the
restriction θ ∈ Ha, is bounded by

sup
θ∈Ha

Rε(Φ̄, θ) = sup
θ∈Ha

∞
∑

k=1

θ2
k(hk − 1)2 + ε2h2

k ≤
∞
∑

k=1

a2
k(hk − 1)2 + ε2h2

k.

Therefore, a natural choice of a linear estimate is the one for which this upper bound
is minimal:

Φ̂ =
∞
∑

k=1

a2
k

a2
k + ε2

Xk, (4)

with the corresponding maximal risk

sup
θ∈Ha

Rε(Φ̂, θ) ≤ ε2
∞

∑

k=1

a2
k

a2
k + ε2

. (5)

The estimator (4) can be easily seen to be Bayes, with regards to the prior Λa(θ),
according to which θk’s are a priori independent N(0, a2

k)-distributed.
Of course, in the Bayesian framework with Gaussian priors, the Bayes estimates

are always linear. Note further that the expression (4) can be associated with the so
called Wiener filter of the stationary Gaussian process f(t) =

∑

k θke
i2πkt at point

0. The estimation in this setting is called signal filtration. The Bayes risk is also
easy to calculate:

EΛRε(Φ̂, θ) = ε2
∞

∑

i=1

a2
i

a2
i + ε2

. (6)

Note, if the probability (with respect to the prior distribution Λa)

PΛa{θ ∈ Ha} = 1 (7)

then obviously
EΛRε(Φ̂, θ) ≤ sup

θ∈Ha

Rε(Φ̂, θ),

and the estimate Φ̂ would thus be exactly minimax by (5)-(6). Of course, the relation
(7) is, strictly speaking, impossible. However there are many interesting classes Θ
and corresponding sequences a (often a = a(ε), i.e., as distinct from the classical
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Bayes approach, prior depends on ε) for which this relation nearly holds, rendering
that the estimate Φ̂ is asymptotically minimax; cf. Pinsker (1980), Ibragimov and
Hasminskii (1984), Belitser and Levit (1995). Note that in such cases, the estimate
Φ̂ is both Bayes and asymptotically minimax.

Such situation happens for instance for the hyper-rectangle Ha, when ai decrease
exponentially: ai = Q1/2 exp(−γi/2), parameter γ has meaning of the amount of
“smoothness”. In fact, the minimax estimation over Ha is asymptotically equiv-
alent to estimation over Eγ (see Belitser and Levit (1995)): Eγ = Eγ(Q) =

{

θ :
∑∞

i=1 eγiθ2
i ≤ Q

}

. Such exponential ellipsoids in frequency domain correspond to
analytic classes of functions in time domain; cf. Golubev and Levit (1996) in the con-
text of density estimation. More generally, Lepski and Levit (1998) demonstrated
that it is always brought about, in the white noise model, if the sequence ai is rapidly
decreasing. Lepski and Levit (1998) argue that such models are widely applicable,
in particular in the situation when the “true model” is unknown, i.e. in the adaptive
setting.

A momentous conclusion to draw from this discussion, is that, at least in the case
of rapidly (exponentially) decreasing ai there is essentially no significant difference
between the minimax approach to the non-parametric regression and the Bayes filter-
ing of Gaussian stationary process (with analytic realizations), based on the Wiener
filter. Indeed, since the resulting estimates are the same, the difference between
the two approaches, one could argue, is simply a matter of their justification. In
this case, one could think of the two theories of Bayes and minimax non-parametric
estimation as being essentially the same. Note that for other problems, such as
estimation in the `2 norm, this holds even for models with polynomially decreasing
ai. However, for such models the situation is more complicated in the case of linear
real-valued functionals or, equivalently, in the point-wise signal estimation since the
best linear estimates are no longer asymptotically minimax in this case. For the rest
of this paper we will concentrate on the simplest scenario ai = exp(−γi/2).

When the ak’s (or rather smoothness linkage parameter γ) are actually unknown,
a much more realistic and difficult problem ensues, collectively known as adaptive
estimation. The above discussion suggests that one could use either minimax ap-
proach or the Bayes approach to this problem. Until recently, the first of these ap-
proaches appeared to be dominant. Starting with Efromovich and Pinsker (1984),
it gained momentum after a series of contributions of Lepski and his collaborators;
see e.g. Lepski (1992), Lepski and Levit (1998) in the super-smooth case and further
references therein.

Another approach is the one with the Bayes flavor, which we investigate in this
paper. Assume again that the θi’s are a priori independent normally distributed,
θi ∼ N(0, σ2

i (γ0)) where as above σ2
i (γ) = exp(−γi). The exact behavior of the Bayes

estimates Φ̂ = Φ̂γ0 of our functional of interest (3) is derived in the next section.
Next we consider a more complicated situation when the “smoothness” parameter
γ0 will be assumed fixed but unknown. An approach to tackle this problem is
well known in statistics – the empirical Bayes approach, it was first introduced by
Robbins (1955) in the classical parameter estimation problems. Belitser and Ghosal
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(2001) studied a pure Bayesian adaptation approach to a Sobolev-type smoothness
classes by putting a prior on the unknown smoothness, which boils down effectively
to mixing over candidate models.

The idea of the empirical Bayes approach is rather simple and easy to implement.
One passes to the marginal distribution of observations Xi, which are then inde-
pendent normally N(0, ε2 + σ2

i (γ0))-distributed, and tries to estimate the unknown
parameter γ0, using for example the marginalized maximum likelihood estimates.
The estimated value γ̂ is used then to construct the empirical Bayes estimate, say
Φ̂γ̂ , of Φ(θ). Our main result shows that the resulting estimate Φ̂γ̂ is asymptotically
Bayes, when ε → 0, for any “true” but unknown γ0. A peculiar feature of our study
is that the true smoothness parameter γ0 can be consistently estimated by apply-
ing empirical Bayes approach, while in the minimax context this is in general not
possible.

During our presentation of these results at the meeting at CIRM, Luminy in
2001, Y. Golubev posed the following problem: does this approach lead to adaptive
estimates also in the minimax sense, for instance, in the same sense as in Lepski
and Levit (1998). We have not approved or disapproved this hypotheses, which
therefore remains an interesting open question. In this respect, one can think of the
above method as an alternative adaptive estimation procedure based on empirical
Bayes approach. One can try to extend this approach to other statistical models by
constructing such estimators with appropriately chosen prior in those models and
study their asymptotic behavior in the minimax sense.

2 Main results

Recall that the quality of estimation is measured by the following risk function

Rε(Φ̂) = EπEθ

(

Φ̂ − Φ(θ)
)2

,

where π = πγ0 is the following prior distribution on θ = (θ1, θ2, . . .):

θi
ind∼ N(0, σ2

i (γ0)) , i = 1, 2, . . . , (8)

with σ2
i (γ) = e−γi, γ > 0. An appealing aspect of (8) is its analytical tractability; it

is of conjugate form, allowing analytical integration over θ for Bayesian marginaliza-
tion. Exponential structure of variances of the prior distribution facilitates further
the mathematical treatment of the problem.

