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Abstract. We discuss variants of the Jacobi–Davidson method for solving the generalized
complex-symmetric eigenvalue problem. The Jacobi–Davidson algorithm can be considered as an
accelerated inexact Rayleigh quotient iteration. We show that it is appropriate to replace the Eu-
clidean inner product x∗y in C

n by the bilinear form xT y. The Rayleigh quotient based on this
bilinear form leads to an asymptotically cubically convergent Rayleigh quotient iteration. Advantages
of the method are illustrated by numerical examples. We deal with problems from electromagnetics
that require the computation of interior eigenvalues.
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1. Introduction. In this paper we consider variants of the Jacobi–Davidson (JD)
algorithm [22] for computing a few eigenpairs of

(1.1) Ax = λx,

where the large and sparse matrix A is complex-symmetric: A = AT ∈ C
n×n. Eigen-

value problems of this type, and of the related generalized complex-symmetric eigen-
value problem

(1.2) Ax = λBx, B invertible,

where both A and B are complex-symmetric are becoming of increasing importance
in applications, most notably in the field of electro-magnetic simulations. High qual-
ity particle accelerators can be modeled by the time-independent Maxwell equations,
assuming perfectly conducting cavity walls. This approach leads to a generalized real-
symmetric eigenvalue problem [2]. However, in cases where the damping of higher
modes is more important than the high efficiency of a cavity, and for cavities with
ferrite inserts for tuning purposes, the currents produced in the walls or in the fer-
rite lead to a damping of the eigenmodes. In this situation these surfaces are treated
as lossy material which introduces a complex permittivity which in turn leads to
complex-symmetric matrices in (1.1) or (1.2).

Open cavities are often modeled on bounded domains. Lossy perfectly matched
layers (PMLs) along the boundary are introduced to prevent reflection of waves.
PMLs, also called absorbing boundary conditions, are again modeled by complex per-
mittivities [27]. The PML scheme has the potential to extend the range of applications
for these eigenvalue solvers to the wide field of the design of antennas.

Notice that complex-symmetric matrices are not Hermitian. So, they do not pos-
sess the favorable properties of Hermitian matrices. In particular, complex-symmetric
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matrices may have complex eigenvalues, and can be arbitrarily nonnormal. In fact,
every matrix is similar to a complex-symmetric matrix [10, 14], whence it may be ar-
bitrarily difficult to solve (1.1) or (1.2), respectively. Nevertheless, complex-symmetric
matrices do have special properties. If x is a right eigenvector of A, Ax = λx, then it is
also a left eigenvector, in the sense that xT A = λxT . Eigenvectors x,y corresponding
to different eigenvalues λ 6= µ are complex-orthogonal, i.e., they satisfy

(1.3) (x,y)T := yTx = 0.

If A is diagonalizable then the diagonalization can be realized by a complex-orthogonal
matrix Q, QT Q = I [14].

We call the (indefinite) bilinear form (x,y)T in (1.3)—somewhat abusively—an
“inner product”. For brevity, we write x ⊥T y if two vectors x and y are complex-
orthogonal. A vector x is called quasi-null if (x,x)T = 0.

When treating the generalized eigenvalue problem (1.2) it is natural to use the
indefinite bilinear form

(1.4) [x,y]T := (x, By)T = yT Bx.

The matrix B−1A is then complex-symmetric with respect to [x,y]T as A is complex-
symmetric with respect to (x,y)T . We therefore restrict ourselves to the special eigen-
value problem (1.1) whenever there is no loss in generality. The numerical examples
that we will discuss later are all generalized eigenvalue problems of the form (1.2).

A number of algorithms have been designed for solving complex-symmetric lin-
ear systems of equations. Van der Vorst and Melissen [28] modified the bi-conjugate
gradient algorithm to obtain the complex conjugate gradient algorithm COCG. The
crucial idea is to set the initial shadow vector equal to the initial residual. (If one
works with the Euclidean inner product, the shadow vector has to be the complex
conjugate of the initial residual, see [28].) With regard to the relation among right
and left eigenvectors mentioned before this choice of the shadow vector is very natu-
ral. Freund used the same idea to adapt the quasi-minimal residual (QMR) algorithm
to the complex-symmetric case [9]. In COCG and QMR, the same Krylov subspaces
are generated. However, the approximate solutions are extracted differently from
these subspaces. Recently, Bunse-Gerstner and Stöver [5] introduced an algorithm,
CSYM, that is closely related to the special form that the singular value decompo-
sition (or Takagi factorization) takes on for complex-symmetric matrices [14]. Every
complex-symmetric matrix is unitarily similar to a complex-symmetric tridiagonal ma-
trix. CSYM constructs the three-term recurrence that holds among the columns of
the unitary matrix that realizes the similarity transformation. Notice that CSYM is
not a Krylov subspace method.

Algorithms for solving complex-symmetric eigenvalue problems are investigated
even less often. Eberlein adapted the classical Jacobi algorithm (for full matrices).
Cullum and Willoughby [6, Chapter 6] proposed a Lanczos type eigensolver employing
the bilinear form (1.3). The same authors suggested a complex-symmetric tridiagonal
QR algorithm [7]. Recently, Luk and Qiao [17] introduced a fast O(n2 log n) eigensolver
for complex Hankel matrices, that is based on the works of Cullum and Willoughby
and the fast Fourier transform.

