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Abstract

In this paper we describe an adaptive moving mesh technique and its application
to reaction-diffusion models from chemistry. The method is based on a coordinate
transformation between physical and computational coordinates. The transforma-
tion can be viewed as a solution of adaptive mesh partial differential equations
(PDEs) which is derived from the minimization of a mesh-energy integral. For an
efficient implementation we have used an approach in which the numerical solution
of the physical PDEs and the adaptive PDEs are decoupled. Further, to avoid solving
large nonlinear systems, an implicit-explicit time-integration method in combination
with the iterative method Bi-CGSTAB is applied in the method-of-lines procedure.
Several computational examples are given in one and two space dimensions.
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1 Introduction

Many unsteady models governed by reaction-diffusion partial differential equation systems
have solutions with regions of high spatial variation such as emerging and splitting pulses,
boundary layers or moving wave fronts. The PDE models often describe chemical reaction
and diffusion processes with interesting spatial patterns. The reaction kinetics can be
represented with a nonlinear source term and the diffusion by the Laplacian operator,
respectively. From a computational point of view it is known that the use of uniform fixed
spatial meshes is highly inefficient for resolving the steep moving parts of the solution
in such PDE systems. In those situations adaptive meshes play an increasingly growing
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role. In this paper we describe an adaptive moving mesh technique that is based on
a minimization of a so-called mesh-energy integral. The corresponding Euler-Lagrange
equations then define a set of adaptive mesh PDEs. In one space dimension this reduces
to the widely-used equidistribution principle; in two space dimensions it is related to
harmonic mapping theory supplied by a monitor matrix to detect the steep transitions in
the solution. The adaptive mesh method can be seen as a discretization of the physical
model in a transformed coordinate system coupled with the mesh equations [9]. The
method of lines (MOL) is used to numerically approximate the solution of the PDE
model. For the integration in time 2-SBDF is applied, which is a second-order implicit-
explicit method. The implicit part of this method deals with the (linear) diffusion, whereas
the explicit part takes care of the (nonlinear) reaction terms in the model [5], thereby
avoiding the use of a nonlinear system solver, like Newton’s method. Additionally, the
discretization of the PDE model and the moving mesh is decoupled. For solving the
linear (non-symmetric) system behind the adaptive moving mesh equations, the iterative
method Bi-CGSTAB (see [7]) is used. A simple filtering technique is needed to cope with
less smooth transitions between higher and lower mesh concentrations in the domain.
Numerical results are shown for some interesting applications: the Gray-Scott model with
complex pattern formation that possesses solutions with splitting pulses which describes
irreversible chemical reactions with an inert product [4], [1], and the Brusselator model
[3] having periodic solutions with steep moving layers.

2 The adaptive moving mesh method

2.1 A coordinate transformation

Consider the following scalar reaction-diffusion model

ut = ε∆u + s(u, x, y, t), (1)

where (x, y) ∈ [xl, xr] × [yl, yu] ⊂ IR2, t ∈ [0, T ], 0 ≤ ε is the diffusion coefficient, and
s a nonlinear sourceterm. It is common and useful in structured adaptive mesh methods
to first apply a coordinate transformation to the physical PDE model (1). The adaptive
mesh can then be seen as a uniform discretization of this mapping in the new variables.
Applying the transformation

ξ = ξ(x, y, t), η = η(x, y, t), θ = t, (2)

to equation (1) gives (a similar derivation can be made for a system of PDEs, and the
one-dimensional case is obtained by freezing the second space direction)

uθ +
1

J
[uξ(yθxη − xθyη) + uη(xθyξ − yθxξ)] = (3)
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ε

J
[(

x2
η + y2

η

J
uξ)ξ − (

yξyη + xξxη

J
uη)ξ − (

yξyη + xξxη

J
uξ)η + (

x2
ξ + y2

ξ

J
uη)η] + s(u, x, y, θ),

where J = xξyη − xηyξ is the Jacobian of the inverse transformation.