If Z|Y ∼ N(Y, τ 2) and Y ∼ N(µ, σ2), then

Y |Z ∼ N
(Zσ2 + µτ2

τ2 + σ2
,

τ2σ2

τ2 + σ2

)

,

the marginal distribution of Z is also normal with mean µ and variance τ 2 +σ2. So,
in our case the marginal distribution of X = (X1, X2, . . .) is described as follows:

Xi
ind∼ N(0, ε2 + σ2

i (γ0)) , i = 1, 2, . . . .
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If we knew γ0, we would use the Bayes estimator

Φ̂B =

∞
∑

i=1

θ̂i , with θ̂i =
σ2

i (γ0)Xi

σ2
i (γ0) + ε2

, i = 1, 2, . . . , (9)

which is also minimax over ellipsoid Eγ0 :

Eγ0 = Eγ0(Q) =
{

θ :
∞
∑

i=1

eγ0iθ2
i ≤ Q

}

.

Such exponential ellipsoids in frequency domain correspond to analytic classes of
functions in time domain; more precisely functions f admitting a bounded analytic
continuation into the strip {z ∈ C, |Im(z)| ≤ γ0} and

∫

|f(x + iγ0)|2dx ≤ Q.
In a way, the above framework represents a Bayesian counterpart of the minimax
estimation problem over analytic class with γ0 as “smoothness” parameter.

The corresponding Bayes signal estimator, coming back to the equivalent white
noise model (2) under the trigonometric basis, f̂(t) =

∑

k θ̂ke
i2πkt is in fact the

Wiener filter of a stationary Gaussian process from a white Gaussian noise.
Instead of the Bayes estimator Φ̂B, one can use a somewhat simpler projection

estimator

Φ̃ = Φ̃γ0 =

Nγ0
∑

i=1

Xi , (10)

with Nγ = blog ε−2/γc. The Bayes risk of this estimator, as the next theorem shows,
has the same asymptotic behavior (in the first order as ε → 0)) as the risk of the
Bayes estimator Φ̂B . To avoid unnecessary technicalities in each inequality by Nγ

we will mean either blog ε−2/γc or dlog ε−2/γe (this would not influence the results)
depending on the sign of the inequality; the relation

∣

∣Nγ − 1
γ log ε−2

∣

∣ ≤ 1 will always
hold.

All asymptotic relations and all symbols O and o below refer to, unless otherwise
specified, ε → 0. Further, let E denote the mathematical expectation with respect
to the random element (X, θ).

The following theorem describes the asymptotic performance of both estimators.

Theorem 1. As ε → 0,

Rε(Φ̂B) = Rε(Φ̃γ0)(1 + o(1)) =
ε2 log ε−2

γ0
(1 + o(1)) ,

where the Bayes estimator Φ̂B and the projection estimator Φ̃γ0 are defined by (9)
and (10) respectively.

Proof. We have

Rε(Φ̂B) = E
[

Φ̂B − Φ
]2

= E

[ ∞
∑

k=1

e−γ0kXk

ε2 + e−γ0k
− θk

]2

= E

[ ∞
∑

k=1

εe−γ0kξk − ε2θk

ε2 + e−γ0k

]2

= ε2
∞
∑

k=1

ε2e−γ0k + e−2γ0k

(

ε2 + e−γ0k
)2 .
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Now, evaluate first the term. Note that the function ε2e−γ0x

(

ε2+e−γ0x
)2 is increasing for

x ∈
(

0, xε

]

, with xε = log ε−2

γ0
, and decreasing afterwards. Therefore,

∞
∑

k=1

ε2e−γ0k

(

ε2 + e−γ0k
)2 ≤ ε2e−γ0xε

(

ε2 + e−γ0xε
)2 +

∫ ∞

0

ε2e−γ0xdx
(

ε2 + e−γ0x
)2

=
1

4
+

1

γ0(1 + ε2)
.

In similar manner we evaluate the second term, since function e−2γ0x

(

ε2+e−γ0x
)2 is de-

creasing in x,

∞
∑

k=1

e−2γ0k

(

ε2 + e−γ0k
)2 =

∫ ∞

0

e−2γ0xdx
(

ε2 + e−γ0x
)2 − βε

=
log ε−2

γ0
+

log(1 + ε−2)

γ0
− 1

γ0(1 + ε2)
− βε

=
log ε−2

γ0
+ O(1) ,

because

0 ≤ βε ≤
∫ 1

0

e−2γ0xdx
(

ε2 + e−γ0x
)2 ≤ 1

(1 + ε2)2
.

Collecting all the above relations, we obtain that, as ε → 0,

Rε(Φ̂B) =
ε2 log ε−2

γ0
+ O(ε2) =

ε2 log ε−2

γ0
(1 + o(1)) .

The risk of the estimator Φ̃γ0 is easy to derive:

R(Φ̃γ0) = E
[

Φ̃γ0 − Φ
]2

= E

[ Nγ0
∑

k=1

(Xk − θk) −
∞

∑

k=Nγ0+1

θk

]2

= ε2Nγ0 +

∞
∑

k=Nγ0+1

e−γ0k =
ε2 log ε−2

γ0
+ O(ε2) .

The theorem is proved.

Suppose now that the true γ0 is unknown and we still want to estimate Φ – the
issue of adapting to γ0 rises. We apply the basic empirical Bayes approach (due to
Robbins (1955)), which uses the observed data X to estimate the unknown param-
eter γ0, and than proceeds as in a standard Bayesian analysis. That is, one simply
replaces γ0 in the Bayes estimator for Φ by an estimate γ̂ (for example, obtained as
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the value which (nearly) maximizes the marginal likelihood of X). This straightfor-
ward approach is frequently used and many simulation studies are performed, but
its theoretical properties are usually not so easy to analyze. In traditional minimax
context, when θ is assumed to belong to an ellipsoid Eγ0 of unknown smoothness
γ0, an adaptation problem in Gaussian noise was first studied by Efromovich and
Pinsker (1984).

So, we replace γ0 in the estimator Φ̃ by an estimate γ̂ obtained as the value
which (nearly) maximizes the log of the trimmed marginal likelihood:

log Lε(γ) = log

[ nε
∏

i=1

1
√

2π(ε2 + e−γi)
exp

{

− X2
i

2(ε2 + e−γi)

}

]

,

over the interval [αε,+∞), where nε = dε−2e and the sequence αε > 0, αε → 0 (to
be chosen later) as ε → 0. We need γ̂ to be separated from zero, since, as we will
see in the proofs, γ̂ appears often in denominators.

Exactly, let γ̂ be an estimator satisfying

log Lε(γ̂) ≥ sup
γ≥αε

log Lε(γ) − ε2 .

