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Abstract

We present an efficient and accurate variant of the conjugate gradient method for
solving families of shifted systems. In particular we are interested in shifted systems that
occur in Tikhonov regularization for inverse problems since these problems can be sensitive
to roundoff errors. The success of our method in achieving accurate approximations is
supported by theoretical arguments as well as several numerical experiments and we relate
it to other implementations proposed in literature.

1 Introduction

Let A be a n×n and nonsingular real matrix. We are interested in solving real linear systems

Ax = b, (1.1)

and, additionally, for various real values of τ

(A + τI)xτ = b, (1.2)

where I is the identity matrix. These problems arise quite naturally in various applications.
Krylov subspace methods are iterative methods for solving general linear systems as for exam-
ple (1.1). These methods, with zero initial guess, construct their approximations in step j from
the so–called j dimensional Krylov subspace defined as Kj(A,b) ≡ span{b,Ab . . . ,Aj−1b}.
Modern Krylov subspace methods are often characterized by the way they incrementally build
up a basis for the Krylov subspaces and how they construct their approximations from them
using some optimality property. An important property of Krylov subspaces is that they
are shift invariant, that is Kj(A,b) = Kj(A + τI,b). By exploiting this property, Equation
(1.2) can be solved for various values of the shift τ by constructing a basis for the Krylov
subspace only once. This observation has led to many efficient implementations of known
Krylov subspace methods that can handle multiple shifts. We refer the interested reader for
further information to [3, 5, 8, 10, 15, 7, 19, 9, 20].

If the matrix A is symmetric, positive definite and τ is positive then the system (1.2)
can be solved using the celebrated conjugate gradient method (CG) [14]. Equivalently, we can
apply the Lanczos method, e.g., [11, Chapter 9], to A with starting vector b to construct an
orthonormal basis for the Krylov subspace Kk(A,b), which is summarized by the Lanczos
relation

AVk = VkTk + δk−1vke
T
k = Vk+1Tk,

where the columns v0, . . . ,vk of Vk+1, form an orthonormal basis for Kk+1(A,b) and the
symmetric k×k tridiagonal matrix Tk collects the coefficients computed during the execution
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of the Lanczos algorithm. It is often convenient to include also δk−1 into one k + 1 by k
tridiagonal matrix Tk by adding an additional row to Tk. The CG approximations for (1.2)
are equal to

xτ
k = Vk(Tk + τI)−1e1

√
φ0, with φ0 ≡ r0

Tr0, (1.3)

and r0 = b being the initial residual. A multi–shift conjugate gradient method constructs
the orthonormal basis once and at the same time computes (1.3) for the required values of τ .
Specific implementations are presented in [15] and [7]. We will discuss their relationship to
our implementation in the course of this paper.

A reliable implementation of the multi–shift CG method can achieve the same accuracy
for the shifted systems as when the CG method is directly applied to each individual system.
In this paper we are interested in accurate implementations of (1.3) when the computations
are affected by roundoff errors. To this purpose we restrict our attention to the more specific
problem of computing solutions to

(ATA + τI)xτ = ATb. (1.4)

This system is more sensitive to the effects of using computer arithmetic since ATA + τI can
be ill–conditioned. Furthermore, (1.4) has important applications in Tikhonov regularization
[7] and the computation of the Overlap operator in QCD [16].

To understand the influence of finite precision arithmetic on the multi–shift CG method
we will discriminate between rounding errors made in the construction of the basis for the
Krylov subspace (the Lanczos part) and the inversion of the tridiagonal matrix in (1.3). This
paper has the following structure. In Section 2 we review the CG method and its variant for
least squares problems (CGLS) and we discuss their use as alternative Lanczos type methods.
Section 3 deals with the influence on the approximation in (1.3) of rounding errors made in
the “alternative” Lanczos method. The topic of Section 4 is the accurate computation of the
inversion in (1.4). Finally, we show by several numerical experiments that, if all ingredients
are chosen properly, we can achieve high accuracy for the shifted systems.

2 Conjugate gradient methods

In the conjugate gradient method of Hestenes and Stiefel [14] the residuals corresponding to
the iterates, rj = b−Axj , are computed for j = 1, . . . , k using the recurrences

rj = rj−1 − αj−1cj−1, cj−1 = Apj−1, pj = rj + βj−1pj−1, (2.1)

with the coefficients given by

αj−1 ≡
φj−1

pT
j−1cj−1

, βj−1 ≡
φj

φj−1
, φj ≡ ‖rj‖2,

and, initially, p0 = r0 = b. The norms in this paper are Euclidean. The approximate solution
then follows using the recurrence

xj = xj−1 + αj−1pj−1, with x0 = 0. (2.2)

In practice nonzero starting vectors are sometimes used. We will assume that the initial
guess, x0, is zero here. A key characterization of the CG method is that its iterates, xj ,
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minimize the error in the energy norm (that is an A-weighted norm) over all approximations
from the j-th Krylov subspace Kj(A,b). As a consequence of this, the residuals ri for
i = 0, . . . , j − 1 form an orthogonal basis for Kj(A,b).

