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Summary. We consider the median regression model Xk = θ(xk) + ξk, where the unknown
signal θ : [0, 1] → R, is assumed to belong to a Hölder smoothness class, the ξk’s are independent,
but not necessarily identically distributed, noises with zero median. The distribution of the noise is
assumed to be unknown and satisfying some weak conditions. Possible noise distributions may have
heavy tails, so that, for example, no moments of the noises exist. Therefore, traditional estimation
methods (for example, kernel methods) can not be applied directly in this situation.

On the basis of a preliminary recursive estimator, we construct certain variables Yk’s, called pseu-
dovalues which do not depend on the noise distribution, and derive an asymptotic expansion (uni-
form over certain class of noise distributions): Yk = θ(xk) + εk + rk, where εk’s are binomial
random variables and the rest terms rk’s are “small”. This expansion mimics the nonparametric
regression model with binomial noises. In so doing, we reduce our original observation model
with “bad” (heavy-tailed) noises effectively to the nonparametric regression model with binomial
noises.

1 Introduction

Suppose we want to recover a smooth signal θ(·) on the basis of the observations

Xk = θ(xk) + ξk, k = 0, 1, . . . , n , (1)

where {xk} = {xk,n} ⊂ [0, 1] = I is a design to be specified later, θ(x) ∈ Hα(H ′, L′),
x ∈ I , with nonparametric class Hα(H ′, L′) which we define below.

The noises ξk’s are assumed to be independent, each ξk is absolutely continuous with den-
sity fk, all the fk’s are unknown. By fξ(u) =

∏n
k=0 fk(uk), u = (u0, . . . , un), we denote
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the joint distribution of the noise vector (ξ0, ξ1, . . . , ξn). Assume that fξ ∈ Pξ, where

Pξ = Pξ(δ, p, Mξ, Lξ)

=
{

n
∏

k=0

fk(uk) : f0(0) = . . . = fn(0), fk ∈ P1 ∩ P2(δ, p, Mξ) ∩ P3(Lξ)
}

,

where the sets Pi’s are defined for positive constants δ, p, Mξ and Lξ as follows:

P1. P1 =
{

f(·) : f is a density , F (0) =
∫ 0

−∞
f(z)dz = 1/2

}

, i.e. the distribution of

each ξk has zero median;

P2. P2 = P2(δ, p, Mξ) =
{

f(·) : 0 < p ≤ inf |x|≤δ f(x) ≤ sup|x|≤δ f(x) ≤ Mξ

}

;

P3. P3 = P3(Lξ) =
{

f(·) : |f(u1) − f(u2)| ≤ Lξ|u1 − u2| , u1, u2 ∈ R
}

.

The case when the ξk’s are independent identically distributed random variables such that
f0 ∈ P1 ∩ P2(δ, p, Mξ) ∩ P3(Lξ) certainly fits in this framework.

The function value θ(xk) has a meaning of conditional median. The model (1) can therefore
be called nonparametric median regression. Note further that the noise distribution from
P1 ∩ P2 ∩ P3 may have heavy tails, (say, Cauchy distribution) so that, for instance, the
expectation of noises does not exist. This implies also that in general linear methods (for
instance, kernel methods) can not be applied directly for estimating the signal θ in the
situations when we measure the quality of estimator θ̂n(x) by a risk function of the form
E|θ̂n(x) − θ(x)|κ, κ > 0.

The design {xk} is assumed to satisfy the following conditions:

D1. 0 = x0 ≤ x1 ≤ . . . ≤ xn = 1;

D2. |xl − xm| ≤ D|l − m|/n for all 0 ≤ l, m ≤ n and some fixed positive constant D.

In fact, the above conditions represent the requirement for the design {xk} to have the same
properties as the equidistant design.

Suppose now that the unknown function θ(x) on the interval [0, 1] belongs to the Hölder
function class Hα = Hα(H ′, L′) of the smoothness α: for some positive H ′ and L′,

Hα(H ′, L′) =
{

θ : |θ(m)(0)| ≤ H ′ , m = 0, . . . , r ;

|θ(r)(u) − θ(r)(v)| ≤ L′|u − v|β0, u, v ∈ [0, 1]
}

,

where r ∈ N, 0 < β0 ≤ 1, α = r + β0. Here θ(r)(u) denotes the r-th derivative of θ(u).