Notice that it is of no importance whether log Lε(γ) attains maximum over γ ≥ αε

or not. Equivalently, the estimator γ̂ must satisfy

Zε(γ̂) ≤ inf
γ≥αε

Zε(γ) + ε2

with

Zε(γ) = 2 log
[Lε(γ0)

Lε(γ)

]

=
nε
∑

i=1

(

(e−γ0i − e−γi)X2
i

(ε2 + e−γi)(ε2 + e−γ0i)
+ log

[ ε2 + e−γi

ε2 + e−γ0i

]

)

. (11)

The sequence αε > 0 can be any positive sequence converging to zero slowly enough.
As is clear from the proof of Lemma 5, we need a technical requirement for γ̂ to be
bounded from below away from zero at least by a power of 1/ log ε−2; to be exact,
we assume that

αε → 0 and αε ≥
(

log ε−2
)−p

.

for a fixed positive p. This does not restrict any generality in the asymptotic setup.
Indeed, recall that the true γ0 > 0. So for sufficiently small ε we have 0 < αε ≤ γ0

(namely for all ε < ε0(γ0) with αε0 = γ0), which implies in turn that Zε(γ̂) ≤ Zε(γ0).
Now introduce estimator

Φ̂ =

Nγ̂+Mε
∑

i=1

Xi =

Nγ̃
∑

i=1

Xi = Φ̃γ̃ , (12)

where Mε ∈ N is a sequence such that, as ε → 0,

Mε

(

log ε−2
)−1 → 0 and Mε

(

log log ε−2
)−1 → ∞ .

8



For instance, one can take Mε to be the whole part of
(

log log ε−2
)2

. Here γ̃ = B̂γ̂
can be thought of as a correction to the naive empirical Bayes smoothness γ̂ by
shrinking it with the shrinkage factor B̂ = 1

1+Mεγ̂/ log ε−2 .

Below is the main theorem.

Theorem 2. As ε → 0,

Rε(Φ̂) =
ε2 log ε−2

γ0
(1 + o(1)) ,

where the estimator Φ̂ is given by (12).

Remark 1. One can think of the above result as a Bayesian “oracle”. Indeed,
suppose the class of estimators, E = {Φ̃γ , γ > 0}, Φ̃γ =

∑Nγ

i=1 Xi, is given
beforehand. The aim is, on the basis of data, to pick an estimator within the
family E which is of the same quality as the oracle estimator Φ̃γ0 that attains

infΦ̃∈E
R(Φ̃) = R(Φ̃γ0) = ε2 log ε−2

γ0
(1 + o(1)) and has the same asymptotic risk as

the Bayes estimator when γ0 is known. This is exactly what the estimator Φ̂ = Φ̃γ̃

does.

Remark 2. When constructing estimator for Φ, we correct the estimator by adding
the term Mε to Nγ̂ which corresponds to shrinking the empirical Bayes smoothness
γ̂. At first sight this seems to be a technical manipulation, coming from the proof of
the theorem. However, the necessity for shrinking the empirical Bayes smoothness γ̂
stems from the fact that γ̂ is “more likely” to be bigger than γ0 than to be smaller;
see the discussion in Remark 9. Roughly speaking, there is more probability in
“oversmoothness zone” Γ+ = {γ : γ > γ0}, which makes it somewhat more difficult
to separate different γ’s in that zone. By adding Mε to Nγ̂ we effectively shrink γ̂,
i.e. shift it towards “undersmoothness zone” Γ− = {γ : 0 < γ < γ0} (where things
are easier) away from Γ+.

Remark 3. As is easy to see, taking a bigger constant p in the definition of the
sequence αε means a less restrictive requirement on αε. But it has an adverse effect
as well. When we say that a certain relation holds for sufficiently small ε, we mean
that there exists ε0 such that this relation holds for all ε ∈ (0, ε0]. In several such
assertion, a bigger p leads to a smaller ε0. In these assertions the implicit ε0 should
actually depend on the constant p. We will, however, skip this dependence on p to
ease the notations.

Remark 4. Notice that we take the trimmed marginal likelihood corresponding to
nε first number of observations. The observations beyond nε are non-informative,
since the signal there θi, i > nε, is undetectable: the so called signal-to-noise ratio
σi(γ0)

ε2
is small. We can ignore these observations in our inference on γ0. Another

thing is that the log-likelihood log Lε(γ) with ∞ instead of nε blows up to infin-
ity almost surely for all γ > 0, so that the maximization problem over γ does
not make sense. Interestingly, the series, even with ∞ instead of nε, −Zε(γ) =

9



2 log
[

Lε(γ)/ log Lε(γ0)
]

does converge almost surely. Often in the literature, the
sequence model (1) is formulated from the very beginning for n observations with
ε = n−1/2.

Remark 5. We can draw a further correspondence with the minimax estimation
over the exponential ellipsoid of unknown smoothness. Namely, a next interesting
problem would be to study the frequentist property of the constructed adaptive esti-
mator in the minimax context, i.e., how does its maximal risk relates asymptotically
to the minimax risk, under model (1) with θ from an ellipsoid Eγ0 . In fact, for each
γ < γ0 there exists some positive Q = Q(γ, γ0) such that, with πγ0 -probability 1,
θ belongs to the exponential `2-ellipsoid Eγ(Q). The closer γ to γ0, the bigger the
corresponding Q.

3 Technical lemmas

In this section we provide several technical lemmas which we need below.
Recall that γ̂ is a (near) minimizer of Zε(γ) given by (11). The process Zε(γ) is

the sum of two monotone processes

Z1(γ) = Z1(γ) + Z2(γ) .

The first term Z1(γ) is a monotone increasing stochastic process:

Z1(γ) =

nε
∑

i=1

(e−γ0i − e−γi)X2
i

(ε2 + e−γi)(ε2 + e−γ0i)
=

nε
∑

i=1

ai(γ)Y 2
i

with nε = dε−2e,

ai(γ) =
e−γ0i − e−γi

ε2 + e−γi
and Yi =

Xi√
ε2 + e−γ0i

,

the Yi’s are independent standard normal random variables, Z1(γ0) = 0. The second
term Z2(γ) is a deterministic monotone decreasing function:

Z2(γ) =

nε
∑

i=1

log
[ ε2 + e−γi

ε2 + e−γ0i

]

,

with Z2(γ0) = 0. The next lemma gives a uniform minorant for this function for
sufficiently small ε.

Lemma 1. There exist positive constants C, c and ε0 (dependent only on γ0) such
that for all 0 < ε ≤ ε0

Z2(γ) ≥ C
(γ0

γ
− 1

)

(

log ε−2
)2 − c log ε−2 , αε ≤ γ < γ0 .