For some symmetric positive definite matrices it is proved, but it is often observed in
experiments, that in finite precision arithmetic the computed vector rj becomes much smaller
than machine precision for large j. In these cases Greenbaum [12] showed that for the iterate,
xk, we essentially have for large enough k that

‖b−Axk‖ ≤ εO(1) ‖A‖‖x‖. (2.3)

Here, ε is the unit roundoff, which for double precision computations is in the order of 10−16.
Note that Equation (2.3) implies the following bound on the relative error:

‖x− xk‖/‖x‖ ≤ εO(1) ‖A‖‖A−1‖.

For least squares problems the CG method can be directly applied to the normal equations.
Nevertheless it is often suggested to use an alternative but mathematically equivalent variation
of CG known as CGLS [14, Section 10] in this case. For j = 1, . . . , k this method is defined
by the following recurrence relations:

zj = zj−1 − αj−1cj−1, cj−1 = Apj−1, rj = ATzj , pj = rj + βj−1pj−1, (2.4)

with
αj−1 ≡

φj−1

cT
j−1cj−1

, βj−1 ≡
φj

φj−1
, φj ≡ ‖rj‖2, (2.5)

and z0 = b, r0 = p0 = ATz0, and xk as in (2.2).
The advantage of this method, compared to applying CG directly to the normal equations,

is that here the least squares residuals, zj = b−Axj , are directly available. Furthermore it
was shown in [12, Section 3.3] and [2], with similar arguments as used for (2.3) for CG, that
recurring the residuals for the least squares problem, zj , improves the attainable accuracy of
the method. Note that the CGLS residuals for the normal equation, ri, form an orthogonal
basis for the Krylov subspace Kj(ATA,ATb). For the CG method it is well-known that the
coupled two–term recurrences of the CG method can be used as an alternative to the Lanczos
method for constructing an orthonormal basis for the Krylov subspace, see [6, 1]. Similarly,
the recurrences in (2.4) can be used to build an orthonormal basis for the Krylov subspace
Kj(ATA,ATb). For future convenience we work this out for this latter method.

First a little remark about notational conventions: with Rk we denote the n × k matrix
with columns r0, . . . , rk−1. Similarly, other capitals will be used to group together the cor-
responding vectors. Now, the relations in (2.4) can be summarized by the following matrix
formulations

Zk+1Jk = Ck∆k, Ck = APk, Rk+1 = ATZk+1, PkUk = Rk,

where

Uk ≡



1 −β0

1 −β1

. . . . . .
. . . −βk−2

1


,
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Jk is a k + 1 × k lower bidiagonal matrix with 1 and −1 on, respectively, the diagonal and
sub-diagonal, and ∆k ≡ diag(α0, . . . , αk−1). Substitution yields the residual relation:

(ATA)Rk = Rk+1Sk, with Sk ≡ Jk∆
−1
k Uk. (2.6)

If we introduce the diagonal matrix Φk with diagonal elements
√

φ0, . . . ,
√

φk−1, then we find
the Lanczos relation:

(ATA)Vk = VkTk −
√

βk−1

αk−1
vke

T
k = Vk+1Tk,

with Tk = LT
k∆−1

k Lk, Vk+1 = Rk+1Φ−1
k+1, and Lk = ΦkUkΦ−1

k .

(2.7)

Since the φj are available in the CGLS method, the recurrences in (2.4) can be used as an
alternative to applying the Lanczos method to ATA with starting vector ATb at virtually
the same cost. We note that the vectors vj (i.e., the columns of Vk) are plus or minus the
Lanczos vectors. We will ignore this slight difference.

Bai and Freund show in [1] that there are advantages of using a Lanczos method based on
coupled two-term recurrences in applications as reduced order modeling. There, the matrix
A is symmetric, positive semidefinite. Applying the standard Lanczos method can result
in slightly indefinite tridiagonals Tk (due to roundoff errors). Constructing the tridiagonal
in factorized form as in (2.7) cures this problem. They argue that for these applications
the alternative Lanczos process is more accurate and robust. Their Lanczos method is of
band-type but is similar to using the CG method and the relation in (2.7). Considering
the recent work on the accurate computation of eigenvalues and eigenvectors of tridiagonal
matrices, e.g., [4] for an overview and references, raises the question if the alternative Lanczos
method based on two–term recurrences can offer relatively more accurate approximations to
small eigenvalues.1 The computation of the Lanczos approximation (1.3) is another potential
example of the advantages of using a different Lanczos method. In the next section we
collect evidence of the advantage of using the CGLS method as Lanczos type method over
the standard method. In Section 4 we discuss the efficient and accurate computation of the
vector xτ

k in (1.3).

3 The effect of errors in the “Lanczos” process

We recall that we assume that A is square and invertible. The Lanczos relation (2.7) is
computed by constructing a diagonal scaling and, subsequently, scaling (2.6). We will assume
that this is done exactly. It can be easily checked that this assumption is not essential.
Furthermore, no rounding errors in the computation in (1.3) are considered in this section.
We also restrict our attention here to the case τ = 0. The analysis for this simple instance
already demonstrates the differences between the alternatives. It also contains the essential
ingredients for a theoretical analyis for general τ , but such an analysis is much more involved
and is not given here. The effectiveness of our approach for general τ is demonstrated by
numerical experiments in the Sections 4 and 5.