The parameter n stands for the frequency of observations, i.e. a number of observations per
unit interval. We study the estimation problem in asymptotic setup when this parameter
tends to infinity. Note that in fact we deal with the sequence of models Xk,n = θ(xk,n) +
ξk,n, k = 1, . . . , n. To ease the notations, we omit the subscript n, for instance Xk = Xk,n,
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ξk = ξk,n etc. Related estimation problems have been studied by Tsybakov [8], Korostelev
[5], Truong [7], Belitser and Korostelev [1], Belitser and van de Geer [2].

Belitser and Korostelev, [1], considered the problem of pointwise signal estimation and
estimation of a smooth functional of the signal; the noises are iid with zero median and
possibly heavy tails. In that paper, on the basis of a consistent recursive estimator special
random variables, called pseudovalues, are introduced, for which an asymptotic expansion
was derived. By using this expansion, a minimax estimator for the signal and an efficient
estimator for the smooth functional of the signal were constructed. One of the main as-
sumptions from the above paper, used in all the constructions, is that the value of noise
density at point zero (median of noises) is fixed and known, which is rather restrictive.

In Belitser and van de Geer, [2], the result on convergence properties of recursive estimator
is improved in several respects (among others almost sure convergence rate is derived).
Using this recursive estimator, we construct a version of pseudovalues Yks, adaptive with
respect to noise distribution, and derive a robust (uniform over certain class of noise dis-
tributions) stochastic asymptotic expansion for these pseudovalues: Yk = θ(xk) + εk + rk,
where εk’s are binomial random variables and the rest terms rk’s are small, in a certain
sense. This expansion mimics the nonparametric regression model with binomial noises.
In so doing, we reduce our original observation model with “bad” (heavy-tailed) noises
effectively to the nonparametric regression model with “nice” (binomial) noises. This ex-
pansion reduces the original observation model with heavy noises effectively to the non-
parametric regression model with binomial noises. We also elucidate how one can utilize
this expansion, when constructing minimax estimator: we consider the example of kernel
estimator based on the pseudovalues.

2 A preliminary recursive estimator

Introduce the Lipschitz function class Θβ = Θβ(H, L) with the smoothness β. For some
positive H , L and 0 < β ≤ 1 define

Θβ(H, L) =
{

θ : |θ(0)| ≤ H , |θ(u) − θ(v)| ≤ L|u − v|β, u, v ∈ [0, 1]
}

.

It is easy to see that if θ ∈ Hα, then, of course θ ∈ Θβ with β = min{α, 1} for the
appropriate choice of constants H and L in the definition of Θβ, i.e.

Hα(H ′, L′) ⊂ Θβ(H, L) .

Therefore, if some property holds uniformly over θ ∈ Θβ(H, L), then certainly the same
property holds uniformly over θ ∈ Hα(H ′, L′) as well.

Now we introduce a preliminary recursive estimator, whose convergence properties were
studied by Belitser and Korostelev, [1], and by Belitser and van de Geer, [2].
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First some more notations. Let I{S} denote the indicator function of the set S and by c and
C generic constants which may be different in different expressions. Define the functions
sign(u) = I{u ≥ 0} − I{u < 0} and

S(u, v) =

{

sign(u − v), |v| ≤ M
−v, |v| > M

for some fixed M > H + L, and the sequence γn = n−2β/(2β+1) log n, where the constants
β, H and L appear in the definition of the class Θβ . For brevity, denote also θk = θ(xk).

The following recursive formula gives an estimator for the function value θk:

θ̂k+1 = θ̂k + γnS(Xk, θ̂k), k = 0, 1, . . . , n − 1 , (2)

with the initial value θ̂0 = 0. We will use the uniform (over the class P1 ∩ P2 of the noise
distributions) version of the result from Belitser and van de Geer, [2], which describes the
mean square convergence rate of the above recursive estimator.

Theorem 1 Let
Kn = {k ∈ N : C0n

2β/(2β+1) ≤ k ≤ n} ,

where C0 = 2/ min{2p, 2pδ/(M + H + L), 1/2}. Then, for some positive constant C1,
the relation

lim sup
n→∞

max
k∈Kn

n2β/(2β+1)

(log n)2
Eθ(θ̂k − θk)

2 ≤ C1 (3)

holds uniformly over θ ∈ Θβ and fξ ∈
{

∏n
k=0 fk(uk) : fk ∈ P1 ∩ P2(δ, p, Mξ)

}

.