Z2(γ) ≥ C
(γ0

γ
− 1

)

(

log ε−2
)2

, γ ≥ γ0.
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Proof. Recall that
∣

∣Nγ − 1
γ log ε−2

∣

∣ ≤ 1 and if αε ≤ γ < γ0, then Nγ0 ≤ Nγ and
Nγ ≤ nε for sufficiently small ε due to the restriction on the sequence αε. Using
this, we obtain the following bound

Z2(γ) =

nε
∑

i=1

log
[ ε2 + e−γi

ε2 + e−γ0i

]

≥
Nγ
∑

i=1

log
[ ε2 + e−γi

ε2 + e−γ0i

]

≥
Nγ0
∑

i=1

log
[ e−γi

2e−γ0i

]

+

Nγ
∑

i=Nγ0+1

log
[e−γi

2ε2

]

=

Nγ0
∑

i=1

(

(γ0 − γ)i − log 2
)

+

Nγ
∑

i=Nγ0+1

(

log ε−2 − γi − log 2
)

=

Nγ0
∑

i=1

γ0i −
Nγ
∑

i=1

γi +

Nγ
∑

i=Nγ0+1

log ε−2 − Nγ log 2

for sufficiently small ε. The right hand side of the last inequality is equal to

γ0N
2
γ0

− γN2
γ

2
+ (Nγ − Nγ0) log ε−2 − Nγ log 2

=
γ0 − γ

2γγ0

(

log ε−2
)2 − Nγ0 log 2 − (Nγ − Nγ0) log 2 + O(1)

=
γ0 − γ

2γγ0

(

log ε−2
)2 − log 2

γ0
log ε−2 − γ0 − γ

γγ0
log ε−2 + O(1)

for sufficiently small ε.
For γ ≥ γ0 we have

−Z2(γ) =

nε
∑

i=1

log
[ε2 + e−γ0i

ε2 + e−γi

]

≤
Nγ
∑

i=1

(

log
[e−γ0i

e−γi

]

+ log
[1 + ε2eγ0i

1 + ε2eγi

])

+

Nγ0
∑

i=Nγ+1

log
[2e−γ0i

ε2

]

+

∞
∑

i=Nγ0+1

log
[ε2 + e−γ0i

ε2

]

≤
Nγ
∑

i=1

(γ − γ0)i + (Nγ0 − Nγ) log(2ε−2) +

∞
∑

i=Nγ0+1

log
[

1 +
e−γ0i

ε2

]

The first term is bounded by

(γ − γ0)
Nγ(Nγ + 1)

2
=

γ − γ0

2γ2

(

log ε−2
)2

+ O(1) ,
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the second and third by

γ − γ0

γ0γ
log(2ε−2) + ε−2

∞
∑

i=Nγ0+1

e−γ0i + O(1) =
γ − γ0

γ0γ
log ε−2 + O(1) .

The lemma follows.

The following lemma provides a bound on EZ1(γ).

Lemma 2. For all γ ∈ (0, γ0]

EZ1(γ) =
∞

∑

i=1

ai(γ) ≥ − log ε−2 + 2

γ
.

Proof. We have

−
nε
∑

i=1

ai(γ) =

nε
∑

i=1

e−γi − e−γ0i

ε2 + e−γi
≤

∞
∑

i=1

e−γi

ε2 + e−γi

≤
Nγ
∑

i=1

e−γi

ε2 + e−γi
+

∞
∑

i=Nγ+1

e−γi

ε2 + e−γi

≤ Nγ + ε−2
∞

∑

i=Nγ+1

e−γi ≤ Nγ +
1

γ
.

Introduce

a2(γ)
def
=

nε
∑

i=1

a2
i (γ) =

Var(Zε(γ))

2
.

The following lemma provides bounds on a2(γ).

Lemma 3. There exist positive constants h, H and ε0 = ε0(γ0), such that for all
0 < ε ≤ ε0 and γ ∈ [αε, γ0)

h log ε−2

γ
− 1

γ0 − γ
≤ a2(γ) ≤ H log ε−2

γ
.

Proof. We bound a2(γ) first from above:

a2(γ) =

nε
∑

i=1

a2
i (γ) =

nε
∑

i=1

(e−γ0i − e−γi)2

(ε2 + e−γi)2

≤
Nγ
∑

i=1

1 + Cε−4
∞
∑

Nγ+1

e−2γi ≤ Nγ +
c

γ
≤ (c + 1)Nγ ,

12



Now recall that, by the restriction on the sequence αε, Nγ ≤ nε for sufficiently
small ε. Therefore,

a2(γ) =

nε
∑

i=1

(e−γ0i − e−γi)2

(ε2 + e−γi)2
(13)

≥
Nγ
∑

i=1

e−2γ0i − 2e−(γ0+γ)i + e−2γi

4e−2γi

≥ 1

4
(e2(γ−γ0)Nγ + Nγ) − 1

2

Nγ
∑

i=1

e(γ−γ0)i (14)

for sufficiently small ε. The lemma follows.

Remark 6. The above two lemmas provide bounds for EZ1(γ) and Var
(

Z1(γ)
)

=
Var

(

Zε(γ)
)

only for the case 0 < γ < γ0. In further considerations we will not need
bounds for the case γ > γ0. It is however of some interest to look at the asymptotic
behavior of the process Zε(γ) for γ > γ0. As a matter of fact, both the expectation
and the oscillation (the variance) of the process Zε(γ) become of a much bigger order
compared to the case γ < γ0. Another peculiarity is that this asymptotic behavior
is essentially determined by just one term aNγ (γ)Y 2

Nγ
for each γ > γ0, so one can

not use results based on central limit theorem approximations.
Indeed, we evaluate EZ1(γ) as follows: for γ > γ0,

EZ1(γ) =

nε
∑

i=1

e−γ0i − e−γi

ε2 + e−γi
≥

Nγ
∑

i=1

e−γ0i − e−γi

ε2 + e−γi

≥
Nγ
∑

i=1

( e−γ0i

2e−γi
− 1

)

≥ ce(γ−γ0)Nγ − Nγ

≥ c
(

ε−2
)1−

γ0
γ − log ε−2

γ

for sufficiently small ε. Similarly to (14), we obtain for γ > γ0 that

a2(γ) ≥ 1

4
(e2(γ−γ0)Nγ + Nγ) − 1

2

Nγ
∑

i=1

e(γ−γ0)i

≥ C
(

ε−4
)1−

γ0
γ − c

(

ε−2
)1−

γ0
γ

γ − γ0

for sufficiently small ε.

4 Estimation of smoothness

Although the problem of estimating γ0 is not a primary goal in this paper, it is
interesting on its own right. In fact, from the Bayesian perspective, observations (1)

13



are simply

Xi = e−
γ0i

2 ηi + ε ξi i = 1, 2, . . . ,

where the ηi’s and ξi’s are independent standard normal random variables, γ0 > 0
is unknown parameter. Thus, the Xi’s are independent but linked to each other
through parameter γ0, each observation carries different amount information about
γ0. No wonder that, from the Bayesian perspective, the true smoothness parameter
γ0 can be consistently estimated by applying empirical Bayes approach, while in the
minimax context this is in general not possible. In this section we also discuss shortly
the phenomenon of under- and oversmoothing, which correspond to events {γ̂ < γ0}
and {γ̂ > γ0} with γ̂ being a (near) maximum marginal likelihood estimator of γ0.