2.2 The adaptive mesh PDEs

The transformation, in other words, the adaptive mesh, is prescribed by so-called adaptive
moving mesh PDEs.
Let ~x = (x1, . . . , xd) ∈ Ωp and ~ξ = (ξ1, . . . , ξd) ∈ Ωc := [0, 1]d be the physical and
computational coordinates, respectively (with d ≥ 1 the spatial dimension). The general

transformation is then given by: ~ξ = ~ξ(~x), ~x ∈ Ωp, with inverse ~x = ~x(~ξ), ~ξ ∈ Ωc. In a
variational setting, the ‘mesh-energy’ functional is defined by

E(~ξ) =
1

2

d
∑

k=1

∫

Ωp

∇ξT
k M−1

k ∇ξk d~x,

where ∇ := (∂x1
, ∂x2

, . . . , ∂xd
)T and Mk are given monitor matrices. The mesh, i.e. the

transformation, is determined by minimizing the energy functional via the Euler-Lagrange
equations: ∇ · (M−1

k ∇ξk) = 0, 1 ≤ k ≤ d.
A simple choice for the monitor function is Mk = ωI, 1 ≤ k ≤ d, where I is the identity
matrix and ω a positive weight function. With this choice we obtain Winslow’s variable
diffusion method [8]:

∇ ·
(

1

ω
∇ξk

)

= 0, 1 ≤ k ≤ d. (4)

In one space dimension the Euler-Lagrange equations reduce to (ω−1ξx)x = 0, which gives
the equidistribution principle: ω−1ξx = c(onstant) ⇔ ωxξ = c̃(onstant), or equivalently
the boundary-value problem: (ωxξ)ξ = 0, with boundary conditions x(0) = xl, x(1) = xr.
For this case, an explicit formula for the inverse transformation ξ(x) can be derived. Note
first that

1 = ξ(xr) − ξ(xl) =

xr
∫

xl

ξxdx = c

xr
∫

xl

ωdx̄ ⇒ ξx =
ω(x)

∫ xr

xl
ωdx̄

.

Integrating once more gives ξ(x) =

∫ x

xl
ω(x̄)dx̄

∫ xr

xl
ω(x̄)dx̄

.

In two space dimensions (writing x1 = x, x2 = y, ξ1 = ξ, ξ2 = η) equations (4) become
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(ω−1ξx)x + (ω−1ξy)y =0,

(ω−1ηx)x + (ω−1ηy)y =0. (5)

In practice, the physical domain may have very complex geometry and as a result directly
solving the elliptic system (5) on structured meshes is unrealistic. Therefore, usually the
corresponding mesh generation equations on the computational domain are solved by
interchanging the dependent and independent variables in (5). However, the resulting
system is much more complicated than the original equations (6), which requires more
computational effort in obtaining numerical approximations. If the physical domain is
convex, an alternative approach (see also [6]) is to consider the energy functional in
the computational domain. Unlike the re-written classical equations (5) a very simple
structure is maintained. In 2-D the functional now reads:

Ẽ(x, y) =
1

2

∫

Ωc

(

∇̃T xM1∇̃x + ∇̃T yM2∇̃y
)

dξdη,

where ∇̃ = (∂ξ, ∂η)
T . The corresponding Euler-Lagrange equations are then of the form

∂ξ(M1∂ξx) + ∂η(M1∂ηx) = 0,

∂ξ(M2∂ξy) + ∂η(M2∂ηy)= 0. (6)

We choose the monitor functions M1 = M2 = ωI with ω =
√

1 + β ∇̃u · ∇̃u to de-
tect regions with high first-order spatial derivatives. The parameter β is an ‘adaptivity’-
parameter which controls the amount of adaptivity. For β = 0, we get ω = 1 and
M1 = M2 = I. Equations (6) then yield a system of two Laplace equations for the
mesh with trivial boundary conditions on the unit square. The solution of this system,
obviously, is the identity transformation: x(ξ, η) = x, y(ξ, η) = y, representing a uniform
mesh in both directions. Higher values of β > 0 allow, of course, for more adaptivity. A
default value for this parameter is: β = 1. However, this choice may depend on the size
of the domain and the range (maximum and minimum values) in the PDE solution.

2.3 Numerical solution of the complete PDE system

One approach would be to couple the discretized systems for the adaptive mesh PDEs
and the physical PDEs. However, there are a number of disadvantages to this approach.
First, the size of the resulting system would be large and even for moderate grid densities
may be prohibitive. Second, this approach does not easily admit different convergence
criteria for the mesh and physical solution. As noted in literature, it is not necessary to
compute the mesh with the same level of accuracy as the physical solution. Finally, a user
may wish to control over the discretization of the physical problem and such flexibility is
severely restricted by coupling the unknowns together into one large nonlinear system of
equations. We have therefore decoupled the numerical solution procedure for the physical
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and adaptive mesh PDEs, and integrate in time in an iterative manner, solving for the
mesh and the physical solution alternately. Furthermore, instead of solving (6) we integrate
in time the parabolic PDE system

xτ = (ωxξ)ξ + (ωxη)η,

yτ = (ωyξ)ξ + (ωyη)η, (7)

where τ is an artificial time variable within the time integration process. In the theoretical
limit, τ → ∞, the mesh reaches the steady-state situation (6). Numerically this means
that after a number of time steps the mesh will adjust to the physical PDE solution.
The decoupled procedure, which is related to the alternate solution procedure in [2], is
outlined in Algorithm 1. Within the decoupled procedure we freeze the coefficients in sys-

