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Abstract

In this paper we discuss a two-dimensional adaptive grid method that is based on a tensor-product
approach. Adaptive grids are a commonly used tool for increasing the accuracy and reducing com-
putational costs when solving both Partial Differential Equations (PDEs) and Ordinary Differential
Equations (ODEs). A traditional and widely used form of adaptivity is the concept of equidistri-
bution, which is well-defined and well-understood in one space dimension. The extension of the
equidistribution principle to two or three space dimensions, however, is far from trivial and has been
the subject of investigation of many researchers during the last decade. Besides the non-singularity
of the transformation that defines the non-uniform adaptive grid, the smoothness of the grid (or
transformation) plays an important role as well. We will analyze these properties and illustrate their
importance with numerical experiments for a set of time-dependent PDE models with steep moving
pulses, fronts, and boundary layers.

Keywords: method of lines, adaptive grid refinement, finite differences, moving grids, coordinate transformations

1 Introduction

Over the years a large number of adaptive grid methods have been proposed for time-dependent
PDE models. Two main strategies of adaptive grid methods can be distinguished, namely,
static-regridding methods and moving-grid or dynamic-regridding methods. In static-regridding
methods (denoted by h-refinement) the location of nodes is fixed. A method of this type adapts
the grid by adding nodes where they are necessary and removing them when they are no longer
needed. The refinement or de-refinement is controlled by error estimates or error monitor values
(which have no resemblance with the true numerical error). In dynamic-regridding methods
(denoted by r-refinement) nodes are moving continuously in the space-time domain, like in
classical Lagrangian methods, and the discretization of the PDE is coupled with the motion
of the grid. A third approach, often combined with h-refinement in finite element methods or
implemented in ODE-solvers, is characterized by the term p-refinement, which indicates the
possibility of a variable order of approximation during the calculations.

In this paper we follow the second approach in a structured grid. One of the most popular
techniques in one space dimension is the so-called ‘equidistribution principle’. This method
aims at ‘equally’ distributing a relevant quantity, called the ‘weight function’, in order to cluster
grid points non-uniformly abd to reduce the numerical errors. In two space dimensions this
technique is not very well-developed, see however ([10], [15], [1]) for some interesting extensions
to higher space dimensions. Here, we let the grid be adapted in a tensor-like manner in the two
spatial directions. The advantage is that nice properties of the method, such as non-singularity
and smoothness, are preserved in each direction. The adaptive tensor-grid method is based on
a semi-discretization of a system of two fourth-order PDEs for the grid variables and is being
coupled to the physical PDE model re-written in a new co-ordinate system. We use the method-
of-lines technique: first we discretize the PDEs in the space direction using a finite-difference
approximation, so as to convert the PDE problem into a system of stiff, ordinary differential
equations (ODEs) with time as independent variable. The discretization in time of this stiff
ODE system then yields the required fully discretized scheme.

The layout of the paper is as follows. Section 2 is devoted to a description of the equidistri-
bution principle in one space dimension. In section 3 we present the PDE model, the coordinate
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transformation and the adaptive grid equations. The tensor-grid approach is enhanced with
smoothing in both space and time direction and is defined as the solution of adaptive grid PDEs.
Section 4 illustrates the importance of smoothness in terms of the truncation error and gives
an numerical example for a 1d advection equation. Numerical experiments for the 2d tensor-
grid are shown in section 5 for a series of test cases, among others, a ‘whirlpool’ model from
meteorology, a parabolic PDE problem describing a rotating cone, and the so-called Gray-Scott
model, a reaction-diffusion system from pattern formation. Furthermore, a ‘counterexample’
shows the main drawback of the proposed method. Finally, section 6 lists the conclusions and
presents an outlook to future work.

