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In this short note we shall consider X as either a (A/2, 3;R?) binary branching
Brownian motion with 8 > 0 or a (A/2, 8, ; R?) super-Brownian motion with
B, > 0 together with probabilities {P, : p € M (R%}. Here M.(R% denotes
the space of Borel measures on R?¢ which are finite and compactly supported in
R4,

The branching Brownian motion (A/2, 3;R9) under measure P, with p €
M. (R?) is constructed as follows. Start with an initial (finite) configuration
of points represented by g in R? From each point an independent Brownian
motion is initiated. Each particle diffuses until an independent exponentially
distributed time with mean 1/8 at which point it undergoes fission producing
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Abstract

It has long been known that the left-most or right-most particle in a
one dimensional dyadic branching Brownian with constant branching rate
3 > 0 has almost sure asymptotic speed /23, (cf. McKean (1975)). Re-
cently similar results for higher dimensional branching Brownian motions
and super-Brownian motion have also been established the weaker sense
of convergence in probability; see Pinsky (1995) and Englinder and den
Hollander (2002). In this short note we confirm the ‘folklore’ for higher
dimensions and establish an asymptotic radial speed of the support of
the latter two processes in the almost sure sense. The proofs rely on the
local extinction dichotomy proved in Pinsky (1996) and Engldnder and
Kyprianou (2002) together with simple geometrical considerations.
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two particles. The two particles move and reproduce independently starting
from their point of creation in a way that is stochastically identical to their
parent and so on. A simple generalization of this process in one dimension that
we shall also work with is the (A/2 — vd/dz, 3;R) branching process for v € R
and 8 > 0. This process has virtually the same definition but for the fact that
particles diffuse as a standard Brownian motion with drift —y¢. For any of the
aforementioned particle processes, since each particle has exactly two offspring,
they are supercritical (in the traditional sense of Galton-Watson processes) and
survive with probability one.

The super-Brownian motion (A/2, 3, a;R?) under P, with y € M.(R9)
arises as the weak limit of an appropriately rescaled, branching Brownian motion
in which particles have a random number of offspring with finite variance and
mean which is greater than 1. Pinsky (1996) gives specific details of the limiting
procedure. It suffices to note for our purposes that the resulting process (X, P,)
is valued in M.(R%) with Xq = p and has the property that for each g belonging
to the cone of non-negative, continuous bounded functions, E,(exp{—g, X;)) =

exp{—u(-,t), ) where (-, -) is the usual innerproduct and u is the unique solution
to the PDE

1
Ou/Ot = §Au+/3u—au2 for (z,t) € RY x R*
u(z,0) = g(z) for x € R% (1)

In one dimension we shall also talk of a (A/2 — yd/dz, 3, a; R?) superprocess
for # > 0 and y € R. This process satisfies a similar dynamic to (1) with the
exception that A/2 is replaced by A/2 — yd/dz. In any of the aforementioned
superprocesses, the positivity of 8 qualifies this process as supercritical as, con-
trary to the case g < 0, the process may survive. Unlike its particle counterpart
however, supercritical super-Brownian motion survives only with strictly pos-
itive probability rather than with probability one. Given u € M.,(R?), the
probability of survival is given by 1 — exp{3||u||/a} where ||u]| = (1, ) is the
total mass of y; see Englander and Pinsky (1999) for details.

This paper concerns the how fast the support of these processes grows in
time. In order to describe how this will happen, we need the following defini-
tions.

Definition 1 Let B, be the closed ball of radius v > 0 centered at the origin.
We define the radius of the support M, = inf{r > 0: X, (BS) = 0}.

Definition 2 For one dimensional processes, we shall also talk about the right
most extreme of the support,

R: =inf{y e R: X;(y,00) = 0}.

It is well known that when d = 1 and X is a branching Brownian motion,
there exists an asymptotic speed for extreme particles almost surely (cf. McKean
(1975), Bramson (1978, 1983)). This is captured in the following proposition.



Proposition 3 If X is a supercritical branching Brownian motion in one di-
mension and 1 € M.(R) then

P, -almost surely.

A generalized version of this result for both types of process in any Euclidian
dimension reads as follows.

Theorem 4 Suppose that X is either the (A/2, 3;R?) branching Brownian mo-
tion or the (A/2, 3, a;RY) super-Brownian motion. Assume that p € M.(RY),
then

M
7 VY
Py-almost surely on the survival set of X. (Note that when X is a particle

process it survives with probability 1 and hence the last qualifier is superfluous).