The proof of the above theorem is exactly the same as the proof of the corresponding result
from Belitser and van de Geer, [2], and is therefore omitted, see also Remark 7 in that
paper about the uniformity over over fξ ∈

{

∏n
k=0 fk(uk) : fk ∈ P1 ∩ P2(δ, p, M)

}

.

In this paper the rate of convergence for the above recursive algorithm is derived also in
almost sure sense, but we do not utilize this here.

If we interpret index k as time moment then the above estimating procedure is a recursive
stochastic algorithm. Such estimators are most appropriate in the situations when observa-
tions appear successively so that, when constructing an estimator at a fixed time moment
k, we can use only those observations which have been obtained up to this moment, i.e.
only Xi’s with i ≤ k.

Since we start our algorithm with zero value θ̂0 = 0 which need not be equal to the true
value θ0, the estimator θ̂k can not be consistent for all values θk, 0 ≤ k ≤ n. There is a so
called “burn-in” part k = 0, 1, . . . , bC0n

2β/(2β+1)c. We can handle this problem by running
the algorithm in the opposite direction.

In terms of signal estimation we have the following implication of the above theorem and
the Lipschitz condition on functions from the class Θβ. Let θ̂n(u) be a piecewise constant
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continuation of θ̂k = θ̂(xk), k = 0, 1, . . . , n, i.e. θ̂n(u) = θ̂k for xk ≤ u < xk+1, i =
0, 1, . . . , n − 1, and θ̂n(1) = θ̂n. Let also

Tn = {x : C0n
−1/(2β+1) ≤ x ≤ 1} .

Then, for some positive constant C1 the relation

lim sup
n→∞

max
u∈Tn

n2β/(2β+1)

(log n)2
Eθ(θ̂n(u) − θ(u))2 ≤ C1

hold uniformly over θ ∈ Θβ and fξ ∈
{

∏n
k=0 fk(uk) : fk ∈ P1 ∩ P2(δ, p, M)

}

. Notice

that, for any x ∈ (0, 1], x ∈ Tn for sufficiently large n.

3 Pseudovalues

In this section we introduce special statistics called pseudovalues, a nonparametric ana-
logue of Tukey’s pseudovalues. The idea of introducing such random variables is due to
Korostelev, [5], in a different estimation problem, who considered these random variables
as a nonparametric counterpart of Tukey’s pseudovalues. We derive astochastic asymtotic
expansion for these pseudovalues which enables us to construct robust minimax estimators.
First we define robust minimax estimators.

The following proposition is given for illustrative purposes. It says essentially what esti-
mation quality can in principle be achieved for the class Hα in terms of convergence rate.
We consider the pointwise minimax risk of the form (convenient for our purposes)

rn(Hα) = inf
θ̂n

sup
θ∈Hα

Eθ|θ̂n(x) − θ(x)| (4)

where the infimum is taken over all possible estimators and the supremum over all curves
from the nonparametric class Hα. This quantity reflects in a way the difficulty of the
estimation problem over the class Hα. Then the following lower bound for the minimax
risk holds.

Proposition 1 Let the distributions of ξ’s be standard Gaussian. For any fixed x ∈ [0, 1]
there exists a positive constant c such that

lim inf
n→∞

nα/(2α+1)rn(Hα) ≥ c ,

where the minimax risk rn(Hα) is defined by (4).

The proof is omitted since this is a folklore result (by now) originating from Ibragimov and
Hasminskii, [4], and Stone, [6].
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If the distributions of ξ’s are standard Gaussian, then the corresponding fξ ∈ Pξ for the
appropriate choice of the constants in the definition of class Pξ. This implies trivially the
lower bound for the supremum of the minimax risk rn(Hα) over all possible fξPξ:

lim inf
n→∞

sup
fξ∈Pξ

nα/(2α+1)rn(Hα) ≥ c .

An estimator θ̃n is called robust minimax in point x if there exists a constant C > 0 such
that

lim sup
n→∞

sup
fξ∈Pξ

sup
θ∈Hα

nα/(2α+1)Eθ|θ̃n(x) − θ(x)| ≤ C .