First introduce some notations. Denote for nonnegative numbers D and k

bε(k) = bε(k,D) =
γ0(D log log ε−2 + k)

log ε−2
,

K = K(D) = {k ∈ N : bε(k) < 1} = {k ∈ N : k < Nγ0 − D log log ε−2} ,

and for k ∈ K =
{

0, 1, . . . , bNγ0 − D log log ε−2c
}

define finally

γu(k) = γu(k,D, ε) =
γ0

1 − bε(k)
.

Notice that γu(k) ≥ γ0 and γu(k) → γ0 as ε → 0 for all D > 0 and k ∈ K(D).

Lemma 4. For any fixed m > 0 and any D > 4/γ0 there exists ε0 = ε0(γ0,m,D)
such that for all 0 < ε < ε0 and k ∈ K

P
{

Nγ̂ ≤ Nγ0 −
(

k + D log log ε−2
)}

≤ P
{

γ̂ ≥ γu(k)
}

≤ (2/π)m/2
(

log ε−2
)−m

e−γ0mk/2 .

Proof. Using the formula for Nγ , we obtain the following implication:

{

Nγ̂ ≤ Nγ0 −
(

k + D log log ε−2
)

}

⊆
{

γ̂ ≥ γu(k)
}

for k ∈ K. Since 0 = Zε(γ0) = Z1(γ0) + Z2(γ0) and γ̂ is a near minimizer of Zε(γ),
we have further that Zε(γ̂) ≤ Zε(γ0) + ε2 = ε2 for sufficiently small ε. Indeed,
infγ≥αε Zε(γ) ≤ Zε(γ0) if γ0 ≥ αε, which holds for all ε ∈ (0, εγ) with εγ defined by
αεγ = γ0). Therefore

{

γ̂ ≥ γu(k)
}

⊆
{

inf
γ≥γu(k)

Zε(γ) ≤ Zε(γ̂)
}

⊆
{

inf
γ≥γu(k)

Zε(γ) ≤ ε2
}

.

Thus it is sufficient to prove that for any fixed m > 0 and D, D > 4/γ0, there
exists ε0 = ε(γ0,m,D) such that for all ε, 0 < ε ≤ ε0 and k ∈ K

P
{

inf
γ≥γu(k)

Zε(γ) ≤ ε2
}

≤ (2/π)m/2
(

log ε−2
)−m

e−γ0mk/2 . (15)
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Without loss of generality suppose that m ∈ N. Recall that

|Nγ − γ−1 log ε−2| ≤ 1 .

As k ∈ K and γ ≥ γu(k), γ ≥ γu(k) > γ0. Therefore, for any fixed 0 ≤ l ≤ m there
exists a constant c = c(γ0,m) such that for sufficiently small ε

Z1(γ) =

nε
∑

i=1

ai(γ)Y 2
i ≥ aNγ+l(γ)Y 2

Nγ+l

=
e−γ0(Nγ+l) − e−γ(Nγ+l)

ε2 + e−γ(Nγ+l)
Y 2

Nγ+l

≥ c
(

(ε−2)
1−

γ0
γ − 1

)

Y 2
Nγ+l (16)

since Nγ + l ≤ nε for sufficiently small ε. In fact Nγ yields, as one can easily check,
the maxi≥1 ai(γ) up to a constant term.

Notice now that the Yi’s are independent standard normal random variables.
Therefore the following trivial inequality holds for any positive δ and M,m ∈ N:

P
{

max
M≤i≤M+m

Y 2
i ≤ δ2

}

=
(

P
{

Y 2
M ≤ δ2

}

)m
≤ (2/π)m/2δm . (17)

Since process Z1(γ) is monotonically increasing, we have further that
{

inf
γ≥γu(k)

Zε(γ) ≤ ε2
}

⊆
{

inf
γ≥γu(k)

Z1(γ) ≤ sup
γ≥γu(k)

(

− Z2(γ)
)

+ ε2
}

⊆
{

Z1(γu(k)) ≤ sup
γ≥γu(k)

(

− Z2(γ)
)

+ ε2
}

⊆
{

max
Nγu(k)≤i≤Nγu(k)+m

Y 2
i ≤ δ2

}

∪ Aε , (18)

with

Aε = Aε,δ =
{

max
Nγu(k)≤i≤Nγu(k)+m

Y 2
i > δ2, Z1(γu(k)) ≤ sup

γ≥γu(k)

(

− Z2(γ)
)

+ ε2
}

.

By using Lemma 1 and (16), we obtain for the constants C = C(γ0) from Lemma
1 and c = c(γ0,m) from (16)

Aε ⊆
{

c
((

ε−2
)1−

γ0
γu(k) − 1

)

δ2 ≤ C
(

log ε−2
)2

+ ε2
}

⊆
{

eγ0(D log log ε−2+k) ≤ Cc−1
(

log ε−2
)2

δ−2 + c−1ε2δ−2 + 1
}

Take now
δ =

(

log ε−2
)−1

e−γ0k/2 . (19)

Then, if D > 4
γ0

and ε is sufficiently small,

Aε ⊆
{

eγ0(D log log ε−2+k) ≤ Cc−1
(

log ε−2
)2

δ−2 + c−1ε2δ−2 + 1
}

⊆
{(

log ε−2
)Dγ0 ≤ Cc−1

(

log ε−2
)4

+ c−1ε2
(

log ε−2
)2

e−γ0k/2 + e−γ0k
}

= ∅
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and consequently P (Aε) = 0 for sufficiently small ε, i.e. for all ε such that 0 <
ε ≤ ε0(γ0,m,D). Combining this with (17), (18) and (19), we obtain (15), which
completes the proof.

Remark 7. The last lemma characterizes in fact the convergence rate of γ̂ to γ0

from above, the so called “oversmoothing” effect. The result is given in terms of
Nγ , which is suitable in the sequel when proving the main result. We can however
formulate the result for γ̂ as well. For any c > 0 there exists 0 < x0 < 1 such that
(1 − x)−1 ≤ 1 + (1 + c)x for all x ∈ (0, x0). Recall also that in the conditions of the
above lemma Dγ0 > 4. Now fix any c > 0. Then for any k ∈ K we obtain that

{

γ̂ ≥ γu(k)
}

=
{

γ̂ ≥ γ0

1 − bε(k)

}

⊇
{

γ̂ ≥ γ0 + γ0(1 + c)bε(k)
}

⊇
{

log ε−2(γ̂ − γ0) > 4(1 + c)γ0 log log ε−2 + γ2
0k

}

for sufficiently small ε. The precise final assertion is then as follows. For any fixed
m > 0 any D > 4/γ0 and any ν > 0 there exists positive ε0 = ε0(γ0,m,D, ν) such
that for all 0 < ε < ε0 and k ∈ K(D)

P
{

log ε−2(γ̂ − γ0) > γ2
0D(1 + ν) log log ε−2 + γ2

0k
}

≤ (2/π)m/2

(

log ε−2
)m

eγ0mk/2
. (20)

As one can see the rate of convergence of γ̂ to γ0 from above is log ε−2

log log ε−2 (take k = 0).

