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APPLICATIONS OF CANONICAL RELATIONS IN GENERIC DIFFERENTIAL
GEOMETRY

M. VAN MANEN

ABSTRACT. Conflict sets are loci of intersecting wavefronts emanating from l different surfaces.
We show that generically conflict sets are Legendrian: locally they admit the structure of wavefronts.
Simple stable singularities for this problem in R

n occur when 0 ≤ n − l ≤ 4. Other related sets,
such as kite curves and centre sets are also defined and discussed. Throughout canonical relations
are used as an essential tool to carry out several of these geometrical constructions.

INTRODUCTION

The symmetry set of a manifold M ⊂ R
n is defined as the closure of the set in u ∈ R

n where the
distance function

s
F
7→‖u − γ(s)‖

has a double extremum. Here γ : M → R
n is an embedding of the surface. The symmetry set

is the closure of the A1A1 stratum in the parameter space R
n of the family of functions F (x, s).

The symmetry set was studied in [JB85]. There also a number of other related sets that measure

FIGURE 1. Two symmetry sets and a double extremum

symmetry are discussed: medial axis, cut-locus. For references to the many variants that exist we
refer to this paper and other work of Giblin.

In this paper we do not take one manifold, but l manifolds of codimension 1 in R
n. Hence, we

have l distance functions. We are interested in the points where all the the distance functions have
an extremum at the same time. So we attempt to find those x ∈ R

n for which there are si on the
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FIGURE 2. A conflict set of two circles

Mi such that the following equations hold true:

Fi(x, s) =‖x − γi(si)‖ Fi = Fj 1 ≤ i, j ≤ l

∂Fi

∂si

= 0 ∈ R
n−1 1 ≤ i ≤ l(0.1)

Here γi : Mi 7→ R
n are again embeddings for the hypersurfaces Mi.

Definition 0.1. The x0 for which such {si}1≤i≤l exist make up the conflict set.

We measure not so much symmetry but more that what is in the middle. The conflict set of two
lines is another pair of lines: nl. their bisectors. For a line and a circle the conflict set is already a
more complicated object, while the conflict set of two circles generally will consist of four conic
sections. This is due to the fact that the distance function from a fixed point to a circle mostly has
two extrema. With other curves such phenomena happen too.
To be able to single out a certain component we define an oriented conflict set. Let the Mi be
oriented manifolds. Then the orientation defines a direction for a flow induced by the unit normal
vectorfield ni ∈ NMi.

Definition 0.2. The union of the intersection of the wavefronts at all times t ∈ R is called the
oriented conflict set.

The main result of this paper comes in two parts.

• The conflict set of {Mi}1≤i≤l is for generic embeddings of the surfaces Mi a Legendrian
manifold, that it is the projection of a smooth set in PT ∗

R
n.

• The conflict set generically has the singularities that occur in n − l parameter families of
wavefront in R

n−l+2. If n − l + 2 ≤ 6 then the conflict set generically only has singularities
that are combinations of the well-known ADE singularities.

Our approach is such that it will entail several other results. Among these are results concerning
the center symmetry set, and others concerning the Gauss map. Also when n = l we will define a
sort of dual to the conflict set, akin to the dual of a curve in projective space.
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FIGURE 3. An oriented conflict set of a line and a circle. The arrows indicate the orientations.

The paper has the following set up. In the first section we redefine the conflict set as the intersec-
tion of so called big fronts. In the second section we use canonical relations to carry out a number
geometrical constructions. In the third section we use the Thom transversality theorem to proof
the first part of out main result. In the fourth section we recall some results on Lagrangian and
Legendrian singularities. These mainly concern so-called phase functions. We use these to proof
the second part of our main result.
The main results of this paper have been the subject of talks held by the author at several confer-
ences in the years 2000-2002.

1. STATEMENT OF THE MAIN RESULT

Denote by T ∗
R

n \ 0 the slit cotangent bundle, that is the cotangent bundle without the zero sec-
tion. Coordinates for the slit cotangent bundle are (x, ξ). The ξ are coordinates in the fiber. Let
Hi : T ∗

R
n \ 0 → R≥0 be C∞ functions positively homogeneous of degree 1, and independent of x.