It is easy to see that if θ ∈ Hα, then, of course θ ∈ Θβ with β = min{α, 1} (we use this
notation throughout this section). Therefore, according to the above results, our recursive
estimator achieves the rate nβ/(2β+1) up to a log factor. Comparing this with the lower
bound, we find that our recursive estimator θ̂ never attains the optimal rate. The estimator
is almost optimal for the class Hα (in fact this estimator was originally designed for this
class) with 0 < α ≤ 1, i.e. r = 0 and α = β0. To be precise, it attains the optimal rate up
to a log factor. Informally, one can regard the log factor as a price for recursiveness.

The difference with the optimal rate becomes significant when α > 1, i.e. when at least
one derivative exists. We are going to fix this shortcoming by introducing some statistics,
which we call pseudovalues.

First introduce some notations:

Ak = Ak,n =
n1/(2β+1)

2k

k−1
∑

i=0

I
{

|Xi − θ̂i| ≤ n−1/(2β+1)
}

for k = 1, . . . , n. Define further

f̂0 = f̂0,k = f̂0,k,n =

{

Ak, Ak ≥ p
p, Ak < p ,

εk =
sign(ξk)

2f0
, (5)

f0 = f0(0), Ak = σ(ξ0, . . . , ξk), the σ-algebra generated by ξ0, . . . , ξk, k = 1, . . . , n.
Recall that the constant p appears in the definition of Pξ and f0 is the density function of
the noise variable ξ0. Recall also that for fξ ∈ Pξ f0(0) = . . . = fn(0).

Remark 1 As one can see, we need to know the constant p when constructing the estimator
f̂0. Although this seems to be restrictive, we can assume this without loss of generality,
because we can use a sequence pn converging to zero sufficiently slowly instead of constant
p. We will have only to modify slightly the proof.

Now define the pseudovalues

Yk = θ̂k +
S(Xk, θ̂k)

2f̂0,k

, k = 1, . . . , n ,
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and the set
Kε,n = {k ∈ N : ε ≤ k/n ≤ 1}. (6)

These statistics represent a nonparametric analogue of Tukey’s pseudovalues; cf. Tukey
(1958), [9], Efron, [3]. Indeed,

Yk = Nθ̂k+1 − (N − 1)θ̂k

with N = γ−1
n . Here N is nonparametric analogue of n, the “effective” number of obser-

vations used in estimating the signal θ at point x.

Without loss of generality we can assume that n is large enough so that Kε,n ⊂ Kn. In the
following theorem a stochastic expansion of the pseudovalues is given.

Theorem 2 Let β = min{α, 1} and the set Kε,n be defined by (6). Then

Yk = θk + εk + µk + νk , k = 1, . . . , n ,

where εk’s are defined by (5), {µk}, k = 1, . . . , n, forms a martingale difference with
respect to the filtration {Ak}, Ak = σ(ξ0, . . . , ξk), i.e. E[µk|Ak−1] = 0. Moreover, for any
fixed ε > 0, there exist some positive constants Bµ, Bν such that

lim sup
n→∞

max
k∈Kε,n

nβ/(2β+1)

log n
Eθµ

2
k ≤ Bµ , (7)

lim sup
n→∞

max
k∈Kε,n

n2β/(2β+1)

(log n)2
Eθ|νk| ≤ Bν , (8)

uniformly over θ ∈ Θβ and fξ ∈ Pξ.

Remark 2 Recall that for some H and L

Hα(H ′, L′) ⊂ Θβ(H, L) ,

with β = min{α, 1}. Therefore, the assertion in the above Theorem holds uniformly over
Hα as well.

Remark 3 All the results will still be valid if we require the Lipschitz condition in the
definition of P3 only in a fixed neighborhood of zero instead of the whole real line R.

The proof of the theorem is an immediate consequence of the following two lemmas. The
proofs of these lemmas are somewhat lengthy, so we defer them to the next section.

Introduce the auxiliary variables

Y ′
k = θ̂k +

S(Xk, θ̂k)

2f0

, k = 0, . . . , n .
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Lemma 1 The following stochastic expansion holds:

Y ′
k = θk + εk + µ′

k + ν ′
k , k = 1, . . . , n ,

where the sequences {µ′
k} and {ν ′

k} have the same properties as in Theorem 2.