2 The equidistribution principle

The general objective in structured r-refinement techniques is to find transformations (grids)
that map steep solutions in the physical coordinates (waves, pulses, etc) into milder objects
in the computational coordinates which can be treated ‘easier’ with numerical methods. The
advantage is then that we may have good hope to prevent or reduce numerical oscillations
near steep fronts or improve the local accuracy without increasing the number of spatial grid
points too much. For special PDE models with well-known solution properties explicit trans-
formations may be available to meet this goal. However, for general PDE systems with com-
plicated time-dependent solution behaviour this is hardly possible to accomplish. To overcome
this problem in one space dimension, a well-known principle that may be used to define the
transformation implicitly is described by the so-called equidistribution principle. Equidistribu-
tion aims at ‘equally’ distributing a positive ‘weight’, ‘grading’ or ‘monitor’ function W on a
spatial grid. Ideally, this W represents some measure of the numerical error in the discretiza-
tion (but this is difficult for general situations, and, if already feasible, not computationally
efficient). In other words, we would like to choose or compute a non-uniform adaptive grid
{xi : xl = x0 < x1 < ... < xN−1 < xN = xr} such that the contributions to the ‘error’ or some
related quantity from each subinterval (xk, xk+1) are the same. This idea can be worked out in
the formula (first, we suppress the time-dependence):

∆xi Wi = c, i = 0, ..., N − 1, x0 = xl, xN = xr; ∆xi := xi+1 − xi. (1)

Equation (1) can also be recognized as a discrete version (using, for instance, the midpoint rule)
of

∫ xi+1

xi

W(x) dx = c, i = 0, ..., N − 1; x0 = xl, xN = xr.

The constant c is then determined from
∫ xr

xl

Wdx =

∫ x1

x0

Wdx +

∫ x2

x1

Wdx + ... +

∫ xN

xN−1

Wdx = c + c + ... + c (N times),

giving c = 1
N

∫ xr

xl
Wdx. The equidistribution principle becomes:

∫ xi+1

xi

Wdx =
1

N

∫ xr

xl

Wdx, i = 0, ..., N − 1,

which means that the monitor function W is equally distributed over all subintervals. The
simplest way of describing equidistribution is to note that from (1) follows that grid cells ∆x i

are small where Wi is large, and vice versa, since their product is kept constant. Moreover,
equation (1) can be interpreted as a discrete (finite difference) approximation of the problem

dx

dξ
W(x(ξ)) = c, 0 < ξ < 1; x(0) = xl, x(1) = xr. (2)
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Since dx
dξ = 1/ dξ

dx , this is equivalent with

dξ

dx
= c W(ξ(x)), xl < x < xr; ξ(xl) = 0, ξ(xr) = 1.

From this expression we can find an explicit formula for the (inverse) transformation ξ(x). Note
that

1 = ξ(xr) − ξ(xl) =

∫ xr

xl

dξ

dx
dx = c

∫ xr

xl

Wdx̄

from which follows c = 1
∫ xr
xl

Wdx̄
and thus

dξ

dx
=

W(x)
∫ xr

xl
Wdx̄

.

Integrating once gives

ξ(x) =

∫ x

xl

W(x̄)
∫ xr

xl
W(x̄)dx̄

dx̄ =

∫ x
xl
W(x̄)dx̄

∫ xr

xl
W(x̄)dx̄

.

Taking the derivative w.r.t. ξ of (2) yields the two-point boundary value problem for x(ξ):

d

dξ
[
dx

dξ
W(x(ξ)] = 0, x(0) = xl, x(1) = xr. (3)

An important issue is the choice of the weight function W. It may be obvious that there is no
general rule for all cases. In literature many different functions have been used for all kinds of
situations. For example, in ([2], [8], [11]) the popular arc-length monitor W =

√

1 + u2
x is used.

Pereyra et al [17] derived estimates for the local truncation error to define the weight function.
Already in 1913, Sundman [20] (recently improved by Leimkuhler [14] realized the usefullness
of a transformation with W = up/q for the three-body ODE system. The curvature monitor

W = (1 +u2p
xx)

1

2p places the grid points in regions of large second-derivatives and is investigated
in [6]. As an extension of the arc-length function for the gas dynamics equations in [19] a weight
function is proposed that depends on the entropy s := pγ/ρ. Finally, Budd et al [5]) derive simple
but extremely effective monitor functions, such as W = up−1, W = |u|2, or W = xα|u|β |ux|

γ

for PDE models in which scaling, blow up, or similarity properties should be preserved by the
adaptive grid. This (incomplete) short overview of different weight functions in 1d indicates
that a general rule for W can not be given.