Remark 8. It is of course desirable to take a big m, but one should relate this to
the corresponding ε0 which depends on m. Tracing the proof of the above lemma,
one can see that the bigger m is, the smaller ε0 becomes: bigger m leads to smaller
constant c in (16), which in turn makes the event Aε impossible only for 0 < ε ≤ ε0

with a smaller ε0.
On the other hand, for a fixed m we can make ε0 bigger by taking a bigger

D = D(m), effectively at a sacrifice in size of the set K(D). As to the constant ν,
the smaller ν we take, the smaller ε0 we get.

In the proof of the following lemma we will make use of the following version of
the result from Freedman (1999).

Proposition 1 (Freedman). Let Ui’s be independent N(0, 1) variables. Let ci’s be
real numbers with c2 =

∑n
i=1 c2

i < ∞. Let ρ > 0 with ρ|ci|/c2 < 1 for all i, and let
V =

∑n
i=1 ci(U

2
i − 1). Then

P{V > ρ} ≤ exp
{

− ρ2/(12c2)
}

and P{V < −ρ} ≤ exp
{

− ρ2/(12c2)
}

.

The corresponding result in Freedman (1999) (appears as Lemma 4 in this paper)
deals with the infinite sums c2 =

∑∞
i=1 c2

i and V =
∑∞

i=1 ci(U
2
i − 1). We skip the

proof of the above proposition because it is exactly the same as the proof of Lemma
4 in Freedman (1999).
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Lemma 5. There exists positive ε0, C0, C and ρ (all depending on γ0 only) such
that for all 0 < ε < ε0

P
{

log ε−2(γ0 − γ̂) ≥ C0

}

≤ C
(

log ε−2
)p

ερ .

Proof. Let u0 = γ0 − C0
log ε−2 , um = αε, um < um−1 < . . . < u1 < u0 and Ii =

[ui, ui−1], i = 1, . . . ,m. Split the interval I =
[

αε, γ0 − C0
log ε−2

]

= ∪m
i=1Ii.

Now, recall that Z1(γ) strictly increasing, Z2(γ) strictly decreasing functions
respectively, and Zε(γ0) = 0.

{

γ̂ ≤ γ0 − C0

(

log ε−2
)−1} ⊆ ∪m

i=1

{

inf
γ∈Ii

Zε(γ) ≤ Zε(γ0) + ε2
}

⊆ ∪m
i=1

{

inf
γ∈Ii

(Z1(γ)) ≤ sup
γ∈Ii

(−Z2(γ)) + ε2
}

= ∪m
i=1

{

Z1(ui) ≤ (−Z2(ui−1)) + ε2
}

.

Introduce the centered version of the process Z1(γ):

Z̄1(γ) = Z1(γ) − EZ1(γ) .

Making use of technical Lemmas 1 and 2, we proceed as follows: for sufficiently
small ε,

∪m
i=1

{

Z1(ui) ≤ (−Z2(ui−1)) + ε2
}

= ∪m
i=1

{

Z̄1(ui) ≤ (−Z2(ui−1)) − EZ1(ui) + ε2
}

⊆ ∪m
i=1

{

Z̄1(ui) ≤ −C(γ0 − ui−1)
(

log ε−2
)2

ui−1
+ c log ε−2 +

log ε−2 + 2

ui
+ ε2

}

= ∪m
i=1Ai ,

say, where constants C = C(γ0) and c = c(γ0) are from Lemma 1.
From the last two relations we have

P
{

log ε−2(γ0 − γ̂) ≥ C0

}

≤
m

∑

i=1

P (Ai) . (21)

Introduce ∆ε =
(

log ε−2
)−p

, where constant p appears in the definition of αε. Now
take the following values of u1, . . . , um−1 (u0 and um are already defined): u1 = γ0/2,
ui = ui−1 +∆ε, i = 2, 3, . . . ,m− 1, so that um−1 −um ≤ ∆ε. We can easily evaluate
the number m = mε:

m ≤ γ0/2

∆ε
+ 2 =

γ0

(

log ε−2
)p

2
+ 2 . (22)

For the first event from the right hand side of (21), we obtain

P (A1) = P
{

Z̄1(u1) ≤ −C(γ0 − u0)
(

log ε−2
)2

u0
+ c log ε−2 +

log ε−2 + 2

u1
+ ε2

}

≤ P
{

Z̄1(u1) ≤ −CC0 log ε−2

γ0
+

(2 + cγ0) log ε−2

γ0
+

4

γ0
+ ε2

}

. (23)
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For sufficiently large C0 > 0 (in fact depending on constants appearing in the bounds
in Lemmas 1 and 3) and sufficiently small ε, by Lemma 3 we have that

(CC0 − 2 − cγ0) log ε−2

γ0
− 4

γ0
− ε2 >

2H log ε−2

γ0
≥ a2(u1) .

Combining (23) with the last relation implies that

P (A1) ≤ P
{

Z̄1(u1) ≤ −a2(u1)
}

. (24)

Recall that

Z̄1(ui) = Z1(ui) − EZ1(ui) =

nε
∑

k=1

ak(ui)(Y
2
k − 1) ,

a2(γ) =
∑nε

k=1 a2
k(γ), and |ak(γ)| ≤ 1 for all k and all 0 < γ < γ0. Therefore for

all ui’s and all k, a2(ui)|ak(ui)| ≤ a2(ui) so that we are in the position to apply
Proposition 1 to the right hand side of (24):

P (A1) ≤ P
{

Z1(u1) − EZ1(u1) ≤ −a2(u1)
}

≤ exp
{

− a2(u1)

12

}

. (25)

By Lemma 2 we bound a2(u1):

a2(u1) ≥
h log ε−2

u1
− 1

γ0 − u1
=

2h log ε−2

γ0
− 2

γ0

Using the last two relation, we obtain that

P (A1) ≤ exp
{

− a2(u1)

12

}

≤ C1ε
ρ (26)

with C1 = e1/(6γ0), ρ = h/(3γ0), for sufficiently large C0 and sufficiently small ε.
Now, for i = 2, . . . ,m we have obviously

P (Ai) = P
{

Z̄1(ui) ≤ −C(γ0 − ui−1)
(

log ε−2
)2

ui−1
+ c log ε−2 +

log ε−2 + 2

ui
+ ε2

}

≤ P
{

Z̄1(ui) ≤ −C(γ0/2)
(

log ε−2
)2

ui−1
+ c log ε−2 +

log ε−2 + 2

ui
+ ε2

}

.