Remark 4 In fact, a slightly more general version of Lemma 1 holds: the set Kε,n defined
by (6) can be replaced by a bigger set Kn defined in Theorem 1.

Lemma 2 The following stochastic expansion holds:

Yk = Y ′
k + µ′′

k + ν ′′
k , k = 1, . . . , n ,

where the sequences {µ′′
k} and {ν ′′

k} have the same properties as in Theorem 2.

Now we illustrate how one can utilize the stochastic expansion above. Suppose we had the
observations

Zk = θ(xk) + εk, k = bεnc, . . . , n ,

with εk defined by (5). This is a classical nonparametric regression model, where the
noises εk’s are independent binomial random variables taking just two values, each with
probability 1/2:

P
(

εk =
1

2f0

)

= P
(

εk = −
1

2f0

)

=
1

2
.

In this case some routine estimators, say kernel estimator with an appropriate kernel func-
tion, are known to attain the optimal convergence rate specified in the lower bound propo-
sition. The benefit in constructing the pseudovalues Yk’s is that we can treat them as if
they were Zk’s irrespective of the noise distribution fξ ∈ Pξ, i.e. the rest terms µk + νk are
negligible, beginning with a certain moment.

We elucidate this idea by heuristic arguments for a kernel estimator based on the pseu-
dovalues. Suppose kernel K(u) and bandwidth hn = cn−1/(2α+1) are chosen in such a way
that for any fixed x ∈ (ε, 1] and some positive C,

lim sup
n→∞

sup
θ∈Hα

nα/(2α+1)Eθ|θ̄n(x) − θ(x)| ≤ C .

where

θ̄n(x) =
1

(n − bεnc)hn

n
∑

k=bεnc+1

K
(x − xk

hn

)

Zk .

However, we do not observe Zk’s, but we have pseudovalues Yk’s instead. So, we can
construct estimator θ̃n(x):

θ̃n(x) =
1

(n − bεnc)hn

n
∑

k=bεnc+1

K
(x − xk

hn

)

Yk = θ̄n(x) + Rn + rn .
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Now estimate the expectations of the rest terms |Rn| and |rn|: under appropriate conditions
on the kernel K (

∫

K2(u)du < ∞),

E|Rn| ≤
(

ER2
n

)1/2

=
1

(

(n − bεnc)hn

)1/2

( 1

(n − bεnc)hn

n
∑

k=bεnc+1

K2
(x − xk

hn

)

Eµ2
k

)1/2

≤
Cn−β/(2β+1)

(

(n − bεnc)hn

)1/2

(

∫

K2(u)du
)1/2

(

log n
)1/2

≤ cn−α/(2α+1)n−β/(2β+1)
(

log n
)1/2

and similarly

E|rn| ≤
1

(n − bεnc)hn

n
∑

k=bεnc+1

∣

∣

∣
K

(x − xk

hn

)
∣

∣

∣
E|νk| ≤ Cn−2β/(2β+1)

(

log n
)2

uniformly over θ ∈ Hα and fξ ∈ Pξ. Assume that β > 1/2, which is a typical condition
in estimation problems for the Hölder class. Then 2β/(2β + 1) > α/(2α + 1). Together
with all the above relations, this yields that for any fixed x ∈ (ε, 1] and some positive C,

lim sup
n→∞

sup
fξ∈Pξ

sup
θ∈Hα

nα/(2α+1)Eθ|θ̃n(x) − θ(x)| ≤ C ,

which means that the estimator θ̃n is robust minimax at any point x ∈ (ε, 1].

Remark 5 Notice that the rest terms µk and νk in the stochastic expansion for the pseu-
dovalues become small beginning with a later moment bεnc, compared with the recursive
estimator θ̂. This is because we need to construct a recursive estimator of f0 = f0(0).
If, however, for some reason we need a consistent estimator in this “burn in” period
k = 0, 1, . . . , bnεc, we can run the algorithm (2) in the opposite direction:

θ̂k = θ̂k+1 + γnS(Xk+1, θ̂k+1), k = n − 1, . . . , 0 ,

with the initial value θ̂n = 0. Then we define the statistics Ak in the corresponding manner

An−k =
n1/(2β+1)

2k

k−1
∑

i=0

I
{

|Xn−i − θ̂n−i| ≤ n−1/(2β+1)
}

.