In this paper we present a Jacobi–Davidson type algorithm for computing a few
eigenpairs of a complex-symmetric matrix that exploit the structure of the matri-
ces. For the original Jacobi–Davidson algorithm see [22], [21], [8]. In contrast to the
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complex-symmetric methods mentioned before, our Jacobi–Davidson algorithm can
be transcribed quite easily into a solver for the generalized eigenvalue problem (1.2).

The paper is organized as follows. In Section 2 we investigate how the Rayleigh
quotient is best defined for dealing with complex-symmetric eigenvalue problems. In
Section 3 we adapt a variant of the two-sided Jacobi–Davidson algorithm to this
problem and discuss its application to the generalized complex-symmetric eigenvalue
problem. The convergence behavior of exact and inexact variants of the Jacobi–
Davidson algorithm is investigated in Section 4. Numerical experiments are presented
in Section 5. A discussion and some conclusions can be found in Section 6.

2. A Rayleigh quotient for complex-symmetric matrices. Let us first in-
troduce some notations. Throughout the paper, λ denotes a simple eigenvalue of the
complex-symmetric n × n matrix A, with x its corresponding eigenvector. Since λ is
simple, it has a finite condition κ(λ). Because

(2.1) ∞ > κ(λ) = |xT x|−1 = |(x,x)T |
−1,

an eigenvector corresponding to a simple eigenvalue is not quasi-null whence it can be
“normalized” such that (x,x)T = 1 [11, p.323]. Let u ≈ x be an approximate eigen-
vector. If u is close enough to x, then u is not quasi-null either, and we “normalize”
u such that (u,u)T = 1.

Given u, the corresponding eigenvalue is usually approximated by the Rayleigh
quotient

(2.2) ρ = ρ(u) :=
u∗Au

u∗u
.

Alternatively, with regard to the the “inner product” (1.3), we can also define the
Rayleigh quotient by

(2.3) θ = θ(u) :=
uT Au

uTu
.

One may check that for complex-symmetric A, the latter definition has the desirable
property (cf. [20, p. 688], [13])

(2.4) θ(u) is stationary ⇐⇒ u is an eigenvector of A.

(Recall that stationary means that all directional derivatives are zero.) By writing

u = (xxT )u +
(
I − xxT

)
u,

we see that u can be written in the form

(2.5) u = αx + δd,

where α2 + δ2 = 1, (d,d)T = 1 and x ⊥T d = 0. Direct computation shows that

λ − θ = δ2 dT (λI − A)d.

So, we conclude that

(2.6) |λ − θ| = O(δ2),

while |λ − ρ| is in general “only” O(δ). (The reason for the last statement is that in
general the eigenvectors are not stationary points of ρ(u).) Therefore, the Rayleigh
quotient θ is asymptotically (i.e., when u converges to x) more accurate than the usual
Rayleigh quotient ρ.
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3. Jacobi–Davidson for complex-symmetric matrices. In this section we
introduce a Jacobi–Davidson method for complex-symmetric matrices that we denom-
inate JDCS. A subspace method typically consists of two ingredients: extraction and
expansion. Suppose we have a k-dimensional search space U where typically k � n.
The crucial observation is that if U is the search space for the (right) eigenvector, then
with regard to the “inner product” (1.3), U forms a search space for the left eigenvector
of equal quality. So, the fundamental difference with the two-sided Jacobi–Davidson
algorithm [13] is that as we build up a right search space (i.e., a search space for the
right eigenvector), we get a reasonable left search space for free. We do not have to
(approximately) solve a left correction equation as in the two-sided Jacobi–Davidson
algorithm.

3.1. Extraction. We first study the subspace extraction for complex-symmetric
matrices. Given a search space U , we would like to get an approximate eigenpair (θ,u)
where u ∈ U . Let the columns of U form a basis for U , and define the residual r by

r := Au− θu.

In view of (2.4) and (2.6), we take, instead of the usual Ritz–Galerkin condition on
the residual r = Au − θu ⊥ U , the same condition but with respect to the “inner
product” (1.3)

(3.1) r = Au − θu ⊥T U ,

Writing u = Uc, c ∈ C
k, we find that (θ, c) must be a solution of the projected

eigenproblem

(3.2) UT AUc = θ UT Uc.

Thus, a Ritz pair (θ,u) = (θ, Uc) is obtained by backtransforming an eigenpair of the
projected pencil (UT AU,UT U). In particular, if (θ,u) is a Ritz pair, we have

θ = θ(u) :=
uT Au

uT u
and r ⊥T u.

3.2. Expansion. Let us now examine the subspace expansion for JDCS: having
an approximate eigenpair (θ,u) to (λ,x), how do we expand the search space U in
order to get an even better approximation? Jacobi–Davidson type methods look for
a correction s such that

(3.3) A(u + s) = λ(u + s),

i.e., such that u + s is a multiple of the eigenvector x. This equation can be rewritten
in two different ways, depending on whether we wish that s ⊥T u or s ⊥ u. Let us
start with s ⊥T u. Write (3.3) as

(3.4) (A − θI)s = −(A − θI)u + (λ − θ)u + (λ − θ)s.