In two space dimensions, however, the situation is even more complicated. Although several
authors ([10], [15], [1]) have described new interesting ideas that all lead in some sense to
equidistribution, when restricting the respective method to one space dimension, no proper
extension of this principle is yet known for higher space dimensions. In the following section a
simplified tensor-grid approach is proposed that yields equidistribution in each spatial direction
with additional smoothness properties.

3 Tensor-product adaptive grids

Consider now the two-dimensional time-dependent PDE model

∂tu = ε∆u − β(u, x, y, t) · ∇u + s(u, x, y, t), (4)

where (x, y) ∈ [xl, xr] × [yl, yu], t ∈ [0, T ], 0 ≤ ε is the diffusion coefficient, β the velocity
vector and s a nonlinear sourceterm.

It is common and useful in structured r-refinement methods to first apply a coordinate
transformation to the physical PDE model (4). The adaptive grid can then be seen as a uniform
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discretization of this mapping in the new variables. In this paper we make use of a transformation
of variables ([24], [13]) in a dimensionally-split approach

ξ = ξ(x, t), η = η(y, t), θ = t, (5)

in which (x, y) and (ξ, η) ∈ [0, 1] × [0, 1] denote the physical and computational coordinates,
respectively. Applying this transformation to equation (4) gives (a similar derivation can be
made for a system of PDEs)

J ∂θu − ∂ξu ∂ηy ∂θx − ∂ηu ∂ξx ∂θy = ε[∂ξ(
∂ηy ∂ξu

∂ξx
) + ∂η(

∂ξx ∂ηu

∂ηy
)] (6)

−β1∂ηy ∂ξu − β2∂ξx ∂ηu + s(u, x(ξ, θ), y(η, θ), θ), (7)

where J := ∂ξx ∂ηy is the Jacobian of the transformation. Note that ∂xξ = [∂ξx]−1 and
∂yη = [∂ηy]−1 measure the grid densities in each separate direction.

The adaptive grid in terms of the mapping is determined as a solution of two fourth-order
PDEs in ξ and η with an additional time-dependent component. We set

∂ξ [(S1(J1) + τ ∂θJ1)W1] = 0, (8)

∂η [(S2(J2) + τ ∂θJ2)W2] = 0, (τ ≥ 0),

with suitable boundary conditions for x (similar conditions hold for y):

x(0, η) = xl, x(1, η) = xr, ∂nx(0, η) = ∂nx(1, η) = 0.

The operators S1 and S2 are direction-specific versions of the operator S defined as:

S = I − σ(σ + 1)(∆ξ)2∂2
ξξ (σ ≥ 0), (9)

where J1 := ∂ξx and J2 := ∂ηy are the ‘one-dimensional’ Jacobians, respectively. As mentioned
before, several choices for the weight functions in (8) can be made. Here, we simply take

W1 =
√

1 + α maxη[∂ξu]2, (10)

W2 =
√

1 + α maxξ[∂ηu]2 (α ≥ 0).

The parameter α is an adaptivity parameter: α = 0 yields W1 = W2 = 1 and thus a uniform grid
distribution (this can easily be derived from (8) and (9)); for increasing values of α the derivatives
∂ξu and ∂ηu are stressed more and more with the effect of higher spatial grid adaptation. It
can be shown that the transformation (5) as a solution of equations (8), (9), (10) satisfies the
‘grid-consistency’ condition

J > 0, ∀ θ ≥ 0, and (ξ, η) ∈ [0, 1] × [0, 1],

and also the ‘local quasi-uniformity’ property
∣

∣

∣

∣

∣

∂2
ξξx

∂ξx

∣

∣

∣

∣

∣

≤ 1/
√

σ(σ + 1)∆ξ, (11)

∣

∣

∣

∣

∣

∂2
ηηy

∂ηy

∣

∣

∣

∣

∣

≤ 1/
√

σ(σ + 1)∆η.