If also the matrices

∂2H2
i (ξ)

∂ξ2

are positive definite these functions define a Finsler metric and as Hamiltonians they define trajec-
tories. These trajectories are particularly simple. They are straight lines. More precisely we have
that the time that it takes to travel from p0 to p1 in R

n is a function whose squared value is a C∞

function on R
n × R

n minus the diagonal and whose first derivative is never zero.
To a certain extent we could drop the condition that theHi are translation invariant or the condition
that the H2

i only take on positive values but that would lead us too far afield.
Now let Mi be smoothly embedded manifolds of codimension 1 in R

n. We could take smoothly
embedded submanifolds of any codimension, but we consider wavefronts emanating from these
submanifolds and after some time they become submanifolds of codimension1.
Denote coordinates on

T ∗
R

n+1 \ 0
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by (x, ξ, t, τ).
For each of the Mi we can define the ( oriented ) big wavefront, by means of a map

Ψ: T ∗(Rn+1) \ 0 → : T ∗(Rn+1) \ 0

Ψ: (x, ξ, t, τ) → (exp(tXH), t, τ − H)

Definition 1.1. The image of

R × {0} × (N ∗Mi ∩ {Hi = 1}) ⊂ T ∗
R × T ∗

R
n \ 0

by the map Ψ or rather its image under multiplication in the fibers by λ ∈ R>0, is called the big
wavefront. It is denoted by N∗Mh

i .

If the Mi are orientable we can consider a section ni of N∗Mi contained in {Hi = 1}.

Definition 1.2. The image of

R × {0} × Image(ni) ⊂ T ∗
R × T ∗

R
n \ 0

by the map Ψ or rather its image under multiplication in the fibers by λ ∈ R>0, is called the
oriented big wavefront. It is denoted by N∗M b

i .

The ( oriented ) big wavefront are conic Lagrangian submanifolds of

T ∗(R × R
n) \ {0}

We can now define a more general conflict set in a Hamiltonian context.

Definition 1.3. The oriented conflict set of (Mi, ni, Hi), 1 ≤ i ≤ l is

C
(

(Mi, ni, Hi)i=1,··· ,l

)

= πn

(

l
⋂

i=1

πn+1

(

N∗M b
i

)

)

where πn(x, t) = x and πn+1(t, τ, x, ξ) = (t, x).

Remark 1.4. The conflict set of {(Mi, Hi)}1≤i≤l is defined similarly. Also the sets πn+1(N
∗Mh

i )
and πn+1(N

∗M b
i ) are sometimes called “the graph of the time function”, see [Arn90]. The “time

function” is of course not really a function. It is multi-valued.

Examples of these concepts are readily provided. For instance we can consider the Hamiltonians

H1 = |ξ| H2 = η|ξ| η ∈ R>0

for two circles. If we draw the conflict set for different values of η, we get a plethora of curves ,
see figure 4.
Denote by Emb(Mi, R

n) the space of embeddings of the manifold Mi in R
n. This space is an open

subset of C∞(Mi, R
n). To take into account the l embeddings we deal with we introduce the space

l
⊕

i=1

Emb(Mi, R
n)

The main result of our paper reads as follows.
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FIGURE 4. Conflict sets for different values of η

Theorem 1.5. For a residual subset of
⊕l

i=1 Emb(Mi, R
n) the ( oriented ) conflict set can be

realized as the projection of a conic Lagrange submanifold in T ∗
R

n . In addition if the Mi are
compact the generic singularities of the ( oriented ) conflict set are the generic singularities of
n − l parameter families of fronts in R

n−l+2 embedded in R
n. In particular if 2 ≤ n − l + 2 ≤ 6

the ( oriented ) conflict set generically only has combinations of simple singularities of ADE type.

Remark 1.6. The dimension of the conflict set in R
n is n − l + 1.

We point out one particularly nice consequence of this theorem. If we have n surfaces in R
n the

conflict set is one dimensional and generically only has self-intersections and cusps as singularities.

2. CANONICAL RELATIONS AND ASSOCIATED GEOMETRICAL CONSTRUCTS

We will need the notion of a canonical relation between two symplectic manifolds.

Definition 2.1. A canonical relation between two symplectic manifolds {(Si, ωi)}i=1,2 is a La-
grangian submanifold of

S1 × S2, π
∗
1ω1 − π∗

2ω2

The πi denote projections S1 × S2 → Si.

Graphs of symplectomorphisms χ : S1 → S2 are important examples of canonical relations. Sym-
plectomorphisms can be composed, canonical relation can be composed as well. The composition
of symplectomorphisms is a special case of a theorem of Hörmander, see [Hör85], chapter 21.

Theorem 2.2. Let Si, i = 1 · · ·3 be three symplectic manifolds. Let G1 be a canonical relation
between S1 and S2 and G2 one between S2 and S3. If G1 × G2 intersects S1 × ∆(S2) × S3

transversally then the image G3 under the projection S1 × S2 × S2 × S3 7→ S1 × S3 is a canonical
relation between S1 and S3. We call it the composition G1 ◦ G2 of G1 and G2.

This theorem allows one to create new Lagrangian manifolds from old. Canonical relations also
formalize remarks of Arnol’d who has regularly stated that in symplectic geometry one “decreases
dimensions” by “sectioning and projection”, see for instance [Arn90].
Often we will be interested in a particular case where S3 is a point. So we use the next proposition,
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that rephrases the demand in the theorem of Hörmander. Note that a canonical relation between S3

and a point is just a Lagrange manifold in S3.