In view of (2.6), the term (λ − θ)s is asymptotically of third order. When we neglect
this term, we still have cubic convergence, see Theorem 4.1. During the process, λ and
hence also (λ−θ)u are unknown. Therefore it is interesting to consider the projection
of this equation that maps u to 0 and keeps r = (A−θI)u fixed. Because r ⊥T u, this
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projector is I − uuT , the oblique projection onto u⊥T . The result of projecting (3.4)
is

(
I − uuT

)
(A − θI)s = −r.

Using the constraint

(
I − uuT

)
s = s,

we derive the first possibility for the JDCS correction equation:

(3.5)
(
I − uuT

)
(A − θI)

(
I − uuT

)
s = −r, where s ⊥T u.

The operator in this equation is complex-symmetric. So, we can try to solve (3.5)
by a linear solver that is especially designed for complex-symmetric systems, such as
CSYM [5], complex-symmetric QMR [9], or COCG [28].

Second, we investigate the situation where we wish to have s ⊥ u. We rewrite (3.3)
as

(A − θI)s = −(A − ρI)u + (λ − ρ)u + (λ − θ)s.

Again neglecting the last term and noting that

r̃ := (A − ρI)u ⊥ u,

this leads to an alternative JDCS correction equation:

(3.6) (I − uu∗)(A − θI)(I − uu∗)s = −r̃, where s ⊥ u.

Unless A is Hermitian, this operator does not have any particular properties. There-
fore, GMRES is a reasonable solver. In practice, a correction equation is often solved
only approximately (or inexactly). The approximate solution is used to expand the
search space U , this is called subspace acceleration.

Next, we mention that JDCS can be viewed as an accelerated inexact Newton
method for the eigenvalue problem. For the correction equation (3.6) such a result has
been given in [23]. For the correction equation (3.5), we define

F (u) = Au−
aT Au

aTu
u,

then a Newton step DF (u)s = −F (u) becomes, with a = u

(
I − uuT

)
(A − θI)s = −r.

Algorithm 3.1 summarizes our algorithm JDCS as developed so far. In Step 2,
MGS stands for any numerically stable form of Gram–Schmidt to form a complex-
orthogonal basis for the search space. Because of the complex-orthogonal basis, the
matrix on the right hand side of (3.2) is the identity whence we only have to solve
a standard eigenvalue problem in Step 4. In Step 5 and elsewhere in the paper, ‖·‖
denotes the Euclidean norm. In Step 8 of the algorithm the correction equation (3.5)
could be replaced by (3.6). Some practical issues have been omitted in Algorithm 3.1
for ease of presentation:
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Algorithm 3.1: The JDCS algorithm for the computation of an eigenpair

of a complex-symmetric matrix closest to a target τ

Input: a device to compute Ax for arbitrary x, a starting vector u1,
and a tolerance ε.

Output: an approximation (θ,u) to an eigenpair of A satisfying ‖Au − θu‖ ≤ ε.

1. s = u1

for k = 1, 2, . . .
2. Uk = MGS (Uk−1, s)
3. Compute kth column of Wk = AUk

Compute kth row and column of Hk = UT
k Wk

4. Compute the eigenpair (θ, c) of U T
k AUk that is closest to the target τ

5. u = Ukc / ‖Ukc‖
6. r = (A − θI)u = Wkc / ‖Ukc‖ − θu
7. Stop if ‖r‖ ≤ ε
8. Solve (approximately) for s ⊥T u(

I − uuT
)
(A − θI)

(
I − uuT

)
s = −r

(1) In our actual computations we replace the shift θ in the correction equation
of Step 8 in the first couple of iterations by a fixed target τ which we know or
hope to be close to the desired eigenvalue. This is reasonable as the correction
equation, if solved exactly, amounts to one step of shift-and-invert. As initially
the Ritz value θ is far from the desired eigenvalue using θ as shift does not
give any benefit. We switch the shift from τ to θ as soon as the residual ‖r‖
is below some threshold like 1/10.

(2) To restrict the memory consumption of our algorithm, we limit the dimension
of the search space U . If this limit is reached, we restart, i.e., we replace U by
a given number of the “best” Ritz vectors contained in U .

(3) If we need to compute several eigenpairs, we apply the algorithm repeatedly.
Hereby, we use the search space of the previous iteration as our initial search
space. Furthermore, the correction equation (3.5) is replaced by

(3.7) (I − Ũ ŨT )(A − θI)(I − Ũ ŨT )s = −r, ŨT s = 0.

Here, Ũ = [u,x1, . . . ] contains besides the Ritz vector u the eigenvectors xi

that have been computed previously. Notice that Ũ may contain some further
orthogonality constraints, see Section 5.1.

Now we consider the correction equation for the generalized eigenproblem. In this
case (3.4) becomes

(3.8) (A − θB)s = −(A − θB)u + (λ − θ)Bu + (λ − θ)Bs.