To prove these theoretical properties of the grid, the results from [11] have shown to be very
useful. The first property is equivalent to non-singularity of the mapping, which is, of course, a
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minimum demand. The second property concerns the smoothness of the mapping (see below for
more details). Note that for σ = τ = 0 (i.e. without smoothing operators) the grid equations
(8) reduce to

∂ξ [J1W1] = 0, (12)

∂η [J2W2] = 0,

which can be easily solved, just as in the one-dimensional case, to obtain an explicit expression
for the (inverse) coordinate transformation

ξ(x, t) =

∫ x

xl

W1 dx̄/

∫ xr

xl

W1 dx̄, (13)

η(y, t) =

∫ y

yl

W2 dȳ/

∫ yu

yl

W2 dȳ.

Moreover, equations (12) can be seen as the Euler-Lagrange equations of the quadratic ‘grid-
energy’ functionals

E1(ξ) =

∫ xr

xl

1

W1
(∂xξ)2dx, and E2(η) =

∫ yu

yl

1

W2
(∂yη)2dy. (14)

Formulae (14) can be taken to represent the energy of a system of springs with spring constants
W1,2 spanning each subinterval (grid points can then be seen as the mass points of the spring
system). The grid point distribution resulting from ‘equidistribution’ thus represents the equi-
librium state of the spring system, i.e., the state of minimum ‘energy’. Note that, from (12),
i.e. without any kind of smoothing, follows directly that, as W1,2 > 1: J1,2 > 0, and therefore
J = J1J2 > 0. Using the fact that ∆ξ and ∆η are constant, the continuous property J > 0
both for equations (12) and for equations (8) can be translated in semi-discrete terms as

∆xi,j(θ) > 0, ∀θ ∈ [0, T ], ∀i, j, (15)

∆yi,j(θ) > 0, ∀θ ∈ [0, T ], ∀i, j. (16)

In other words, these relations state that the grid points can never cross one another. Property
(11) can be read in semi-discrete terms as

1

1 + 1/σ
≤

∆xi+1,j(θ)

∆xi,j(θ)
≤ 1 + 1/σ, ∀θ ∈ [0, T ], ∀i, j, (17)

and similar relations for the y-direction. Relation (17) means that the variation in successive
grid cells in both directions can be controlled by the parameter σ at every point of time. The
importance of this property will be discussed in the next section. Finally, the parameter τ in
(8) has a smoothing effect in the time-direction to prevent the grid from adjusting too quickly
to new values of the weightfunctions W1,2. It can be seen as a small delay factor for the grid
movement.

4 A numerical experiment in one space dimension

In the previous section we have shown that the adaptive grid in terms of a coordinate trans-
formation as defined by the solution of the PDEs (8) possesses nice properties, such as grid
consistency and grid smoothness. In the following, we discuss the backgrounds and effects of the
(non-)smoothness of the grid and give a numerical illustration in one space dimension to support
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the theory. An important quantity in this respect is the so-called ‘grid size ratio’, sometimes
also denoted by ‘local stretching factor’. It is defined by

r :=
xi − xi−1

xi+1 − xi
=

∆xi−1

∆xi
:=

q

p
.

For the numerical treatment of the physical PDE model we need to approximate spatial deriva-
tives. For instance, the first-order derivatives can be approximated using central-finite-differences:

∂xu|i =
ui+1 − ui−1

p + q
+ T.

The truncation error T can be expressed in several different, but mathematically equivalent,
ways as follows:

T = −
∂2

xxu

2
(1 − r)∆xi −

∂3
xxxu

6
(1 − r + r2)∆x2

i + ... =

=
∆ξ2

6
(3 ∂2

ξξx ∂2
xxu + [∂ξx]2 ∂3

xxxu) + O(∆ξ4) =

=
∆x2

i

6
(3

∂2
ξξx

[∂ξx]2
∂2

xxu + ∂3
xxxu) + H.O.T .

In the case of a uniform grid we have r = 1, and the relation for T reduces to the standard
second-order expression

T = −
∆ξ2

6
∂3

xxxu + O(∆ξ4).