Proposition 2.3. Let G1 be a canonical relation between S1 and S2 whose projection to S2 is
an immersion and let G2 be a canonical relation between S2 and a point. Then the composition
G1 ◦ G2 is a canonical relation , and thus a Lagrangian manifold in S1, if π2(G1) t G2.

Proof. We need that

G1 × G2 t S1 × ∆(S2)(2.1)

This intersection is contained in the graph of the projection π2 : G1 → S2. We have that (2.1) holds
iff.

gr(π2) t G1 × G2

this in turn is true iff.

π2(G1) t G2

Now the theorem of Hörmander has a more familiar interpretation: through this manifold π2(G1)
we can pull back Lagrangian manifolds from S2 to S1.

2.1. Conflict sets. Our foremost example of this procedure will be where

S1 = T ∗
R

n+1 \ 0

As coordinates for S1 we will take
(

x̄, ξ̄
)

x̄ = (x0, x) ∈ R
1+n ξ̄ = (ξ0, ξ) ∈ R

1+n

or (ȳ, η̄). In T ∗
R

n we will write (x, ξ) or (y, η).
If we put S2 = (S1)

l then conflict sets can be constructed by means of a canonical relation as
follows. Set G1 ⊂ S1 × S2

{

ȳ, η̄, x̄1, ξ̄1, · · · , x̄l, ξ̄l | η̄ =
l
∑

i=1

ξ̄i, ȳ = x̄i, 1 ≤ i ≤ l

}

The manifold G1 is clearly conic Lagrange and also it projects as an embedding to S2. For G2 we
take the product of the big wavefronts

G2 = ×l
i=1N

∗Mh
i or G2 = ×l

i=1N
∗M b

i

The manifold π2(G1) is the diagonal in (Rn+1)
l together with all cotangent vectors

π2(G1) = T ∗
∆(Sl

1)

The lifted conflict set Lh ( or Lb in the oriented case ) is the pull-back to S1 by T ∗
∆(R(n+1)l). The

projection of Lh to the base R
1+n is the graph of the time function on the conflict set.
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Theorem 2.4. Lh is conic Lagrange if

×l
i=1N

∗Mh
i t T ∗

∆(R(n+1)l)(2.2)

Proof. Clear from the above remarks.

Remark 2.5. The criterion in equation (2.2) is quite computable in practice. Suppose that the time
functions for each of the big wave fronts take on the form

t = Fi(x, si),
∂Fi

∂si

= 0, 1 ≤ i ≤ l

then the intersection in equation (2.2) is transversal iff.

F (x, λ, s1, · · · , sl) =

l−1
∑

i=1

λi(Fi(x, si) − Fi+1(x, si+1))

is a phase function, i.e. the matrix

ds,λ,x(F, ds,λ F )

has maximal rank there where

(F, ds,λ F ) = 0

In case the Hamiltonians are just Euclidean metrics this leads to a lot of computable examples, in
the spirit of [Por94]. For instance, it is verified that with 3 surfaces in R

3 only one of the wavefronts
can have a cuspidal edge, if this maximal rank criterion is to hold. All more degenerate cases lead
to, albeit interesting, examples of non-Legendrian behavior.

We now have a conflict set Lh in S1 and this object is the most important one. First, the projection
of Lh to R

n+1 has the same Legendrian singularities as the projection of the corresponding object
in T ∗

R
n \ {0} to R

n, and second, there is associated to the conflict set a “kite curve” which can be
constructed directly from Lh. The kite curve will be treated below in paragraph 2.2.
To pull Lh into T ∗

R
n \{0} we need to apply the “sectioning and projection”. The section isη0 = 0

and the projection is along the y0 axis. The y0 is axis is the time axis and as we saw that πn+1(L
h) is

the graph of the time function on the conflict set it is not surprising that this projection is immersive
and that it induces no extra singularities. The conic canonical relation we use is

G1 = {(x, ξ, ȳ, η̄) | x = y, ξ = η, η0 = 0} ⊂ T ∗
R

n \ {0} × S1 and G2 = Lh(2.3)

Using proposition 2.3 we obtain that if

Lh t W where W = {(ȳ, η̄) | η0 = 0}(2.4)

we can pull back Lh to T ∗
R

n \ {0}.

Lemma 2.6. ×l
i=1N

∗Mh
i t T ∗

∆

(

Sl
1

)

⇒ W t Lh
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Proof. Suppose that we did not have W t Lh. Because W is a hypersurface that would mean that
at some point p in Lh the tangent space TLh would be contained in TW . So it would hold

〈(0, 0, 0, δη0), ~w〉 = 0, ∀~w ∈ TLh

and consequently

ω((0, 0, δy0, 0), ~w) = 0, ∀~w ∈ TpL
h

with ω being the canonical symplectic structure. But Lh is Lagrangian, so we’d have that this
vector (0, 0, δy0, 0) ∈ TLh. But that is clearly impossible.