Algorithm 1 The decoupled numerical PDE procedure

Given the physical solution u(n), the mesh ~x(n) and the time stepsize ∆t at time t = tn.

1: Calculate the new monitor function M (n) = M (n)(tn, ~x(n), u(n)).
2: Calculate the new mesh ~x(n+1) by integrating the MMPDEs from t = tn to t = tn+∆t,

using ~x(n) as initial mesh and keeping the monitor function M constant in time during
the integration.

3: Calculate the physical solution u(n+1) by integrating the physical PDEs from t = tn

to
t = tn + ∆t, using the mesh ~x(n+1) and mesh speed ~̇x(t) = (~x(n+1) − ~x(n))/∆t.

tem (6) and replace the spatial derivatives by second-order central difference operators.
The resulting ODE system is solved by the implicit Euler method, and for the linearized
system of equations the iterative method Bi-CGSTAB (see [7]) is applied with implicit
diagonal preconditioning.
For the reaction-diffusion equation (1) in which s(u, x, y, t) is a nonlinear source term in
general, it is appropriate to make use of an implicit-explicit time-integration method (see
[5] for more details). The main advantage is that solving a nonlinear system, with for
instance Newton’s method, can be avoided, while still having reasonable stability prop-
erties, at least for mildly stiff equations. For example, within this class of integrators the
first-order method 1-SBDF yields: u(n+1) − ε∆t ∆u(n+1) = u(n) + ∆t s(n)(u, x, y, t), where
∆u(n+1) is the semi-discretized approximation of the four second-order derivative terms in
equation (3). Unfortunately, as analyzed in [5] this method may perform poorly to repro-
duce the dominant wavenumber accurately. This type of error is undesirable because it
may lead to incorrect modal growth and hence a plausible-looking, yet qualitatively wrong
solution. A better option for numerically integrating (1) in time is to apply the second-
order method 2-SBDF, which allows relatively larger time steps and strongly damps high
frequency errors:

3

2
u(n+1) − ε∆t ∆u(n+1) = 2∆t s(n)(u, x, y, t)− ∆t s(n−1)(u, x, y, t) + 2u(n) −

1

2
u(n−1).(8)
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Since at each time step both u(n) and u(n−1) are needed in 2-SBDF, we have applied at the
first time step the one-step explicit-implicit Euler method. The linear system Au(n+1) = b
behind (8) is again solved with the iterative method Bi-CGSTAB with implicit diagonal
preconditioning. In order to obtain ‘smoother’ transitions in the mesh, rather than merely
using equations (6), an additional filter (see also [6]) is applied on the weight functions.
Instead of working with Mij, the smoothed values

M̃ij =
1

4
Mij +

1

8
(Mi+1,j + Mi−1,j + Mi,j+1 + Mi,j−1)+

1

16
(Mi−1,j−1 + Mi−1,j+1 + Mi+1,j−1 + Mi+1,j+1)

are being used in the mesh equations. This weighted sum corresponds with averaging the
influence of the first spatial derivatives on the mesh points.

3 Numerical results

3.1 The Gray-Scott model

Reaction-diffusion models of chemical species can produce a variety of patterns, remi-
niscent of those often seen in nature. The Gray-Scott equations model such a reaction.
Numerical simulations of this model were performed in an attempt to find stationary
lamellar patterns like those observed in earlier laboratory experiments on ferrocyanide-
iodate-sulphite reactions [4]. The chemical reactions for this situation are described by

U + 2V → 3V,

V →P,

in which U, V and P are chemical species. The system of reaction-diffusion equations for
this situation is given by

ut = ε1∆u − uv2 + f (1 − u),

vt = ε2∆v + uv2 − (f + k) v, (9)

where ε1 and ε2 are the diffusion rates in the process, k represents the rate of conversion
of V to P , and f the rate of the process that feeds U and drains U, V and P .