One may check that with the Galerkin condition r = Au− θBu ⊥T U , leading to

θ =
uT Au

uT Bu
,

the last term on the right hand side of (3.8) is of third order. The projector I −
Bu(uT Bu)−1uT annihilates the term (λ − θ)Bu. So, the correction equation for the



JACOBI–DAVIDSON FOR COMPLEX-SYMMETRIC EIGENVALUE PROBLEMS 7

generalized eigenvalue problem corresponding to (3.5) is

(3.9) (I − BuuT )(A − θB)(I − uuT B)s = −(A − θB)u, s ⊥T Bu.

Notice that the operator is complex-symmetric. By analogous manipulations, (3.7)
becomes

(3.10) (I − BŨŨT )(A − θB)(I − Ũ ŨT B)s = −r, s ⊥T BŨ.

3.3. Harmonic Ritz vectors. It is well known that Ritz–Galerkin extraction
(see Section 3.1) works out nicely for exterior eigenvalues, but may give poor approx-
imations to interior eigenvalues. For these eigenvalues, we can apply a harmonic Ritz
approach, just as in the standard Jacobi–Davidson method [19, 3]. Suppose that we
are interested in one or more interior eigenpairs near the target τ . One idea is to
consider a (“complex-symmetric”) Galerkin condition on (A − τI)−1:

(3.11) (A − τI)−1ũ− (θ̃ − τ)−1ũ ⊥T Ũ , ũ ∈ Ũ .

With Ũ := (A − τI)U and ũ = Ũ c̃ this condition becomes

(3.12) UT (A − τI)2U c̃ = (θ̃ − τ)UT (A − τI)U c̃.

The solutions (θ̃, U c̃) to this small complex-symmetric eigenvalue problem are called
harmonic Ritz pairs. If we are to compute interior eigenvalues of A then the common
procedure is to replace the eigenvalue problem in Step 4 of Algorithm 3.1 by (3.12) and
extract the harmonic Ritz pair closest to the target value τ . We can multiply (3.12)
from the left by c̃T to obtain

((A − τI)U c̃, (A − τI)U c̃)T = (θ̃ − τ)((A − τI)U c̃, U c̃)T .

In contrast to the case where A is Hermitian the expression on the left is not a residual
norm, whence a small eigenvalue of (3.12) does not necessarily imply that U c̃ is a good
eigenvector approximation; the harmonic Ritz vector does not necessarily have a small
residual norm.

Therefore, it is more promising to use the harmonic approach that is based on the
usual Euclidean inner product. This approach leads to the generalized eigenproblem
(see, for instance, [26, p. 296]):

(3.13) U ∗(A − τB)∗(A − τB)U c̃ = (θ̃ − τ)U∗(A − τB)∗BU c̃.

This extraction has the mathematical justification that

‖(A − τB)U c̃‖ ≤ |θ̃ − τ |‖BU‖

but the reduced system (3.13) is not complex-symmetric.

3.4. Refined Ritz vectors. A second approach to compute interior eigenvalues
is through refined Ritz vectors. Let (θ,u) be a Ritz pair, i.e., a solution of (3.1). The
Ritz value θ may “by coincidence” be close to an interior eigenvalue of A although the
corresponding Ritz vector is a linear combination of eigenvectors that are not close to
the particular eigenvector. In this situation that is common when computing interior
eigenvalues, the computed Ritz vectors are of no use as approximate eigenvectors in
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the correction equation. A remedy suggested in [15] (see also [26, p. 289]) is to refine
the Ritz vectors. A refined Ritz vector is defined to be a solution of the problem

(3.14) minimize ‖Ax̂ − θx̂‖ subject to x̂ ∈ U , ‖x̂‖ = 1.

Let x̂ = U ĉ. Then ĉ is the ‘smallest’ right singular vector of (A − θI)U . It is much
cheaper [16] to use the characterization of ĉ being the ‘smallest’ eigenvector of

(3.15) U ∗(Ā − θ̄I)(A − θI)Uc = (U ∗ĀAU − θ̄U∗ĀU − θU∗AU + |θ|2U∗U)c = µc.

The matrices U ∗ĀAU , U∗ĀU , and U ∗AU can be computed incrementally along with
Hk in Algorithm 3.1. It is straightforward how to modify (3.14) and (3.15) for the
generalized eigenvalue problem.

In our numerical experiments we use a modification of Algorithm 3.1 that uses
this refined approach. In our implementation Steps 4 and 5 become

4. Compute the eigenpair (θ, c) of U T
k AUk that is closest to the target τ

Determine an eigenvector c̃ corresponding to the smallest eigenvalue
of (3.15)

5. u = Ukc̃/‖Uk c̃‖, θ = uT Au/uTu

4. Convergence of (inexact) JD for complex-symmetric matrices. When
we solve any of the two correction equations (3.5) or (3.6) exactly, then we find (see
e.g. [22])

s = −u + α (A − θI)−1 u,

where α is such that s ⊥T u or s ⊥ u. JDCS uses s to expand the search space U . Since
already u ∈ U , we get the same subspace expansion using s̃ = (A − θI)−1 u. Here we
recognize a step of RQI, and we conclude that exact JDCS (i.e. JDCS where we solve
the correction equation exactly) can also be interpreted as (subspace-)accelerated RQI.