Corollary 2.7. The conflict set is conic Lagrange if (2.2) holds.

Our main theorem says that not only generically the conflict set is a Legendrian manifold, but also
that its singularities are singularities of fronts in R

n−l+2. So we want to pull back not just to R
n

but to an n − l + 2 dimensional subspace of R
n. This can be done in more or less the same way

as in the above where we projected along along the “time” axis. front in an n − l + 2 dimensional
space.
We can project in a Legendrian way along some direction v if

W (v) = {(x, ξ) ∈ T ∗
R

n | 〈v, ξ〉 = 0 ‖ξ‖ = 1}

intersects transversely with Lh. This was done in the above along the time axis.
More generally we can section and project along a subspace V spanned by {v1, · · · , vk}, if

W (V ) = {(x, ξ) ∈ T ∗
R

n | 〈vi, ξ〉 = 0 i = 1, · · · , l ‖ξ‖ = 1}

intersects Lh transversely. The assertion is proven by using a canonical relation as the previous
G1. In R

n the conflict set is n − l + 1 dimensional. If it is Legendrian “the fiber” has dimension
l − 1. A maximum of l − 2 directions can thus additionally be sectioned away. We end up in an
n − l + 2 dimensional space, as stated in the main theorem.

2.2. The kite curve. Associated to the conflict set is the kite curve. It is some sort of dual to the
conflict set. This occurs when l = n. Suppose we are at a point of the conflict set that corresponds
to l Morse extrema of the time function and such that the normals to the front are affinely in general
position. The conflict set is smooth there and at the l basepoints on the Mi we have tangent planes,

FIGURE 5. Oriented conflict sets and some kites
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that are naturally thought of as affine hyperplanes in R
n. They usually intersect in a point. This

point traces out a curve in R
n.

The kite curve can most conveniently be thought of the intersection of the tangent developable of
πn+1(L

h) with a plane t = constant, see figure 6. This explains immediately that the kite curve is
a line whenever the Mi are all spheres ( in sufficiently general position ).
To form a good idea of the kite curve one could consult [Sie99]. There the case with 2 curves in R

2

is thoroughly examined. The kite curve is exhibited there as the locus of points where two tangent
lines have equal length. As said for two circles in the plane the kite curve is a straight line, see the
pictures in 5.
If one wants to, the kite curve can also be constructed at singular points of the conflict set. First of
all we are interested in the intersection of the big wave fronts, so we need:

x̄i = x̄j, 1 ≤ i, j ≤ l(2.5)

Our y variable should be such that it is in the intersection of the tangent planes to the big fronts.
So the vector that runs from the point (y, 0) to x̄i should lie in all the tangent planes. So the line
from (y, 0) to x̄i should be orthogonal to each ξ̄i. That is:

〈x − y, ξi〉 + x0ξi,0 = 0, 1 ≤ i ≤ l = n(2.6)

Equations (2.5) and (2.6) define a set in R
n. Possibly this is a Legendrian curve, but this is not so

clear. Further on we will consider a more natural candidate for a “kite curve”.

2.3. Gauss maps and parallel tangent planes. The Gauss map can also be used to define sets
that measure symmetry. The center symmetry set is defined as the locus of the midpoints of chords
connecting two distinct points with parallel tangent space on a surface M1 ⊂ R

n. Apparently this
was introduced by Giblin, see [GH99]. The center symmetry set of a conic section is a point.
Clearly we can repeat this with two distinct manifolds, looking for pairs of parallel tangent planes.
As set we can consider

1. the midpoints of the chords connecting the tangent planes
2. the normals themselves as a subset of the family of oriented lines in R

n, T ∗Sn−1

Definition 2.8. The midpoints of the chords form the center set and the chords themselves form
the normal chord set.

These constructions can both be carried out with canonical relations. The first curve will turn out
to be Legendrian iff. the second is Lagrangian.
We do a recap of the construction of the space of oriented lines in R

n. A directed line in R
n has

a direction, that is a unit vector v in Sn−1. At v ∈ Sn−1 there is a tangent plane. This tangent
plane can be identified with a plane in T0R

n. The intersection point of this tangent plane with
the directed line leaves us with a vector in TvS

n−1. On the tangent space we have the Legendre
transform that maps the vector in TvS

n−1 to T ∗
v Sn−1.