Since ∆ε ≤ αε = um < um−1 < · · · < u2, we have for i = 2, . . . ,m

−C(γ0/2)
(

log ε−2
)2

ui−1
+

log ε−2 + 2

ui
+ c log ε−2 + ε2

=
−C(γ0/2)ui

(

log ε−2
)2

+ (ui + ∆ε)(log ε−2 + 2)

ui(ui + ∆ε)
+ c log ε−2 + ε2

≤ −C2

(

log ε−2
)2

ui + ∆ε
+ c log ε−2 + ε2 ≤ −H log ε−2

ui
≤ −a2(ui)
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for sufficiently small ε. Therefore, the last two inequalities imply that, similarly to
(25), we can again apply Proposition 1:

P (Ai) ≤ P
{

Z̄1(ui) ≤ −a2(ui)
}

≤ exp
{

− a2(ui)

12

}

,

for i = 2, . . . ,mε and sufficiently small ε. Now, by Lemma 3, we have that for
i = 2, . . . ,m

a2(ui) ≥
h log ε−2

ui
− 1

γ0 − ui
≥ h log ε−2

u1
− 1

γ0 − u1
=

2h log ε−2

γ0
− 2

γ0
.

Thus, similarly to (26), we obtain that

P (Ai) ≤ C1ε
ρ , i = 2, . . . ,m ,

for sufficiently small ε. Combining the last relation with (21), (22), (26), we conclude
that the lemma is proved.

The next corollary in terms of Nγ̂ and Nγ0 follows from the above lemma.

Corollary 1. There exist positive constants D = D(γ0), c = c(γ0), ρ = ρ(γ0) and
ε0 = ε0(γ0) such that for all 0 < ε < ε0

P
{

Nγ̂ ≥ Nγ0 + D
}

≤ c
(

log ε−2
)p

ερ .

Proof. Take D = 2C0

γ2
0

, where constant C0 comes from the above lemma. Note

{

Nγ̂ ≥ Nγ0 + D
}

=
{

log ε−2(γ0 − γ̂) ≥ γ̂γ0D
}

We bound the probability of the above event by the sum

P
{

log ε−2(γ0 − γ̂) ≥ C0

}

+ P
{

log ε−2(γ0 − γ̂) ≥ γ̂γ0D, γ̂ ≥ γ0 −
C0

log ε−2

}

.

The second term from the right hand side of the last inequality is bounded from
above by

P
{

log ε−2(γ0 − γ̂) ≥ γ2
0D

2

}

= P
{

log ε−2(γ0 − γ̂) ≥ C0

}

,

for sufficiently small ε. Combining all the relations, we obtain that

P
{

Nγ̂ ≥ Nγ0 + D
}

≤ 2P
{

log ε−2(γ0 − γ̂) ≥ C0

}

for sufficiently small ε. Now, applying the lemma yields the result.
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Remark 9. The lemma claims the convergence rate log ε−2 for γ̂ to γ0 from below.
Compared with the rate of convergence of γ̂ to γ0 from above (see relation (20) in
Remark 7), we see that the rate from below is faster by factor log log ε−2 than that
from above.

Examining the proof of the last lemma, one can see that a further improvement
upon the rate of convergence of γ̂ to γ0 from below seems feasible. We believe it
should be up to the rate (log ε−2)3/2 by using maximal inequality for the the process
Zε(γ). This will be studied in detail elsewhere. Here we used rather rough estimates
to derive the above rate of convergence, since it suffices in the proof of the main
result.

We believe this nonsymmetric behavior of the estimator γ̂ is intrinsic and con-
nected to the embedded model structure: it is “easier” for the method to separate
the true smoothness model from the less smooth models rather than from smoother
models. In other words, the method tends to oversmooth rather than undersmooth,
however both are under control. Similar phenomenon occurs in the minimax context
in Lepski’s adaptation method (see Lepski (1992) and further references therein) in
somewhat more dramatic form. Namely, Lepski’s methods detects undersmoothing
easily, while oversmoothing can not be in general controlled. The latter problem in
this method is handled by the special construction of estimator based on the compar-
isons of certain statistics evaluated at different values of the smoothness parameter
from a fine grid.

5 Proof of the main theorem

We are now ready to prove the main theorem. Write

Rε(Φ̂) = E(Φ̂ − Φ)2

= E
[

(Φ̂ − Φ)2I{Nγ0 − Mε ≤ Nγ̂ ≤ Nγ0 + Mε}
]

+E
[

(Φ̂ − Φ)2I{0 ≤ Nγ̂ < Nγ0 − Mε}
]

+E
[

(Φ̂ − Φ)2I{Nγ0 + Mε < Nγ̂ ≤ Nαε}
]

= R1 + R2 + R3 , (27)

say. Here by I{E} we denote the indicator of the event E. Let us evaluate each of
these terms. Denote

I1 = I{Nγ0 − Mε ≤ Nγ̂ ≤ Nγ0 + Mε} .

Using the elementary inequality

(a + b)2 ≤ (1 + β) a2 + (1 + β−1) b2, 0 < β ≤ 1 ,
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we obtain

R1 = E
[(

Nγ̂+Mε
∑

i=1

Xi −
∞
∑

i=1

θi

)2
I1

]

= E
[(

Nγ0
∑

i=1

(Xi − θi) +

Nγ̂+Mε
∑

i=Nγ0+1

(Xi − θi) −
∞
∑

i=Nγ̂+Mε+1

θi

)2
I1

]

≤ (1 + βε)ε
2E

[(

Nγ0
∑

i=1

ξi

)2
I1

]

+2(1 + β−1
ε )ε2E

[(

Nγ̂+Mε
∑

i=Nγ0+1

ξi

)2
I1

]

+2(1 + β−1
ε )E

[(

∞
∑

i=Nγ̂+Mε+1

θi

)2
I1

]

= R11 + R12 + R13 , (28)

where sequence 0 < βε ≤ 1 is chosen in such a way that

βε → 0 and β−1
ε Mε

(

log ε−2
)−1 → 0 as ε → 0 .

Such a choice of βε is possible because of the condition on Mε: Mε converges to
infinity slower than log ε−2. Then, as ε → 0,

R11 ≤ ε2Nγ0(1 + o(1)) =
ε2 log ε−2

γ0
(1 + o(1)) . (29)

To bound R12, note first that Nγ̂ ≤ Nγ0 + Mε on I1 and that Ml, l = Nγ0 +

1, . . . , Nγ0 + 2Mε, with Ml =
∑l

i=Nγ0+1 ξi, is a martingale (with respect to the

natural filtration). Applying the Lq-maximal inequality for submartingales (see for
example Williams (1991), p. 143), we get

E
[(

Nγ̂+Mε
∑

i=Nγ0+1

ξi

)2
I1

]

≤ E
[

max
Nγ0+1≤l≤Nγ0+2Mε

(

l
∑

i=Nγ0+1

ξi

)2]

≤ 4E
[

Nγ0+2Mε
∑

i=Nγ0+1

ξi

]2
= 8Mε ,

which implies that, as ε → 0,

R12 = O
(

ε2β−1
ε Mε

)

= o
(

ε2 log ε−2
)

. (30)

In a similar way we bound R13. M ′
l =

∑l
i=Nγ0+1 θi, l = Nγ0 + 1, . . . , Nγ0 + 2Mε,
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is also a martingale. Again, by the maximal inequality for submartingales, we obtain

E
[(

∞
∑

i=Nγ̂+Mε+1

θi

)2
I1

]

= E
[(

∞
∑

i=Nγ0+1

θi −
Nγ̂+Mε
∑

i=Nγ0+1

θi

)2
I1

]

≤ 2E
[

∞
∑

i=Nγ0+1

θi

]2
+ 2E

[(

Nγ̂+Mε
∑

i=Nγ0+1

θi

)2
I1

]

≤ 2γ−1
0 ε2 + 16ε2Mε .