On the other hand, for r > 1, i.e. a non-uniform grid, we can derive that the truncation error
will only be of second-order

⇐⇒ r = 1 + O(∆xi), (18)

(which is called ‘quasi-uniformity’)

⇐⇒
∂2

ξξx

[∂ξx]2
= O(1).

A local version of this property is named ‘local quasi-uniformity’ (see also the previous section)
and can be expressed as

O(1) =
1

K
≤ r ≤ K = O(1). (19)

It is easy to make the the link between (18) and (19). If we choose σ = O(1) in the smoothed
adaptive transformation, then we automatically obtain with K := 1 + 1/σ : K = O(1).
In this sense, the additional smoothing operator gives us the desired property for second-order
approximation of the first spatial derivative (note that similar derivations can be made for ∂ 2

xxu|i
and other spatial derivatives appearing in the physical PDE).

As a numerical illustration we apply a 1d-version of the adaptive grid method defined by
(8), where we have frozen the y-direction, to the following advection model:

∂tu + 4 cos(4πt)∂xu = 0.

An exact solution for this problem is given by u∗(x, t) = sin1000(π(x− 1
π sin(4πt))) and describes

an extremely sharp pulse that moves periodically in the time direction from left to right and
backwards again through the domain. For the weight function we take the 1d-restriction of (10):

W =
√

1 + α [∂ξu]2.
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N α = 0 α = 1, σ = 0 α = 1, σ = 2

50 0.721312 0.624699 0.387192
100 0.577044 0.432729 0.116723
200 0.509914 0.274196 0.033135
400 0.327693 0.142711 0.025296
800 0.109807 0.072737 0.017410
1600 0.027250 no solution 0.011549

Table 1: The maximum error ||e||∞ at t = 0.4 for the 1d-advection model

Table 1 confirms the theoretical considerations: if we add the smoothing operator (σ = 2) to the
adaptation procedure, the convergence of the method, when doubling the number of spatial grid
points, is improved dramatically compared with the uniform grid case (α = 0) and with the pure
equidistribution case (σ = 0). In these runs at t = 0.4 the parameters τ and tol (the tolerance
in the time-integrator DASSL [18]) were deliberately chosen very small to see the effect of the
spatial part of the smoothing: τ = 10−6 and tol = 10−8. It is observed that the non-smooth case
experiences a severe degradation of performance, even resulting in a breakdown of the method
for N = 1600. The solutions and the grid history for N = 100 are displayed in Figures 1 and 2.
Note the much bigger error in the solution and the ‘unsmooth’ trajectories for σ = 0 compared
with the plots for σ = 2. It is also clear that the uniform grid solution is far too inaccurate.

5 Numerical experiments in two space dimensions

In this section we will demonstrate the usefulness of the adaptive tensor-grid method in a two-
dimensional setting. The method is applied to a set of PDE models from different application
areas. In the numerical tests, unless specified otherwise, the default choices in the experiments
are the following: a uniform starting grid, a time-tolerance of 10−3, and grid parameters α =
σ = 1, τ = 10−3. For this value of σ the grid cell ratio’s always remain bounded between 1/2
and 3/2. We have discretized the spatial derivatives both in the physical and the adaptive grid
PDEs with central finite differences. It is, of course, clear that more suitable approximations,
w.r.t. accuracy and efficiency, can be made depending on each separate PDE model. The stiff
time-integrator DASSL [18] takes care of the resulting ODE system. This code makes use of
h− p-refinement in the time-direction, which means variable timestep and a variable order (less
than 5) of approximation in the BDF-(Backward-Differentiation Formulas)integrator.