On a hypersurface M in R
n we have the Gauss map. We can view it as a map to T ∗Sn−1: assign

to p ∈ M the normal as a directed line in R
n. It is a standard theorem that the image of the Gauss
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x0-axis

x̄

yM1

M2

πn+1L
h

πnLh

FIGURE 6. The construction of the kite curve.

map is Lagrangian, see again [Arn90].
One can proof this theorem by proving that the set

v, µ, x, ξ ∈ T ∗Sn−1 × T ∗
R

n such that

v =
ξ

‖ξ‖
, µ = x −

〈x, ξ〉ξ

‖ξ‖2
, ‖ξ‖ = 1(2.7)

is a canonical relation between T ∗Sn−1 and T ∗
R

n. The pull-back to T ∗Sn−1 of the conormal
bundle to a manifold is the image of the Gauss map. We could try to pull back any Lagrangian
manifold to T ∗Sn−1 by computing in this way “the image of the Gauss map”. Using proposition
2.3 we see that this only makes sense if the Lagrange manifold is T ∗

R
n lies transverse to all the

level sets of ‖ξ‖ , that is, “the image of the Gauss map” is defined for all conic Lagrange manifolds.
This is a rather important remark, we formulate it in a theorem - for which we claim no originality
whatsoever:

Theorem 2.9. For each Legendre manifold in R
n we can define an “image of the Gauss map”. If

the Legendre manifold is the conormal bundle of a smooth submanifold of codimension 1 in R
n

this coincides with the usual image of the usual Gauss map.
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2.4. The center set. Let us now look at the center set. We introduce a canonical relation between

S1 = T ∗
R

n \ 0

and

S2 = (S1)
2

We will as in the above use coordinates

(y, η, x1, ξ1, x2, ξ2)

Define G1 by

y =
x1 + x2

2
, η = 2ξ1, ξ1 = ξ2(2.8)

The manifold G1 is clearly a conic canonical relation and G1 projects immersively into S2. For G2

we take the product of the conormal bundles of M1 and M2. The proposition 2.3 can be applied to
yield that

Theorem 2.10. The center set is conic Lagrange if

N∗M1 × N∗M2 t {(x1, ξ, x2, ξ}(2.9)

Remark 2.11. Note the reciprocity between (2.9) and (2.2). The criterion for the conflict set deals
with a diagonal in the base and the criterion for the center set deals with a diagonal in the fiber

Remark 2.12. Clearly, lots of other interesting and less interesting sets can be constructed in this
way. We could take l manifolds Ml and consider the relation

y =

l
∑

i=1

aixi ηai = ξi(2.10)

where the ai are a set of nonzero numbers. This again is a canonical relation. If the product of
the conormal bundles of the Mi is transverse to the “diagonal in the fiber” as in (2.9) then the
resulting set is a Legendre manifold. For instance with three surfaces we could take the centroid
of a triangle.

2.5. The normal chord set. Next comes the normal chord set. Denote νi the Gauss map from
N∗Mi to T ∗Sn−1. We have an image of the product of the two Gauss maps, the chords we use are
on the diagonal. After the many examples above the following theorem is obvious:

Theorem 2.13. If

ν1(N
∗M1) × ν2(N

∗M2) t {(v, µ1, v, µ2)}(2.11)

the normal chord set is Lagrangian.
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Remark 2.14. For the normal chord set we can write down maximal rank criteria as we did for the
conflict set in remark 2.5. A phase function for the image of the Gauss map is

Fi : Sn−1 × Mi → R

(v, s) 7→ 〈v, γ(s)〉(2.12)

The image of the Gauss map is described by

∂Fi

∂s
= 0(2.13)

To get a maximal rank criterion under which the normal chord set is Lagrangian we use as in the
remark 2.5 a special phase function:

F1(v, s1) + F2(v, s2)

And the maximal rank criterion that is equivalent to the transversality in (2.11) is that the matrix

dv,s1,s2
(ds1,s2

F )

has maximal rank there where

ds1,s2
F = 0

If so, the normal chord set is Lagrangian. If one chooses local coordinates on Sn−1, as is done in
[BGM82], this is a nicely computable criterion.

2.6. The kite curve revisited. As a definition of the kite curve it seems more useful to consider
the image in T ∗Sn of the lifted conflict set Lh: the image of its Gauss map. This is also defined
when l < n. The kite curve can be reconstructed from it, when l = n.
If we define the kite curve in this way we can summarize our reasoning in a tentative diagram, that
illustrates the dualities mentioned.

??

Diagonal in the
base

Diagonal in the
fibre

Centre set

Chord set

Conflict set

Kite curve

Legendrian
lift is smooth

Lagrangian
lift is smooth

in T ∗
R

n+1

(resp. T ∗
R

n)

in T ∗Sn

(resp. T ∗Sn−1)
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3. GENERICITY OF TRANSVERSALITY CONDITIONS

We proof that for a residual set of embeddings in
⊕l

i=1 Emb(Mi, R
n) the transversality conditions

that ensure that the conflict set and the center set ( resp. the kite curve and the normal chord set )
are Legendrian ( resp. Lagrangian ), are satisfied.

3.1. That the conflict set is generically Legendre. To proof the genericity of the criterion (2.2)
we will make use of the map that defines the big wavefront, described in definition 1.1. This is a
map

×l
i=1(Mi × (R \ 0) × R) → T ∗(Rn+1)l(3.1)

More precisely, we associate such a map to each (γ1, · · · , γl).

l
⊕

i=1

Emb(Mi, R
n) → C∞(×l

i=1(Mi × (R \ 0) × R), T ∗(Rn+1)l)(3.2)

To simplify matters we look at each embedding individually.