Therefore, we first define a Rayleigh quotient iteration for complex-symmetric
matrices, and show that this RQI has asymptotically cubic convergence for eigenpairs
of which the vector is not quasi-null; see Algorithm 4.2.

Algorithm 4.2: Rayleigh quotient iteration for complex-symmetric ma-

trices

Input: An initial vector u1, not quasi-null
Output: an eigenpair of A (or failure)
for k = 1, 2, . . .

1. Compute θk := θk(uk) =
uT

k Auk

uT
k uk

2. If A − θkI is singular then solve (A − θkI)x = 0
3. Solve (A − θkI)uk+1 = uk

4. If (uk+1,uk+1)T = 0 then method fails
else “normalize” uk+1 such that (uk+1,uk+1)T = 1

Theorem 4.1 (Locally cubic convergence of RQI for complex-symmetric matrices,
cf. [20, p. 689], [13, Theorem 5.2]). Suppose that uk = αkx+δkdk (cf. (2.5)) converges
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to x, where x is not quasi-null, as k → ∞. Then θk → λ, and we have

δk+1 = O(δ3
k).

Proof. We have

uk+1 = αk+1(x + δk(λ − θk) (A − θkI)−1 dk).

Now, a combination of (2.6), and the fact that A − λI exists on x⊥T (since A − λI :
x⊥T → x⊥T is a bijection) proves the theorem.

Now as a corollary, the asymptotically cubic convergence of JDCS follows. (See
[25, p. 652] for a discussion about the term “asymptotic convergence” for subspace
methods.)

JD and RQI type methods are in practice often very expensive when we solve the
linear systems, occurring in the methods, accurately. We therefore consider inexact
variants. where the linear systems are solved to a certain precision (minimal residual
approach).

First consider the situation where we solve the linear system of complex-symmetric
RQI method inexactly, by which we mean that we are satisfied with a uk+1 if

(4.1) ‖(A − θkI)uk+1 − uk‖ ≤ ξ < 1.

Notice that it may become increasingly difficult to satisfy (4.1) as θk tends to λ because
A − θkI is almost singular.

The following two theorems can be proved by similar methods as in [13, Lemma 5.1,
Theorems 5.2 and 5.3], exploiting the fact that the right eigenvector x is a left eigen-
vector as well.

Theorem 4.2 (Locally quadratic convergence of inexact RQI for complex-sym-
metric matrices, cf. [13, Theorem 5.2]). Let the iterates of the inexact RQI uk =
αkx + δkdk satisfy (4.1) with an accuracy ξ such that ξ · |(x,x)T | < 1. Then

δk+1 = O(δ2
k).

Consider the situation where we solve the correction equation (3.5) or (3.6) of the
complex-symmetric JD method inexactly, by which we mean that we are satisfied with
s̃ ⊥T uk where

(4.2)
∥∥(

I − ukuk
T
)
(A − θI)s̃ + rk

∥∥ ≤ η ‖rk‖

for some 0 < η < 1.
Theorem 4.3 (Locally linear convergence of inexact Jacobi–Davidson for com-

plex-symmetric matrices, cf. [13, Theorem 5.3]). Let uk = αkx + δkdk be the iterates
of inexact JDCS satisfying (4.2). Then

δk+1 ≤ γδk + O(δ2
k),

where γ = κ((A − λI)|
x
⊥T →x

⊥T
).

We remark that for the variant where s̃ ⊥ uk we have a similar statement, now
with γ = κ((A − λI)|

x
⊥→x

⊥T
). So, for inexact JDCS we expect linear convergence
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which can be observed in practice, see the figures in the next section. As mentioned
before, the condition number γ in Theorem 4.3 is bounded. Nevertheless it can be
very large if the distance of λ to the eigenvalue is small. This is a situation that we
encounter in our numerical examples.

As also discussed in [13], we cannot conclude from the theorems that inexact RQI
is faster than inexact Jacobi–Davidson. The theorems only say something on the local,
not the global, rate of convergence (note that Jacobi–Davidson has subspace accelera-
tion); moreover, (4.2) is potentially easier to satisfy than (4.1) as

(
I − ukuk

T
)
(A−θI)

considered as a mapping from x⊥T into itself has a bounded inverse.

5. Numerical experiments. In this section we discuss the applicability of our
algorithm to three test problems from electro-magnetics. All tests have been executed
with Matlab 6.1 (Release 12.1) on a PC with a 1.8GHz Pentium 4 processor and
1GB of main memory running the Linux 2.4.9 operating system.

5.1. A dispersive waveguide structure. We consider first the generalized
eigenvalue problem dwg961, that is available from the Matrix Market [18]. It orig-
inates from a finite element discretization of a waveguide problem with conductors of
finite cross-section in a lossy dielectric medium. The eigenvalue problem has the form

(5.1) Ax =

[
A11 O
O O

](
x1

x2

)
= λ

[
B11 B12

B21 B22

](
x1

x2

)
= λBx.

These matrix structures are obtained if the Maxwell equations are discretized by finite
edge elements. The order of the overall problem is 961. The order of A11 is 705. The
matrix B as well as the submatrix A11 are nonsingular. Thus, (5.1) has 256 zero
eigenvalues. The corresponding eigenspace is

N (A) = R(Y ), Y =

[
O

I256

]
.