The results of the above theorem will hold with set K ′
ε,n = {k ∈ N : 0 ≤ k/n ≤ 1 − ε}

instead of set Kε,n and σ-algebra A′
k = σ{ξn, ξn−1, . . . , ξn−k} instead of Ak.

Remark 6 The construction of the pseudovalues {Yk} is clearly adaptive with respect to
the number of derivatives r. So, one can use an estimation method for the pseudovalues
{Yk}, adaptive to r. Of course, one has to make sure that the rest terms do not effect the
rate of convergence, when applying such a method.
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Remark 7 One can try to generalize the results for a multivariate function θ(x), x ∈ R
d,

from a multivariate Hölder function class. We will not consider this issue here, we just
remark that in this case a certain condition on smoothness α and dimension d is needed to
make sure that the approximation error (due to discretization {θ(xk)}) and the rest terms
do not effect the rate of convergence.

4 Proof of Lemmas

Proof of Lemma 1. First of all, notice that since θ ∈ Θβ, we have by Theorem 1 that for
the estimator θ̂ defined by (2) there exists some positive C such that

lim sup
n→∞

max
k∈Kn

n2β/(2β+1)

(log n)2
Eθ(θ̂k − θk)

2 ≤ C (9)

uniformly over θ ∈ Θβ and fξ ∈ Pξ because

Pξ ⊂
{

n
∏

k=0

fk(uk) : fk ∈ P1 ∩ P2(δ, p, Mξ)
}

.

Introduce the following random variables, for k = 1, . . . , n,

Tk =
S(Xk, θ̂k)

2f0
− εk ,

µ′
k = (Tk − E[Tk|Ak−1])I{|θ̂k| ≤ M} ,

ν ′
k = (Tk + δk)I{|θ̂k| > M} + (E[Tk|Ak−1] + δk)I{|θ̂k| ≤ M} ,

where δk = θ̂k − θk. Trivially, {µ′
k}, k = 1, . . . , n, is a martingale difference with respect

to the filtration {Ak}. We have obviously that, for k = 1, . . . , n,

Y ′
k = θk + εk + µ′

k + ν ′
k .

Let us show that the random variables µ′
k’s and ν ′

k’s satisfy (7) and (8) respectively.

Denote for brevity Ik = I{|θ̂k| ≤ M}. Recall also that fk(0) = f0(0) = f0, k = 1, . . . , n.
Since

E[sign(ξk + θk − θ̂k) − sign(ξk)|Ak−1] = 2

∫ 0

θ̂k−θk

fk(u)du (10)



Asymptotic expansion of pseudovalues 11

and, due to the fact that fk ∈ P3(Lξ), k = 0, . . . , n,

E
[

{sign(ξk + θk − θ̂k) − sign(ξk)}
2 |Ak−1

]

≤ 4EI
{

|ξk| ≤ |θ̂k − θk|
∣

∣

∣
Ak−1

}

= 4

∫

|u|≤|θ̂k−θk|

fk(u)du

≤ 4

∫

|u|≤|θ̂k−θk|

|fk(u) − fk(0)|du + 8f0|θ̂k − θk|

≤ 4Lξ

∫

|u|≤|θ̂k−θk|

|u|du + 8f0|θ̂k − θk|

≤ C(θ̂k − θk)
2 + c|θ̂k − θk| , (11)

we evaluate

E[(µ′
k)

2|Ak−1] = IkE[T 2
k |Ak−1] − Ik{E[Tk|Ak−1]}

2

= (2f0)
−2IkE

[

{sign(ξk + θk − θ̂k) − sign(ξk)}
2|Ak−1

]

−(2f0)
−2Ik

{

E[sign(ξk + θk − θ̂k) − sign(ξk)|Ak−1]
}2

≤ 2(f0)
−2EI

{

|ξk| ≤ |θ̂k − θk|
∣

∣

∣
Ak−1

}

≤ C(θ̂k − θk)
2 + c|θ̂k − θk|

uniformly over θ ∈ Θβ and fξ ∈ Pξ. Because Kε,n ⊂ Kn for sufficiently large n, the
assertion (7) follows from (9) and the last relation.