5.1 A whirlpool model

An interesting test model from meteorology is described by the hyperbolic PDE

∂tu = −
vt

vt,max

y

r
∂xu +

vt

vt,max

x

r
∂yu, (20)

where

r =
√

x2 + y2, vt =
tanh(r)

cosh2(r)
, vt,max = 0.385, (21)

with initial and boundary conditions: u|t=0 = − tanh( y
2 ), ∂nu|∂Ω = 0, on the domain (x, y) ∈

[−4, 4] × [−4, 4], t ∈ [0, 4]. This model describes the formation of cold and warm fronts in a
two-dimensional setting. Beginning with a narrow region of high gradients (a front), a fixed (in
time) rotational velicity field will act to twist the front in a manner similar to that observed on
daily-weather maps (positive solution values correspond to a warm front and negative values to
a cold front). Details on this model can be found in [21]. A complicated structure with high
spatial activity, similar to a whirlpool, develops in the center of the domain. Figure 3 shows the
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N=100, T=0.4, p=1000, α=1 

exact solution 

σ=2 

σ=0 

uniform grid 

X 

U 

Figure 1: Numerical solutions for the 1d-advection model for N = 100 at t = 4 for different
choices of α and σ (zoomed in several times around x = 0.2).

Grid size α = 0 α = 1, σ = 0 α = 1, σ = 1 α = 10, σ = 1

19 × 19 0.99983 0.57177 0.62015 0.50516
29 × 29 0.74773 0.27647 0.25053 0.24930
39 × 39 0.52421 0.15113 0.15087 0.13512
49 × 49 0.29419 0.10606 0.09828 0.09244
59 × 59 0.19357 0.08476 0.08387 0.07491

Table 2: The maximum error ||e||∞ at t = 4.0 for the whirlpool model

grids and numerical solutions on a 49 × 49 grid at t = 0.0, 1.6, 2.8 and 4.0. Also contourplots
are given for comparison with the uniform grid and the adaptive grid case for t = 4.0 at which
point of time the whirlpool has developed. The adaptive solution compares favorably to the
uniform solution in which the inner-layer structure of the whirlpool is not resolved very well at
all. Note that we haven taken here the re-scaled value α = 10 instead of α = 1, since the domain
and the solution have larger scales. In Table 2 the maximum error is displayed at the final time
for different values of α and σ. We see that for α = σ = 1, which would be a ‘standard’ choice
for a unit-square domain and solution values of O(1), the method performs not as good as for
the re-scaled α = 10 case. The difference between the smooth (σ = 2) and the non-smooth
(σ = 0) case is not so profound for this model, because the steep parts of the solution remain
concentrated in the centre of the domain for all time.

5.2 A combustion model

A reaction-diffusion system (see [12] for more details) of a so-called single one-step reaction of
a mixture of two chemicals that stems from combustion theory often gives rise to moving and
stationary layers in the solution. A simplified scalar version of this model is defined by

∂tu = ε∆u + D(1 + β − u)e−δ/u, (22)
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Figure 2: Numerical results for the 1d-advection model: irregular adaptive grid for σ = 0 (left)
vs. smooth adaptive grid for σ = 2 (right).

where D = Reδ

βδ denotes the Damkohler number, R the reaction rate, δ the activation energy,
and β the heat release, respectively. As an initial condition we take a sharp non-symmetric
hump:

u|t=0 = 1 + sin50(πx) sin10(πy).

Note that smaller values of the diffusion coefficient ε yield steeper fronts in the model: we choose
ε = 0.1 which gives rise to very sharp transitions. At the boundary the Dirichlet condition
u|∂Ω = 1 is imposed. Due to the interaction between diffusion and reaction a moving steep layer
is observed that moves quickly to the boundaries and then settles down in a steady-state. The
other chemical parameters are typical for a standard test model: R = 5, β = 1 and δ = 20. In
Figure 4 the adaptive-grid solutions and the grids are depicted at different points of time on a
39×39 tensor-grid. It can be observed that the adaptive grid is nicely situated around the steep
moving flame front, from the initial phase up to the boundary layer steady-state.