In the one-dimensional numerical experiments the following choices for the model param-
eters are made: ε1 = 10−4, ε2 = 10−6, f = 0.024, k = 0.06. The initial conditions are
u(x, 0) = 1 − 1

2
sin100(πx), v(x, 0) = 1

4
sin100(πx), supplemented with Dirichlet boundary
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Fig. 1. Adaptive mesh solutions for the 1D Gray-Scott model.

conditions on the domain [0, 1]. We have used 300 mesh points on the spatial domain [0, 1]
with a time step of ∆t = 0.01. For the adaptivity parameter β in the weight function we
took the value 0.01. The mesh and the solutions of the PDEs are determined with an
accuracy (measured in terms of residual error) of 10−4 and 10−5, respectively. With these
conditions (see [1]) we expect a splitting of the initial pulse first into two and then into
four pulses. Figure 1 shows both the trajectories of the adaptive mesh up to t = 2000
and the solutions at t = 0 and t = 2000 for u and v. The ability of the adaptive mesh to
capture and follow the splitting process is clearly demonstrated in this figure.
In two space dimensions we start with two block functions

u(x, y, 0) =











0.5 if 0.3 ≤ x ≤ 0.7 and 0.3 ≤ y ≤ 0.7,

1 elsewhere,

v(x, y, 0) =











0.25 if 0.3 ≤ x ≤ 0.7 and 0.3 ≤ y ≤ 0.7,

0 elsewhere,

on the domain [0, 1] × [0, 1]. We choose the same time step, and tolerances as in 1D on
a spatial mesh of 51 × 51 mesh points with Dirichlet boundary conditions and diffusion
coefficients ε1 = 8 · 10−5, ε2 = 4 · 10−5. Figure 2 depicts the numerical solutions for β = 1
at t = 1, 50, 100, and 150. The 2D-splitting process of the initial block functions into four
spots is illustrated in terms of the first component u and the adaptive mesh.

3.2 The Brusselator

The second model is the so-called Brusselator. This is a very well-studied model for a
hypothetical tri-molecular reaction, which was introduced in Brussels in 1971 (for more
details see [3]). The four single reactions are given by
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Fig. 2. Adaptive mesh solutions for the 2D Gray-Scott model at t = 1, 50, 100, 150.

A−→U,

B + U −→V + D, Bimolecular reaction

2U + V −→ 3U, Autocatalytic trimolecular reaction

U −→E.

Adding the rates of production and loss of the two intermediate species U and V in these
reactions, and assuming all rate constants to be unity, leads to the following time evolution
equations for the concentration fields U and V

ut = ε1∆u + A + u2v − (B + 1)u,

vt = ε2∆v + Bu − u2v, (10)

where the diffusion coefficients are ε1 = ε2 = 10−4 (in 1D) and ε1 = ε2 = 2 · 10−3 (in 2D),
and the chemical parameters A = 1 and B = 3.4.
At the boundary of the domain Neumann conditions are imposed:

∂u

∂n
|∂Ω =

∂v

∂n
|∂Ω = 0 with Ω = [0, 1]d.

The initial conditions in 1D and 2D read, respectively:

u(x, 0) =
1

2
, v(x, 0) = 1 + 5x; u(x, y, 0) =

1

2
+ y, v(x, y, 0) = 1 + 5x. (11)

With these boundary and initial conditions a periodically (with period ≈ 7) moving wave
will be induced. In figures 3 (200 meshpoints) and 4 (51× 51 meshpoints) we observe this
behaviour both in one- and two space dimensions. The numerical parameters for these
runs were ∆t = 0.01, β = 0.01 in 1D and β = 1 in 2D, respectively.

8



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

x −>

t −
>

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

u 
−

>

x −>

u(0)
u(1)
u(2)
u(4)
u(6)
u(8)
u(9)
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Fig. 4. Adaptive mesh solutions for the 2D Brusselator at t = 1, 3, 5 and 11.

4 Conclusions

In this paper we applied an adaptive moving mesh method to 1D and 2D reaction-diffusion
models from chemistry. Although the numerical results are very promising there is still
much room to improve the performance of the method. Two of the most important issues
in this respect are the implementation of a variable timestep control and the use of more
sophisticated preconditioners for the underlying linear systems. Other improvements could
be, for example, the development of a time-dependent and robust adaptivity parameter in
the weight function, and a non-uniform evolutionary mesh distribution at the boundary of
the domain (instead of fixing the grid there). Investigation of other weight functions and
filtering operators for smoother mesh distributions will certainly improve the adaptive
moving mesh as well, especially if very steep layers and skew meshes are to expected.
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