Let us show that the sequence {ν ′
k} satisfies (8). According to (2), one can see that

|θ̂k| ≤ M + b ,

with b = supu≥1 u−2β/(2β+1) log u. Thus, |θ̂k| is bounded uniformly over θ ∈ Θβ. As
|θk| ≤ H + L for each θ ∈ Θβ, |δk| = |θ̂k − θk| is bounded uniformly over θ ∈ Θβ, and so
is |Tk + δk|. Denote h = M − (H + L) > 0. Now it is easy to bound the first term in the
expression for ν ′

k:

E|(Tk + δk)I{|θ̂k| > H + L + h}| ≤ CEI{|θ̂k| > H + L + h}

≤ CEI{|θ̂k − θk| > h}

≤ cE(θ̂k − θk)
2 , (12)

uniformly over θ ∈ Θβ and fξ ∈ Pξ because

{|θ̂k| > H + L + h} ⊆ {|θ̂k − θk| > h} .
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To evaluate the second term in the expression for ν ′
k, we first compute, using (10) (recall

the notation Ik = I{|θ̂k| ≤ M}):

Ik(E[Tk|Ak−1] + δk)

= Ik

(

(2f0)
−1E[sign(ξk + θk − θ̂k) − sign(ξk)|Ak−1] + δk

)

= Ik

(

θ̂k − θk − f−1
0

∫ θ̂k−θk

0

fk(u)du
)

= Ikf
−1
0

∫ θ̂k−θk

0

(f0 − fk(u))du .

By using this and the fact fk ∈ P3(Lξ), we obtain that

|Ik(E[Tk|Ak−1] + δk)| ≤ f−1
0

∫ θ̂k−θk

0

|f0 − fk(u)|du

≤ f−1
0 Lξ

∫ θ̂k−θk

0

|u|du

≤ C(θ̂k − θk)
2

uniformly over θ ∈ Θβ and fξ ∈ Pξ. Combining the last inequality with (12) and (9), we
conclude that the sequence {ν ′

k} satisfies (8). The lemma is proved.

Proof of Lemma 2. Write

µ′′
k =

Ik(f0 − f̂0,k)sign(ξk)

2f̂0,kf0

,

ν ′′
k =

IkS(Xk, θ̂k)

2f̂0,k

−
IkS(Xk, θ̂k)

2f0

− µ′′
k + (Yk − Y ′

k)I{|θ̂k| > M} ,

k = 1, . . . , n. We have trivially

Yk = Y ′
k + µ′′

k + ν ′′
k .

Let us show that the sequences {µ′′
k} and {ν ′′

k} satisfy the properties (7) and (8) respectively.
Obviously, {µ′′

k} is a martingale difference with respect to the filtration {Ak}, k = 1, . . . , n.

Suppose now that there exists a positive constant Bf such that

lim sup
n→∞

max
k∈Kε,n

n2β/(2β+1)

(log n)2
E(f0 − f̂0,k)

2 ≤ Bf (13)

uniformly over θ ∈ Θβ and fξ ∈ Pξ. Then the property (7) would follow immediately
because f̂0,k ≥ p and f0 > p. The property (8) would follow too. Indeed, recall that |θ̂k| is
bounded uniformly over θ ∈ Θβ and fξ ∈ Pξ, f̂0,k ≥ p and f0 > p. Therefore, |Yk − Y ′

k|
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is also bounded uniformly over θ ∈ Θβ and fξ ∈ Pξ. The same reasoning as in (12) yields
that

E|Yk − Y ′
k|I{|θ̂k| > H + L + h} ≤ cE(θ̂k − θk)

2

uniformly over θ ∈ Θβ and fξ ∈ Pξ. The expectation of the absolute value of the first term
in the expression for ν ′′

k is bounded as follows: in view of (11), f̂0,k ≥ p and f0 > p,

E
∣

∣

∣

IkS(Xk, θ̂k)

2f̂0,k

−
IkS(Xk, θ̂k)

2f0
− µ′′

k

∣

∣

∣

= E
∣

∣

∣

Ik(f0 − f̂0,k)(sign(ξk + θk − θ̂k) − sign(ξk))

2f̂0,kf0

∣

∣

∣

≤ cE
{

|f0 − f̂0,k|E
[

|sign(ξk + θk − θ̂k) − sign(ξk)|
∣

∣

∣
Ak−1

]}

≤ cE
{

|f0 − f̂0,k|2E
[

I{|ξk| ≤ |θ̂k − θk|
∣

∣

∣
Ak−1

]}

≤ CE
{

|f0 − f̂0,k||θ̂k − θk|
}

≤ C
{

E(f0 − f̂0,k)
2E(θ̂k − θk)

2
}1/2

uniformly over θ ∈ Θβ and fξ ∈ Pξ. The property (8) for the sequence {ν ′′
k} follows now

from the definition for ν ′′
k , the last two bounds, (9) and (13).