Emb(Mi, R
n) → C∞(Mi × (R \ 0) × R, T ∗(Rn+1))(3.3)

These can be put in a family. Namely just translate the embeddings by a ( small ) vector ei. For
simplicity drop the index i.

R
n × Emb(M, Rn) → C∞(M × (R \ 0) × R, T ∗(Rn+1)l)

(e, γ : M → R
n) 7−→ e, s, λ, x0

Ψ
→









πx(exp(x0XH)(γ(s) + e))
λπξ(exp(x0XH)(γ(s) + e))

x0

λ









(3.4)

We need that l copies of maps Ψ ,each for a different Mi map transversal to T ∗
∆(R1+n)l. We see

that it suffices to proof that l copies of

e, s, x0, λ → πx(exp(x0XH)(γ(s) + e)), x0(3.5)

map transversal to the diagonal ∆ ⊂ (R1+n)l. Because

πx(exp(x0XH)(γ(s) + e)) = e + πx(exp(x0XH)(γ(s)))

this is clear: the derivatives for the e vectors and the time variable x0 already cause the maximal
rank to be attained. So the product of l maps (3.5) is submersive onto (Rn+1)l. We have thus shown
that

(Rn)l ×

l
⊕

i=1

Emb(Mi, R
n) → C∞(×l

i=1(Mi × (R \ 0) × R), T ∗(Rn+1)l)(3.6)

gives for all

(γ1, · · · , γl)
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a family of mappings , parametrized by (Rn)l, whose image is transverse to the closed manifold
T ∗

∆(R1+n)l, or any closed submanifold of T ∗(R1+n)l for that matter. Thus most members of this
family are transversal to T ∗

∆(R1+n)l. It now follows from results of Abraham, see [Wal77], that
for a residual set of embeddings the transversality condition is satisfied, which is exactly what we
needed. For clarity we cite the theorem:

Theorem 3.1 (Thom Transversality theorem). Let A be a manifold of mappings , let X , Y be
manifolds. Let

α : A → C∞(X, Y )

be a map such that

ev(α) : A × X × Y(3.7)

is a smooth submersion at every (a, x) ∈ A × X . Then for every closed submanifold W ⊂ Y we
have that

{a ∈ A | α(a) t W}

is a residual subset of A.

In particular ⊕l
i=1 Emb(Mi, R

n) is a manifold of mappings, the map α we use is in (3.3). For any
fixed (γ1, · · · , γl) l copies of the family in (3.5) are submersive. These are all embeddings, so
locally the map from (3.7) is a smooth submersion.

Proposition 3.2. The conflict set is generically Legendre and the kite curve in T ∗Sn is generically
Lagrange.

Remark 3.3. Roughly speaking the family of translations (3.5) produces all first order perturba-
tions. This family will be of much use further on.

3.2. That the center set is generically Legendre. The aforementioned family seemingly can not
be used to proof that generically the center set is conic Lagrange. We need a covering {Uα} of
M1 × M2 and in each {Uα} perturb the tangent space a little, as indicated in figure 7. It is enough
to proof that , if ~ni is the map that assigns the normal to Mi, that the map (~n1, ~n2) is transverse to
the diagonal. We first show that locally families exist that are indeed transverse to the diagonal.
Denote by

φr,A,p, r ∈ R, A ∈ SO(n, R), p ∈ R
n

a diffeomorphism, which is the identity on R
n where we’re outside the sphere of radius 2r round

p and equal to q → A(x − q), inside a circle of radius r round q. Now compose an embedding
γ : M → R

n with the map φr,A,p(α) and we get a map that in some environment U ′
α of of p(α) ∈ M

is submersive. Looking at a product φr,A,q(α) ◦ γ1, φr′,A′,p(α) ◦ γ2 we see that in a neighborhood Uα

the transversality condition is satisfied. Indeed, at p(α) the normal looks like A~n.
One can pick a countable number of pointsp(α) such that the Uα cover M1×M2 . We have proven:
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FIGURE 7. The map φr,A,p=γ(s′) ◦ γ(s)

Theorem 3.4. For a countable intersection of open and dense subsets of
2
⊕

i=1

Emb(Mi, R
n)

the center set is Legendrian ( and the normal chord set therefore Lagrangian )

4. PROOF OF MAIN THEOREM

The arguments presented in this section are standard and so we do not provide all the details. More
details can be found in the excellent surveys [Dui74] and [Wal77]. See also [AGZV85].
The general idea of the proof of the theorem is that we stratify for each Mi some part Bi of the
graph of the time function πn+1(N

∗Mh
i ). The strata of Bi correspond to singularity types of indi-

vidual momental fronts. Then the intersections of these graphs are generically such that they miss
the non-stratified part. So in the intersection we will only meet singularities that are well-known
singularity types of individual fronts.
Our proof will consist of purely local considerations, they can be patched together as the transver-
sality theorem.