Although Theorem 4 would seem to be an intuitively obvious and natural ex-
tension to Proposition 3, the existence in the literature of this strong law of large
numbers for the radius of the support would seem to be for the most part folk-
lore. Recently weaker versions of this result have appeared in related problems.
Specifically in Englander and Hollander (2002) for branching Brownian motion
where the convergence occurs in probability and in Pinsky (1995) for super-
Brownian motion where again convergence in probability is proved. In related
work, Englander (2002) also offers large deviation asymptotics concerning mass
in supercritical branching Brownian motion and supercritical super-Brownian
motion close to the asymptotic speed 1/23.

The aim of this note is, in a certain sense, to round off these existing results
by proving Theorem 4. For the most part, the proof is based on standard Euclid-
ian geometry and the following result which is a specialization of the combined
conclusions of Theorem 6 in Pinsky (1996) and Theorem 3 in Englander and
Kyprianou (2002).

Theorem 5 Suppose that p € M.(R). Let v € R and take XV as either the
(A/2—~d/dz, 3, R) branching process or the (A/2—~d/dz, B, a, R) superprocess.
Denote the generalized principle eigenvalue

Ae = A(A)2—~d/dz + D)
inf{A € R: (A/2—~d/dzx+ - A)h =0 for some h > 0 in C*(R)}.

Then for all bounded intervals I C R either

Ae > 0: in which case P,(X, (I) > 0 for arbitrarily large t) > 0.



Ae < 0: n which case there exists a P,-almost surely finite T' such that

P, (X] (I)=0 forallt >T)=1.

Remark 6 Since all positive eigenfunctions of the operator (A/2 —vd/dx + 3)
are exponential it follows from a straightforward calculation that
2

Ae(A)2 — yd/dz + ) = B — 77

2 Proofs

In order to prove the Theorem 4 we shall first prove a slightly stronger version of
Proposition 3 for one dimensional branching Brownan motion or super-Brownian
motion. Indeed the following result contains the statement of Proposition 3.

Proposition 7 Suppose that X is either the (A/2, 3;R) branching Brownian
motion or the (A/2, 5, a;R) super-Brownian motion (hence d = 1). Assume
that p € MC(Rd) and let I be an arbitrary bounded interval in R.

(i) When v > /23
Pu(X¢(I+~t) =0 for all sufficiently large t) = 1.

(it) When v € [0,/20)
P, (X:(I +~t) > 0 for arbitrarily large t| X survives) = 1.

(iii) On the survival set of X,

% —/23
P, -almost surely.

Remark 8 Note that if X is a branching Brownian motion then survival occurs
with probability one.

Proof of Proposition 7. We shall only offer proofs for the case of super-
Brownian motion. The case of branching Brownian motion follows by simpler
if not identical arguments.

(1) Let X7 be the superprocess with characteristics, (A/2 — vd/dz, 3, a, R)
where v > 0. We have

Py(X: (I + ~t) = 0 for all sufficiently large ?)
= P,(X](I) = 0 for all sufficiently large t). (2)



From Remark 6 and Theorem 5 it follows that when v > /27,
P, (X¢(I +~t) =0 for all sufficiently large t) = 1.
(i1) Now suppose that v € [0,1/28). We have

P,(X becomes extinct)
Py(X: (I ++t) = 0 for all sufficiently large )
— e~ {pp) (3)

IA

where p(z) = —log Ps, (X¢(I 4+ ~t) = 0 for all sufficiently large ¢) is monotone
in . It is known that the left hand side of (3) is equal to exp{—||u||8/a} for
all 4 € M(R? and hence 0 < p < B/a; the strict inequality in this last lower
bound on p follows from Theorem 5 as A, > 0 for this regime of . Our aim is
thus to show that p = 8/« and then (ii) follows easily.

To this end note that an application of the Markov Property in the equality
of (3) shows that

Eu(e—th)) — (P}

for all 4 € M. (R) and ¢ > 0. By taking expectation of exp (—p, X¢4,) con-
ditional on F; = o(X, : u < t), applying the Markov property together with
the last equality, one can easily deduce that {exp(—p, X;) : ¢ > 0} is a mar-
tingale. It follows from an application of Theorem I1.3.1 in Dynkin (1993) that
20" —4p' + Bp — ap® = 0. Now write p = fB/a so that 0 < f < 1. A simple
calculation shows that 1 — f solves the classic Kolmogorov-Petrovski-Piscounov
traveling wave equation

S =l B = ) =0

for which it is known there are no non-trivial solutions in [0, 1] when v € [0, v/23)
(cf. Kolmogorov et al (1937)). We are forced to conclude that f = 1 and hence
p = B/a and the proof of (ii) is complete.