5.3 The Gray-Scott model

From pattern formation the following reaction-diffusion system ([8], [16]) exhibits complicated
solution behaviour:

∂tu = 8 × 10−5∆u − uv2 + 0.02(1 − u), (23)

∂tv = 4 × 10−5∆v + uv2 − 0.086v. (24)

In this model self-replicating spots have been observed. These are regions in which the (chemical)
concentrations of some of the species exhibit large amplitude perturbations from a surrounding
homogeneous state. Depending on system parameters, these regions can enlarge and split so
that the spots replicate in a complex, and as yet incompletely understood, manner. Starting
with a pulse, spot, or a small block in the middle of the domain as an initial condition, we
see at some point of time that splitting may occur due to a complicated interaction between
diffusion and reaction terms, resulting in four spots, later on in eight spots, etcetera. The initial
conditions are

u(x, y, 0) =

{

0.5 if 0.45 ≤ x ≤ 0.55 and 0.45 ≤ y ≤ 0.55,
1 elsewhere,

v(x, y, 0) =

{

0.25 if 0.45 ≤ x ≤ 0.55 and 0.45 ≤ y ≤ 0.55,
0 elsewhere,
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on the spatial domain [0, 1] × [0, 1]. Note that it would be almost impossible for a uniform grid
of moderate size to deal with this tiny initial block. The adaptive-grid solutions and grids in
Figure 5 demonstrate clearly the capability of the tensor-grid to follow the splitting of the spots.
For this experiment, we have used a 39 × 39 grid with endpoint of time t = 500.

5.4 A ‘counterexample’

As we have seen, the proposed tensor-product grid method can be applied successfully to a set
of different PDE models in two space dimensions. However, it is also obvious that this method
may fail dramatically for a large class of other important models. A relatively simple model
that can be used as a ‘counterexample’ (see [23] for details) is given by

∂tu = ε∆u − u ∂xu − (
3

2
− u) ∂yu, 0 < ε � 1. (25)

The exact solution for this problem reads

u∗(x, y, t) =
3

4
−

1

4

1

1 + e
−4x+4y−t+2

32ε

.

This is a scalar version of the 2D system of Burgers’ equations. The solution describes a wave
front with a steep transition area of thickness O(ε) that moves under an angle of 1350 with the
positive x-axis. With the adaptive tensor-product grid, the grid points find an ‘optimal’ position
at t = 2 as shown in Figure 6: a uniform grid distribution. Any other choice for the weight
function or method parameters yields a preference direction which definitely will not improve
the grid distribution, since the solution is a skew wave. It is clear that a skew wave (and many
other types of more complicated layers than this one) can not be resolved with a tensor-product
grid. In this figure we show fully-2d adaptive grids for this model as well, which are based
on the more general transformation x(ξ, η, θ) and y(ξ, η, θ). A description of that method will
appear in the subsequent paper [25]. This example shows clearly that 2d grid adaptation based
on the ‘full’ tranfsormation is needed to cope with general solution structures, such as waves
and moving layers.

5.5 A rotating cone

To show the effects of the adaptivity parameter α and the weight function W it is of interest to
examine the linear parabolic equation described by

∂tu = ∆u + f(x, y, t), (x, y) ∈ [−1, 2] × [−1, 2]. (26)

The source term f is chosen so that the exact solution is

u∗(x, y, t) = e−80[(x−r(t)))2+(y−s(t))2 ],

where

r(t) =
1

4
(2 + sin(πt)), s(t) =

1

4
(2 + cos(πt)).

This solution is a rotating cone with initial condition e−80((x−0.5)2+(y−0.75)2) that moves around
in circles with a constant speed. During the movement, the shape of the cone does not change.
Another option for the weight functions, especially for this example, could be of the form

W̃1 = W̃2 :=
√

1 + α̃ u2

to stress the solution values at the peak itself instead of the gradients. In Table 3 and Figure
7, numerical results are displayed for different choices of the weight function and the adaptivity
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Grid size α = 0 α = 1, σ = 0.2 α = 1, σ = 1 α̃ = 1, σ = 0 α̃ = 10, σ = 0

19 × 19 0.43590 0.71109 0.11618 0.43998 0.18423
29 × 29 0.25521 0.48283 0.16219 0.26116 0.03766
39 × 39 0.14363 0.21347 0.10206 0.15026 0.02522
49 × 49 0.08629 0.20423 0.08304 0.09600 0.01725
59 × 59 0.05636 0.09953 0.06081 0.06624 0.01147