4.1. Stratification by codimension of the big wavefront. We want to define equisingularity man-
ifolds. They will be defined using the notion of codimension for germs. We use codimension wrt.
to contact equivalence or V-equivalence. This is motivated by our Legendrian point of view. Two
germs of unfoldings are V -isomorphic iff. the germs of Legendrian immersions they determine are
equivalent, see [AGZV85], §20.
We consider locally x0 = F (x, s) the time function belonging to the embedding M ↪→ R

n. That
is we consider it near x̄′, s′ ∈ R

n+1. Then we put G(x̄, s) = x0 − F (x, s). The equations

∂G

∂s
= 0, G = 0(4.1)

define a ( germ of a ) surface Z1 ⊂ R
1+n+n−1, near x̄′, s′. We want to consider closed parts of the

surface Z1, namely those where the codimension of the germ

G ∈ C∞(s′), s
G
→ G(x̄′, s) = x0(4.2)
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has a suitable value:

1 ≤ codim G ≤ N

We define the codimension by the dimension of the real vector space

dimR

C∞(s′)

(G, ds G)

As an example consider

x0 = s3 + x1s + x2, x̄′ = 0, s′ = 0

The codimension to calculate is

dimR

C∞(s′)

(s3, s2)
= 2

There are other points nearby that have codimension 2. These are

{x0 = a, x1 = 0, x2 = a, s = 0}

The projection of this manifold to the x̄-space is a affine space. This affine space has codimension
2 in R

n+1. ( In the example n = 2 )
We would like this to hold in general. The manifold Z1 should be stratified.
Put N = min(n − l + 2, 6). Then in the space of N + 2-jets of germs at s′ in M , we have a part
C that is stratified according to the codimensions 1 to N . The part of JN+2(s′) with codimension
> N is an algebraic variety that can be stratified in some canonical way.
The surface Z1 is to be divided into a part B and its complement {B. The complement should have
codimension > N and the part B should have a Whitney stratification such that on each stratum
the codimension is constant.
To stratify Z1 we consider the map

x̄, s
N+2G
→ R

n × JN+2(s)

If N+2G is transverse to the stratification of C and its complement then this induces the division
of Z1 in B and {B. Each of the strata of B corresponds to finitely many types of singularities and
they project to R

1+n immersively.
We next pass to intersections.
Above one x̄ there might be several pairs of (x̄, s(i)), i = 1 · · · r. They are only finitely many
because M is compact. For a residual subset of G and thus for a residual subset of the embeddings
γ the projection πr : Z

(r)
1 → (R1+n)r is transverse to the diagonal stratification of (Rn+1)r. We can

have πr(B) t D(r) generically for r = n, which will be enough.
For this reason generically the stratification of B has regular intersections relative π : Z1 → R

1+n.

Lemma 4.1. For a residual set of embeddingsM → R
n the “graph of the time function” πn+1(N

∗Mh)
has a subset B of codimension ≤ N that is Whitney stratified and whose strata correspond to sin-
gularity types of individual momental fronts.



APPLICATIONS OF CANONICAL RELATIONS IN GENERIC DIFFERENTIAL GEOMETRY 17

4.2. Intersecting l big fronts. We want the intersection of the l bigfronts be such that in the in-
tersection we only find elements of

⋂l

i=1 Bi and no points of one the complements {Bi. With the
family (3.6) we see that the intersection of the strata of the bigfronts is transversal.
In fact the maximal codimension of a stratum of say πn+1(N

∗Mh
1 ) that can appear in the inter-

section of the big fronts, appears when the other l − 1 big fronts are smooth, so this maximal
codimension is ≤ n + 1 − (l − 1). Thus if N ≤ n − l + 2 we have only strata of the Bi in the
intersection. This is where the condition n − l + 2 ≤ 6 in the theorem comes in.
The last thing we need to know to hold generically is alike what we needed to know for the
projection Z1 → R

1+n, namely that π : ∩l
i=1 πn+1(L

h) → R
n has regular intersections relative

πn : Lh → R
n. This is again achieved with the family (3.6).

If n − l + 2 = 7 then it will be possible to find a stratum of the complement of say B2 in the
intersection of the big fronts. Such a stratum can represent a modulus. If we move πn+1(N

∗Mh
2 )

a little the stratum will still be there, but the singularity type will have changed. We conclude that
n − l + 2 ≤ 6 are the nice dimensions for conflict sets.