Here, N (·) and R(·) denote nullspace and range of the respective matrices. To prevent
the iterates from converging to eigenvectors corresponding to the zero eigenvalue we
force them to be complex-orthogonal to R(BY ). Technically, we can do that by
incorporating Y into the set of found eigenvectors Ũ in the correction equation (3.10).
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Fig. 5.1. Complete spectrum of dwg961 (a) and portion of the spectrum close to τ = 100 (b).
The plot shows imaginary vs. real parts of the eigenvalues.
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We want to find a few of the smallest eigenvalues with positive real part. In
Figure 5.1 the spectrum of the matrix pencil (A;B) of (5.1) is plotted. Besides the
256 zero eigenvalues there are 362 eigenvalues with negative real part and 343 with
positive real part. Although there is no eigenvalue with real part between −2500 and
100 the two sets are in a relative sense not well separated. From Figure 5.1(a) we see
that the eigenvalues with positive real part are much more clustered than those with
negative real part. The smallest of the former are about 0.5 to 1 apart. The largest
eigenvalue (in modulus) is about 1.4 · 106. Thus, the relative gap is quite small and
the condition number of the correction equation is about 106.

We determine the six smallest eigenvalues with positive real part by the Jacobi–
Davidson Algorithm 3.1 for computing interior eigenvalues close to the shift τ = 100
employing refined Ritz vectors. The practical considerations (1)–(3) mentioned after
Algorithm 3.1 apply.

The efficient solution of the correction equation (3.10) requires preconditioning.
We employ complex symmetric (left) preconditioners of the form

(I − BŨŨT )M(I − Ũ ŨT B)

where M approximates A − τB. The computation of the preconditioned residual s
from the residual r amounts to solving

(5.2) (I − BŨŨT )M(I − Ũ ŨT B)s = r, ŨT Bs = 0.

The solution of (5.2) is given by

(5.3) s = (I − M−1BŨ(ŨT BM−1BŨ)−1ŨT B)M−1r.

Usually, the order of the matrix ŨT BM−1BŨ in the projector in (5.3) is small, i.e. less
than or equal to the number of desired eigenpairs. In the present example Ũ also
comprises the basis of the null space of A whence it is quite big. Note, that we keep the
preconditioner fixed throughout the computation. In the course of the computation,
the quality of the preconditioner may deteriorate if many eigenpairs are desired. Then
the preconditioner may have to be updated by techniques like those suggested in [24].
As we compute only a few close eigenvalues a constant preconditioner turns out be
good enough.

The special solvers discussed in the previous sections can only be employed for
solving (3.10)–(5.2) if the preconditioner and thus M is complex symmetric. We
assume M to be of the form M = LDLT where D is a diagonal and L is a unit lower
triangular matrix. Actually, it is not important to have the preconditioner available
in factored form, but it makes the symmetry more evident and also exploits the fact
that we only store a triangle of A and B. We experiment with

• diagonal preconditioning. M = D = diag(A − τB),
• symmetric Gauss-Seidel (or SSOR(1)) preconditioning. M =(D +L)D−1(D +

LT ) where D = diag(A − τB) and L is the strict lower triangular portion of
A − τB = L + D + LT .

• incomplete (complex symmetric) LDLT factorization preconditioning. Here,
L is a unit lower triangular matrix with the same zero pattern as the lower
triangle of A − τB. The factors can formally be computed as in the real
symmetric case [11, §10.3.2]. Notice, that this factorization does not always
exist. The procedure could be stabilized by a 2 × 2 pivoting strategy [4].
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• LDLT factorization preconditioning. Here, M = A−τB. L and D are obtained
by ordinary Gaussian elimination of A−τB with pivoting suppressed, i.e. with
diagonal pivoting∗.
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Fig. 5.2. Convergence history of the JDCS algorithm combined with QMR (a) and COCG (b)
solvers for dwg961: residual norm ‖(A − θ(x)B)x‖2 vs. outer iteration count.

We compute the six smallest eigenvalues with positive real part. The convergence
criterion for the outer iteration (JDCS) is ‖(A − θ(x)B)x‖2 < 10−6‖x‖2. The inner
iteration (QMR or COCG†) is considered converged if the relative residual is smaller
than max{2−1−j , 10−6} where j is the iteration count of the Jacobi–Davidson algo-
rithm. As suggested in [8], j is set to zero at the beginning of the computation and
when an eigenpair has been found. The shift σ in the correction equation is set equal
to the target τ as long as the residual norm ‖(A − θ(xj)B)xj‖2 ≥ 1/10. If the resid-
ual norm drops below 1/10 then σ = θ(xj) is set. The value 1/10 was found to be
satisfactory by experimentation. The iteration is started with a random vector. The
maximally allowed steps for the inner iteration is chosen small, here 10. This limit is
actually hit quite often if σ 6= τ .

Convergence histories are found in Figure 5.2. These results are obtained with the
QMR (left) and COCG (right) solvers. Although the convergence behavior of these
two solvers looks quite different, the number of outer iteration steps is within 10%.
The 2-norm of the residual is smoother with QMR. JDCS/COCG in three cases gets
quite close to an eigenpair but then switches to another one.