Thus, it remains to show (13). Denote, for i = 1, . . . , n,

Di = I
{

|Xi − θ̂i| ≤ n−1/(2β+1)
}

and Gi = E
[

Di|Ai−1

]

.

As fi ∈ P2, we have for k = 1, . . . , n

E(f0 − f̂0,k)
2 ≤ E

[n1/(2β+1)

2k

k−1
∑

i=0

Di − f0

]2

= E
[n1/(2β+1)

2k

k−1
∑

i=0

(Di − Gi)
]2

+ E
[n1/(2β+1)

2k

k−1
∑

i=0

Gi − f0

]2

. (14)

Because fi ∈ P2 ∩ P3, it follows that fi(u) ≤ C uniformly over any bounded interval and
i = 0, . . . , n. Recall also that δi = θ̂i − θi is bounded uniformly in i and over θ ∈ Θβ.
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Therefore, we obtain, for i = 1, . . . , n,

Gi = E
[

I{|Xi − θ̂i| ≤ n−1/(2β+1)}
∣

∣Ai−1

]

=

∫ δi+n−1/(2β+1)

δi−n−1/(2β+1)

fi(u)du

≤

∫ δi+n−1/(2β+1)

δi−n−1/(2β+1)

|fi(u) − fi(0)|du + 2n−1/(2β+1)f0

≤ Cn−1/(2β+1)

uniformly over θ ∈ Θβ and fξ ∈ Pξ. Taking this and the fact that EDi = EGi into
account, we bound the first term in the right hand side of (14): uniformly over k ∈ Kε,n

(i.e. εn ≤ k),

E
[n1/(2β+1)

k

k−1
∑

i=0

(Di − Gi)
]2

=
n2/(2β+1)

k2

k−1
∑

i=0

E(Di − Gi)
2

≤
n2/(2β+1)

k2

k−1
∑

i=0

(EDi + EG2
i )

≤ Cn2/(2β+1)k−1n−1/(2β+1)

≤ cn−2β/(2β+1) (15)

uniformly over θ ∈ Θβ and fξ ∈ Pξ.

Further,

n1/(2β+1)Gi

2
− f0 =

n1/(2β+1)

2

∫ δi+n−1/(2β+1)

δi−n−1/(2β+1)

(fi(u) − f0)du

≤
Lξn

1/(2β+1)

2

∫ δi+n−1/(2β+1)

δi−n−1/(2β+1)

|u|du

≤ C|θ̂i − θi| + cn−1/(2β+1)

uniformly over θ ∈ Θβ and fξ ∈ Pξ. Let j0 = j0,n = min{j : j ∈ Kn}, so j0 ≤
Cn2β/(2β+1). Now, using the previous inequality, we evaluate the second term in the right
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hand side of (14) as follows:

E
[n1/(2β+1)

2k

k−1
∑

i=0

Gi − f0

]2

≤ Cn−2/(2β+1) + cE
[1

k

k−1
∑

i=0

|θ̂i − θi|
]2

≤ Cn−2/(2β+1) +
c

k2
E

[

j0
∑

i=0

|θ̂i − θi| +

k−1
∑

i=j0+1

|θ̂i − θi|
]2

≤ cn−2/(2β+1) +
Cj2

0

k2
+

c

k2

k−1
∑

i,j=j0+1

E
[

|θ̂i − θi||θ̂j − θj|
]

≤ Cn−2/(2β+1) + c max
i∈Kn

E(θ̂i − θi)
2

uniformly over k ∈ Kε,n, θ ∈ Θβ and fξ ∈ Pξ. Because β ≤ 1 and Kε,n ⊂ Kn for
sufficiently large n, the assertion (13) follows from (9), (14), (15) and the last relation. The
lemma is proved.
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