4.3. Geometrical description of different cases. Once we know that the stratified big wavefronts
intersect transversally to determine what sort of singularities can occur will follow from a codi-
mension count.
For the description of these singularities the main distinction is the difference n − l.
Indeed if (µ1, µ2, · · · , µl) is the list of codimensions then we seek µi with 1 ≤ µi and

∑l
i=1 µi ≤

n + 1. Those µi that are 1 correspond to smooth hypersurfaces. They are not very interesting
because they present just a reduction of n and l by 1, because if say µl = 1 then N∗Mh

l is smooth,
and locally smoothly equivalent to R

n−1 × R. Thus the singularity type reduces to what happens
in N∗Mh

1 , and thus it reduces to a problem with l − 1 surfaces in R
n−1.

If n − l is fixed then for arbitrary n a certain number of parts in the partition have to be 1. Let k

be the number of strata that have codimension > 1. It follows that 2k + (l − k) ≤ n + 1 so that a
maximum of n − l + 1 codimensions is > 1. The others are 1.

n − l = 0 If n = l then at most 1 of the µi is > 1. So the only case to consider is l = 2. We can
have only two cases: (1), (2).

n − l = 1 At most 2 of the codimensions are > 1. So it is enough to consider n = 3, l = 2. In
addition to the above combinations we will have: (2, 2) and (3).

n − l = 2 The relevant dimensions are: n = 5, l = 3. The new cases are: (4), (3, 2) and (2, 2, 2).

n − l = 3 Dimensions: n = 7, l = 4. New cases: (5), (4, 2), (3, 3), (3, 2, 2), (2, 2, 2, 2)

n − l = 4 Dimensions: n = 9, l = 5. New cases: (6), (5, 2), (4, 3), (4, 2, 2), (3, 3, 2), (3, 2, 2, 2)
and (2, 2, 2, 2, 2).

For each of the strata there are only a limited number of singularities, from the ADE list. The
conflict set has dimension n − l + 1. The codimension of a singularity on a generic front of
dimension n− l + 1 is maximally n− l + 2. If we look at the above list we see that on the conflict
set the codimension can add up to 2(n − l + 1). Thus the singularities we encounter are the ones
that we also expect to find in n− l parameter families of n− l + 1 dimensional fronts, though this
last list will typically contain more singularities.
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One might ask whether the above multi-singularities do not present any moduli. This is not the
case. Even though our singularities are not, if n − l > 0, singularities of generic fronts we are still
allowed to produce local models - as is remarked in [JB85] for the case n = 3, l = 2 - because
they present R+-versal unfoldings of multigerms.
So if n − l = 0 the singularities of the conflict set are the generic singularities of 2-dimensional
fronts.
If n − l = 1 the codimension can add up to 4. The cases to consider are A2A2, A2

1A2, A2
1A

2
1. All

other singularities are just those of generic 2-dimensional fronts. Pictures are again in [JB85], but
we take some time to discuss a nice example.
The A2A2 singularity is a generic projection of two transversely intersecting cuspidal edges in R

4.
To obtain a picture of this we take two copies of our previous example

G1 : x0 = s3
1 + x1s1 + x2 G2 : x0 = s3

2 + x3s2 − x2

At zero these two intersect transversally. Next we project the intersection along the time axis x0

to R
3. The surface we get is the following picture. This is also known as D+

4 if we view it as a

FIGURE 8. The A2A2 surface

metamorphosis of a wavefront in R
3. Recall that a metamorphosis is a one dimensional family of

fronts, see[Arn90]. The name D+
4 is chosen because the surface is also obtained with an unfolding

G1 − G2 = s3
1 − s3

2 + x1s1 − x3s2 + 2x2

This is not a versal unfolding. If we want to unfold the D+
4 germ s3

1 − s3
2 with V-versal unfolding

we need 4 parameters.
If n − l = 2 we need at least n = 4 and l = 2 to obtain an interesting new local model. Indeed the
case (4) has A4 and D±

4 and suspensions of the cases that occur with n − l = 1. So the first really
new case is (3, 2). On this stratum we have amongst others A3A2. This is a metamorphosis of a
3-dimensional front. Some sections of this surface are in figure 9. In one them we see a swallowtail
meeting a cuspidal edge.

Remark 4.2. All pictures here were obtained with the help of the software [GPS01] and the pro-
gram “surf”, written by Stephan Endrass.
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FIGURE 9. Sections of A3A2

5. CONCLUDING REMARK

Similar results should hold for the center set. We expect that if n ≤ 6 the center set only has
the multi-singularities of wavefronts in that dimension. We also expect that smooth boundaries
of strictly convex compact domains in R

n the center symmetry set should generically have only
ADE-sings if n ≤ 6. That is because on such a boundary points with parallel tangent planes always
stay at a distance from each other. This distance is uniformly bounded for such a surface, because
of the compactness. So they stay away from the diagonal and the local situation can be treated
as if the patches round the two points with parallel tangent planes originated from two distinct
surfaces. Again this is all conjectural, though Giblin and Holtom have proved some assertions in
this direction, see [GH99].
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