Here, the LDLT preconditioner was chosen. A − τB is very sparse and after
application of the Matlab minimum degree reordering there is not too much fill-in
produced in the factorization. The number of nonzeros of the lower triangle of A−τB
is 5776, the number of nonzeros of the L-factor is 20740. All other preconditioners
mentioned above turn out to be insufficient in that the complex-symmetric linear sys-
tem solvers do not converge at all independently of the number of iteration steps that
are permitted for the inner iteration. In the successful computations corresponding
to the plots in Figure 5.2 the inner iteration is stopped after convergence or after 10

∗The Matlab command [L,U]=lu(A - tau*B,0) provides the desired factor L while D is the
diagonal of U . The second input parameter suppresses pivoting.

†As CSYM was not competitive with the other two complex-symmetric solvers in preliminary
tests, we decided not to consider CSYM in these numerical experiments.
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iteration steps.

The Jacobi–Davidson algorithm is restarted as soon as the search space had di-
mension 20. The iteration is continued (restarted) with the 10 best refined Ritz vectors
available.

In Table 5.1 some statistics are listed for all three test problems that we solved.
Besides the number nitout of outer iteration steps, the total number nitin of steps
of the inner iteration is given. Thus, the correction equation is solved in the av-
erage in nitin/nitout steps. Notice that problem dwg961 is relatively expensive to
solve compared with the much larger test problems that we are going to discuss as Ũ
in (3.10)–(5.2) also contains the basis of the null space of A. The execution time of
JDCS combined with COCG is shorter than JDCS combined with QMR although the
number of inner iteration steps is larger. We surmise that this is due to the better im-
plementation of COCG which is obtained by a few trivial modifications of Matlab’s
efficient implementation of the preconditioned conjugate gradient (PCG) algorithm.

dwg961 (n=961) toy2 (n=6243) wg (n=32098)

nitout nitin time nitout nitin time nitout nitin time

JDCS/QMR 37 221 91.1 20 79 21.1 19 88 247.8
JDCS/COCG 41 234 77.6 19 75 15.3 21 104 183.6

Table 5.1
Iteration counts and execution times (in seconds) for all the three numerical examples.

We succeeded in solving this smallest problem with the incomplete LDLT pre-
conditioner if we replaced the complex-symmetric system solver by GMRES (without
restarts). However, the correction equation always had to be solved to the high relative
accuracy 10−6 which required about n/2 inner iteration steps. Thus, the solution of one
correction equation needed about twice as many inner iteration steps as JDCS/QMR
or JDCS/COCG with the LDLT preconditioner, cf. Table 5.1. By consequence, the
computation took 3895 seconds! This approach is not feasible in the larger eigenvalue
problems.

5.2. A radiating dielectric cavity problem. Our second test example that
we call toy2 is a one-dimensional layered dielectric cavity with six distributed Bragg
reflector (DBR) pairs at the top and the bottom, and a quantum well active region
sandwiched between the two DBR pairs. A PML lining terminates the one-dimensional
structure at the two ends. This structure has no practical significance for vertically-
cavity surface-emitting lasers (VCSEL) design. Nevertheless, the treatment of an open
cavity using PML can be illustrated. Here, A and B are sparse nonsingular matrices
of order 6243. We are looking for a few of the interior eigenvalues close to the real
axis in the neighborhood of a real target value that is determined by the laser designer
analytically. On the left of Figure 5.3 the whole spectrum is depicted. On the right
the vicinity of the spectrum near the target value (×) is shown. The plots indicate
that the condition number of the correction equation is at least 106. We proceed
just as in the first problem except that we allow now up to 20 (interior) iteration
steps per call of the linear system solver, a limit that is reached only a few times.
Again we observe convergence only with the LDLT preconditioner. Diagonal and
symmetric Gauss-Seidel preconditioning does not reduce the condition of the original
problem sufficiently. We factor A− τB after applying the symmetric minimum degree
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Fig. 5.3. Complete spectrum of toy2 (a) and portion of the spectrum close to target τ = 0.057
(b). The target is indicated by ×. The plot shows imaginary vs. real parts of the eigenvalues.

algorithm available in Matlab. The number of nonzeros of a triangle of A − τB is
43038. The number of nonzeros of the factor L is only 94404.

The convergence histories of the complex-symmetric Jacobi–Davidson algorithm
combined with QMR and COCG system solvers are given in Figure 5.4. Here, the
convergence behavior of the two solvers is quite similar. Both algorithms exhibit
a misconvergence before they find the first eigenpair. Misconvergence means that
a sequence of refined Ritz pairs seems to converge to some eigenpair, but close to
convergence a Ritz pair emerges that is closer to some other eigenpair.

According to Table 5.1 JDCS/COCG now requires fewer inner and outer iterations
steps. However, the difference in the number of inner iteration steps is just about 5%.
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Fig. 5.4. Convergence history of the JDCS algorithm combined with QMR (a) and COCG (b)
solvers for toy2: residual norm ‖(A − θ(x)B)x‖2 vs. outer iteration count.