Thus, as ε → 0,
R13 = O

(

β−1
ε ε2Mε

)

= o
(

ε2 log ε−2
)

.

The last relation, together with (28), (29) and (30), gives

R1 ≤ ε2 log ε−2

γ0
(1 + o(1)) . (31)

Consider the term R2 from (27). Denote I2 = I{0 ≤ Nγ̂ < Nγ0 −Mε}. Calculate

R2 = E
[(

Nγ̂+Mε
∑

i=1

Xi −
∞

∑

i=1

θi

)2
I2

]

= E
[(

Nγ̂+Mε
∑

i=1

(Xi − θi) −
∞

∑

i=Nγ̂+Mε+1

θi

)2
I2

]

≤ 2ε2E
[(

Nγ̂+Mε
∑

i=1

ξi

)2
I2

]

+ 2E
[(

∞
∑

i=Nγ̂+Mε+1

θi

)2
I2

]

= R21 + R22 . (32)

First we evaluate term R21. Using the Hölder inequality, we have that

E
{(

Nγ̂+Mε
∑

i=1

ξi

)2
I2

}

≤
[

E
{(

Nγ̂+Mε
∑

i=1

ξi

)4
I2

}

]1/2
[

P{I2}
]1/2

.

Recall that Nγ̂ +Mε ≤ Nγ0 on I2. Apply the maximal inequality for submartingales
to get

E
[(

Nγ̂+Mε
∑

i=1

ξi

)4
I2

]

≤ E
[

max
1≤l≤Nγ0

(

l
∑

i=1

ξi

)4]

≤ E
[(

Nγ0
∑

i=1

ξi

)4]

≤ CN2
γ0

for some absolute constant C. Further, since the sequence Mε converges to infinity
faster than log log ε−2, we can apply Lemma 4 to the probability P{I2} with k = 0
and m = 2:

P{I2} ≤ P{Nγ̂ < Nγ0 − Mε} ≤ c
(

log ε−2
)−2

.
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for sufficiently small ε. Combining the last three relations, we conclude that

R21 = O
(

ε2
)

= o
(

ε2 log ε−2
)

. (33)

Somewhat more subtle arguments are needed to handle term R22. By using the
Hölder inequality and Lemma 4, we have that for any fixed m

R22/2 = E

[ Nγ0−Mε
∑

k=0

(

∞
∑

i=Nγ̂+Mε

θi

)2
I{Nγ̂ = Nγ0 − Mε − k

]

=

Nγ0−Mε
∑

k=0

E
[(

∞
∑

i=Nγ0−k

θi

)2
I{Nγ̂ = Nγ0 − Mε − k}

]

≤
Nγ0−Mε

∑

k=0

(

E
[

∞
∑

i=Nγ0−k

θi

]4
)1/2

(

P
{

Nγ̂ ≤ Nγ0 − Mε − k
}

)1/2

≤ C

Nγ0−Mε
∑

k=0

e−γ0(Nγ0−k)
(

log ε−2
)−m/2

e−γ0mk/4

for sufficiently small ε. Taking m = 5 in the last inequality, we derive

R22 = o
(

ε2 log ε−2
)

.

So, (32), the bound for R21 (33) and the last bound for R22 ensure that R2 is of a
smaller order compared to R1:

R2 = R21 + R22 = o
(

ε2 log ε−2
)

. (34)

It remains to show that R3 = o
(

ε2 log ε−2
)

. Denote

I3 = {Nγ0 + Mε < Nγ̂ ≤ Nαε} .

Next, similarly to the term R2, we derive the following estimate:

R3 ≤ 2ε2E
[(

Nγ̂+Mε
∑

i=1

ξi

)2
I3

]

+ 2E
[(

∞
∑

i=Nγ̂+Mε+1

θi

)2
I3

]

= R31 + R32 . (35)

We handle the term R31 exactly in the same way as R21 with the difference that

Nγ̂ + Mε ≤ Nαε + Mε

on I3 and we apply Corollary 1 to the probability P (I3). So, for any fixed m > 0

R31 ≤ cε2(Nαε + Mε)
(

log ε−2
)p/2

ερ/2 = cε2+ρ/2
((

log ε−2
)1+p/2

α−1
ε + Mε)
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for sufficiently small ε. Since αε converges to 0 and Mε to infinity not faster than
(

log ε−2
)−p

and log ε−2 respectively, we obtain that

R31 = o
(

ε2 log ε−2
)

. (36)

The last term R32 is treated again in much the same way as R22. By Corollary 1,

R32/2 = E

[ Nαε
∑

k=0

(

∞
∑

i=Nγ̂+Mε

θi

)2
I{Nγ̂ = Nγ0 + Mε + k}

]

=

Nαε
∑

k=0

E
[(

∞
∑

i=Nγ0+2Mε+k

θi

)2
I{Nγ̂ = Nγ0 + Mε + k}

]

≤
Nαε
∑

k=0

(

E
[

∞
∑

i=Nγ0+2Mε+k

θi

]4
)1/2

(

P
{

Nγ̂ ≥ Nγ0 + Mε + k
}

)1/2

≤ C

Nαε
∑

k=0

e−γ0(Nγ0+k)
(

log ε−2
)p/2

ερ/2 = o
(

ε2 log ε−2
)

. (37)

for sufficiently small ε. Thus, by (35),(36) and (37), we have that

R3 = o
(

ε2 log ε−2
)

.

Finally, combining (27), (31), (34) and the last relation proves the theorem.

Remark 10. It becomes clear from the proof of the theorem where the conditions
on the sequence Mε come from. On the one hand, Mε should converge to infinity
not slower than the sequence

(

log log ε−2
)−1

to make the application of Lemma 4
possible so that our estimator γ̂ could do the job. On the other hand, Mε should
not converge to infinity too fast in order not to make the asymptotic risk exceed the
asymptotic Bayes risk. In fact, a properly chosen Mε does not disturb the first order
asymptotic behavior, but it certainly effects the second order. In this context one
may want to take the smallest Mε among those that do not effect the first order risk
asymptotics. From the proof of the theorem and the assertion of Lemma 4 we see
that Mε = D log log ε−2, with sufficiently large D, can also be used in the estimator
Φ̂.
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