Table 3: The maximum error ||e||∞ at t = 2.0 for the rotating cone model

parameters α and α̃. A few observations can be made from these simulations. First, we see again,
that decreasing the smoothness, i.e., taking the rather small value σ = 0.2, negatively influences
the maximum error for the case of an arc-length weight function. Second, the alternative choice
W̃1,2 where the solution value is emphasized, and not the gradient of the solution, gives much
better numerical results, although the adaptive grids themselves, perhaps surprisingly, look not
too different. Note that, if the value of α̃ is increased, the error in the numerical solution is
reduced significantly. The solutions for α = 1 exhibit a strange decrease in amplitude both at the
top of the pulse and at the foot of the pulse, although for σ = 1 this behaviour is less pronounced
than for the unsmooth run with σ = 0.2. For the alternative weight function with α̃ = 10, this
effect is almost annihilated. This experiment indicates that an optimal choice for the weight
function and an optimal value of the adaptivity parameter can not be given beforehand. This
issue needs further attention and will be investigated in a subsequent report.

6 Conclusions and comments

In this study we have used an adaptive tensor-grid approach for the numerical solution of time-
dependent PDE models with steep fronts, rotating or splitting pulses from pattern formation,
and boundary layers. The adaptive moving grid used in the experiments is based on the equidis-
tribution principle in two directions enhanced with smoothing operators in the space- as well
as in the time-direction. Both theory and experiments in a one-dimensional situation indicated
the importance of these additional features of the method. We have shown the effectiveness of
the adaptive tensor-grid in 2d to deal with regions of high spatial activity in the PDE solution.
The main advantage of the proposed method is the fact that non-singularity and smoothness of
the underlying transformation can always be guaranteed, which is one of the known bottlenecks
in the theory behind existing structured r-refinement methods. The method is very useful for
solutions with ‘rectangular’ or ‘pulse-like’ steep components moving through the spatial domain.
A ‘counterexample’ with a ‘non-rectangular’ wave showed the main handicap of the tensor-grid
approach, and indicates the need for full 2d grid-adaptation for these situations (see for example
[25]). Another point of discussion is the choice of the weight function. Results were shown for
which the traditional choice such as the arc-length weight function is inferior to much simpler
functions in which the solution itself is emphasized instead of the gradients. Further theoret-
ical research is needed to get a deeper understanding of this important issue. Moreover, it is
necessary to increase the robustness of the adaptivity parameter in the weight functions. In-
teresting new developments in this respect can be found in [2], where the parameter is defined
as a time-varying constant depending on the volume under the 2d solution surface. Further-
more, in [9] it is claimed that under certain conditions of the non-uniform tensor-grid so-called
‘supra-convergence’ should occur. This higher-order convergence behaviour was not observed
in our experiments, however. It could, therefore, be of interest to investigate whether the grid
defined by our transformation does or does not satisfy the, rather untransparant, conditions for
‘supra-convergence’. The computational efficiency, especially for more complicated models in
2D and 3D, can be improved by switching from a direct solver to iterative solvers ([4], [22]) used
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for the linear systems in the implicit time-integrator. Finally, we note that an efficient combi-
nation of the adaptive tensor-grid with a local-uniform grid (h-)refinement, such as [3], could
be of importance for general applications. The effectiveness of h − r-refinement techniques was
demonstrated in [7] in the case of a stationary model. For time-evolutionary models, however,
this is still an open question and should be investigated in more detail.
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Figure 3: Tensor-grid solutions for the whirlpool model at t = 0.0, 1.6, 2.8, 4.0 and contourplots
at t = 4: uniform grid (left) vs. adaptive grid (right).
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Figure 4: Tensor-grid solutions for the combustion model at t = 0.01, 0.02, 0.04, 0.08.
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Figure 5: Tensor-grid solutions for the Gray-Scott model: from initial tiny block at t = 0
(upper-left), via four spots, to eight spots at t = 500.
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Figure 7: Tensor-grid solutions for the rotating cone model: solutions (left) and grids (right)
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