The eigenvalues (and associated eigenvectors) that are actually computed are those
closest to τ . We have verified this by computing all eigenvalues of the toy2 problem
with the QR algorithm‡. When the problem to be solved is large this is of course

‡This takes a few hours on a PC with a decent main memory.
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infeasible. In such a case it is difficult if not impossible to check whether all eigenvalues
in a given neighborhood of the target value have been found. We have kept the target
value τ fixed throughout the computation. One could set τ to be equal to the most
recently computed eigenvalue. This has usually the effect that the target values move
away from the original one. In this way it is not easy to control which eigenvalues are
found. In general they are not the ones closest to τ .

5.3. A waveguide problem with PML. In the third example we deal with
a two-dimensional optical waveguide problem. The cross-section of the waveguide is
considered. The waveguide is designed such that the fundamental optical mode expe-
riences considerably lower losses by leakage into the substrate compared to the higher
order optical modes. In this way more reliable single/fundamental-mode operation
can be achieved in practice. A PML lining terminates the two-dimensional structure
on the boundary. The PML is used to render the effect of leakage into substrate [12].
The order of A and B is n = 32098. As in the first example, A has a 2 × 2 block
structure where only the block A11 is nonzero, cf. (5.1). The dimension of the null
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Fig. 5.5. Convergence history of the JDCS algorithm combined with QMR (a) and COCG (b)
solvers for wg: residual norm ‖(A − θ(x)B)x‖2 vs. outer iteration count.

space is now m = 10680. We did not exploit the knowledge of the basis of the null
space because of its size. By applying the projector I − Y [B−1

22 B21, I] we could force
the iterates to be B-orthogonal to the null space N (A) [1].

As in the second problem we are looking for eigenvalues with small imaginary parts
closest to the real target value τ . All parameters were set as in Section 5.2. Again,
only the LDLT preconditioner worked for solving the correction equation. The LDLT

factorization of M = A − τB (after minimum degree permutation) yields a L factor
with 2595171 nonzeros that consumes 62MB of computer memory in Matlab’s sparse
matrix format. The lower triangle of A − τB has 264194 nonzeros. The factorization
itself took 15 seconds.

The convergence histories of the JDCS algorithm combined with QMR and COCG
for solving the correction equations are given in Figure 5.5. Iteration counts and
execution times are found in Table 5.1. The convergence histories and thus numbers
of outer iterations are again very similar. But JDCS/COCG is now much faster than
JDCS/QMR. The execution time of the former is about 75% of the latter although
the overall number of inner iteration steps is almost 20% higher. This shows that
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QMR better solves the correction equation but also that it has a higher overhead than
COCG as system matrix and preconditioner are applied twice per inner iteration step.

6. Discussion and Conclusions. We have suggested an algorithm, JDCS, for
finding a few eigenvalues and corresponding eigenvectors of special and generalized
eigenvalue problems with complex-symmetric matrices. JDCS is a natural generaliza-
tion of standard JD for complex-symmetric matrices. Most of the techniques known
in JD (such as preconditioning the correction equation, using a target, restarting, and
techniques for computing interior eigenvalues) easily carry over to JDCS.

Exact JDCS has asymptotically cubic convergence for simple eigenvalues of com-
plex-symmetric matrices. To get this high convergence rate it is crucial to replace
the Euclidean inner product x∗y by the bilinear form xTy. We have shown that the
Rayleigh quotient θ based on this “inner product” is closer to the exact eigenvalue
λ (|λ − θ| = O(δ2)) than the Rayleigh quotient ρ derived from the Euclidean inner
product (|λ − ρ| = O(δ)), where δ is the angle between exact and approximating
eigenvector.

Compared with the Lanczos algorithm for complex-symmetric matrices [6], JDCS
is more flexible, in that we can restart with any vectors we like, and add some extra
vectors to the search space. JDCS is also more stable than Lanczos, in the sense that
it can easily cope with breakdown, no look-ahead versions are necessary (see [13]).

Of course, JDCS can have disadvantages. We may expect problems when we
try to approximate an eigenvector x that is (approximately) quasi-null: the oblique
projections and the Rayleigh Quotient (1.3) may affect the accuracy and stability. A
standard JD algorithm that computes a partial Schur form could be better suited in
such a situation.

We solved several numerical problems. In all of them we observed convergence in
very few iteration steps. However, we were unable to solve our three test problems
with preconditioners other than (I −BŨŨT )(A− τB)(I − Ũ ŨT B). That means that
we had to compute the LDLT factorization of A− τB which foils the big advantage of
the Jacobi–Davidson algorithm to be factorization-free. As the shift θ in the correction
equation is set equal to the target τ in the initial phase of the eigenvalue search, using
this preconditioner implies that we can solve the correction equation accurately in a
single iteration step. The initial phase actually amounts to performing (accelerated)
inverse iteration with shift τ . So, initially we construct a very good search space. Only
when this search space contains a good approximation to a desired Ritz pair, “true”
JDCS sets in. Our approach is thus very powerful as long as the LDLT factorization
of A − τB can be afforded. Unfortunately, this preconditioner will not be feasible
for very large systems due to fill-in. It is therefore of paramount importance to find
effective complex-symmetric preconditioners that on the one hand approximate well
A − τB and on the other hand do not consume too much memory space.
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