(iii) Tn view of the afore mentioned weaker versions of Theorem 4 we know
that mass propagates no faster than linearly in time. Hence part (i) implies
that

lim sup % <+\/20

tfoo
Py-almost surely and (ii) implies that
LRy -
hnT}lnfT > /20
tftoo -
P,-almost surely on the survival set of X. m

Proof of Theorem 4. As usual X denotes either a supercritical branching
Brownian motion or a supercritical super-Brownian motion. Let e be any vector



on the sphere of unit radius S; = {e € R?: |e| = 1} and for each e € S define
the ‘slab’

H(e) ::{rERd:r~eE[$,$+-’El)}

where &' > 0 is some arbitrary constant (the thickness of the slab) and = > 0 is
the perpendicular distance of the slab from the origin. We claim now that for

all p € M.(RY
P,(X¢(H (e) + tye) = 0 for all sufficiently large t) =1

when v > /23 and
P,(X:(H(e) + tye) > 0 for arbitrarily large #|X survives) =1

when v € [0,4/28). To see why these two claims are true, note that we can
always choose our axes so that e lies along, say, the first axis. By considering
the process X projected onto this first axis we have simply a one dimensional
supercritical branching Brownian motion or supercritical super-Brownian mo-
tion with the same parameters. Proposition 7 then justifies the claims. [Indeed
when d = 1 these claims are nothing more than part (i) and (ii) of Proposition
7]. Tt is also immediate from this projection that

M,
liltr{rlinth > /28

on the survival set of X.

Suppose now that d > 2. We shall need standard geometrical results which
trace back to Euclid’s works, Elements (cf. Heath (1956)). For any constant
¢ > 0 define S, the sphere with radius ¢ > 0. Let z be any positive number.
Then for each ¢ > 0 there exists a regular polytope P symmetrically centred
at the origin which contains Sy and is contained in S;4.. Let e, ...,e, be the
outward normal unit vectors to each surface of P. For each e; : 1 = 1,...,n let
H (e;) be a slab of arbitrary positive thickness whose surface closest to the origin
contains the side of P which has normal vector e;. Write T for the last time
that the space-time slab { H (e;) +t/2Be; : t > 0} is charged. From the previous
paragraph we know that T < co P,-almost surely for each : =1,...,n.

Now define P(#) to be the radially scaled version of P (scaling factor (/23 +
z)/z) which contains S 55, , and is contained in S(y 1.y /35¢ 4o Sincesup;—y  ,, T <
oo P,-almost surely, it follows that all mass is eventually contained in the inflat-
ing polytope {P(t) : t > 0} P,-almost surely. This implies in turn that all mass
is eventually contained in the inflating sphere {S(1+e)\/ﬁt+z 1t > 0} Py-almost
surely. (Again we take advantage of the existing weaker forms of Theorem 4 as
assurance that the support cannot travel faster than linearly in time). That is
to say,

M,
limsuth < (14 €)v/28.

tfoo



Since ¢ can be chosen arbitrarily close to zero we have shown that

lim sup % < 4/20

ttoo

and the proof is complete for dimension d > 2.

For the one dimensional case, it suffices to note that S; consists of two
vectors, e; and e; say and since T V T2 < oo P,-almost surely the limsup is
easily deduced. =m

Remark 9 The proof of Theorem 4 shows something a little stronger than the
statement of the theorem. Namely that the (space-time) exterior of the inflating
sphere {Sy4y¢ : t > 0}, for arbitrary = > 0, is charged for arbitrarily large ¢
when X survives P,-almost surely when v € [0,1/27) and not charged for all
sufficiently large ¢ P,-almost surely when v > +/23. As ususal it is understood
that g € M (R9).

Remark 10 In principle it is possible to extract the result in Theorem 4 for
branching Brownian motion from the results in Biggins (1997) which concern
general branching walks. However, it is not clear how to proceed to the case of
super-Brownian motion from Biggins’ results.
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