1Unfortunately for eigenvalue computations this can not be the case in general since an ordinary matrix–
vector product leads to a perturbation that ruins the precision for the small eigenvalues. Numerical experiments
(not shown here) suggest that when the matrix–vector product is almost exact the small eigenvalues can indeed
be computed to high relative precision. This can be explained using similar arguments as in Section 3.
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For the Lanczos method Paige [17] proved that in finite precision arithmetic the computed
Lanczos vectors and tridiagonal matrix Tk satisfy a perturbed Lanczos relation. When applied
to the normal equations this result reads

(ATA)Vk = Vk+1Tk + F̃k (3.1)

where, ignoring higher order terms,

‖̃fj‖ ≤ εO(1) ‖ATA‖, (3.2)

and the constant, O(1), depends on the dimensions n and the number of nonzeros in A. Using
this relation we find for the approximation (1.3) that

ATb− (ATA)x0
k −Vk(e1 − TkT

−1
k e1)

√
φ0 = (ATb−Vke1

√
φ0)− F̃kT

−1
k e1

√
φ0. (3.3)

Following [21, 12, 2] we assume that the second term on the left is becoming much smaller
than machine precision such that for k large enough, the residual for the normal equations is
dominated by the term on the right. Hence, (2.3) can be achieved if we can show that

(‖b−Axk‖ ≈) ‖A−T
(
(ATb−Vke1

√
φ0)− F̃kT

−1
k e1

√
φ0

)
‖ ≤ εO(1) ‖A‖‖x‖. (3.4)

In [7] a multi–shift CG method is presented based on the Lanczos method. This is not
an “optimal choice” since for this Lanczos method (3.4) cannot be proved (see the esti-
mate (3.2)). Therefore, the authors provide an alternative implementation of the three–term
Lanczos method [7, Algorithm 6] without analysis. We discuss and compare this method to
our implementation at the end of the next section.

We now consider if the CGLS recurrences can offer advantages in building up the basis as
an alternative to the Lanczos method. Note that this does not follow automatically from the
error analysis for CGLS in [12, 2]. The point is that these results for CGLS do not depend,
for example, on rounding errors made in the update of the conjugate search direction. (Of
course they influence the convergence speed.) When computing the Lanczos approximation
(1.3) these errors become relevant and therefore these results are not sufficient.

Let f c
j denote the perturbation in the computation of cj caused by the use of computer

arithmetic and assume similar notation for the other perturbations. Using standard rounding
analysis e.g., [11, Section 2.4] we get, again by ignoring higher order terms,

‖f z
j ‖ ≤ ε (‖zj−1‖+ 2‖αj−1cj−1‖) (3.5)

‖f c
j ‖ ≤ εO(1) ‖A‖ ‖pj‖ (3.6)

‖f r
j ‖ ≤ εO(1) ‖AT‖ ‖zj‖ (3.7)

‖f p
j ‖ ≤ ε

(
‖rj‖+ 2‖βj−1pj−1‖

)
≤ ε

(
3‖rj‖+ 2‖pj‖

)
. (3.8)

The unspecified constants in (3.6) and (3.7) depend on the number of nonzeros per row in
A and AT respectively. With the notation from the previous section we find the following
matrix relations for CGLS

Zk+1Jk = Ck∆k + Fz
k, Ck = APk + Fc

k, Rk+1 = ATZk+1 + Fr
k+1, PkUk = Rk + Fp

k.

Substitution yields the perturbed Lanczos relation (3.1) where the perturbation is given by

F̃k ≡ −(ATA)F̃
p

k −AT(F̃
c

k + F̃
z

k∆
−1
k )Lk − F̃

r

k+1Tk, (3.9)
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with F̃
p

k ≡ Fp
kΦ
−1
k , F̃

c

k ≡ Fc
kΦ
−1
k , F̃

z

k ≡ Fz
kΦ
−1
k , F̃

r

k ≡ Fr
kΦ
−1
k . Plugging everything into (3.4)

we see that it is sufficient if we bound each of the following terms on εO(1) ‖A‖‖x‖:

‖A−T F̃
r

k+1(e1 − TkT
−1
k e1)

√
φ0‖, ‖AF̃

p

kT
−1
k e1

√
φ0‖, ‖(F̃

c

k + F̃
z

k∆
−1
k )LkT

−1
k e1

√
φ0‖.

Greenbaum [12] and Björck et al. [2] analyze CGLS by studying the residual gap zj−(b−Axj)
for the least squares problem. This means that they take into account the rounding errors
that are collected in f z

j and f c
j . Since they argue that (2.3) holds for CGLS we do not further

study the effect of these perturbations and refer to these papers. Instead we only look at the
effect of the perturbations F̃

r

k and F̃
p

k.
A simple calculation shows that in exact arithmetic

‖(e1 − TkT
−1
k e1)

√
φ0‖ =

√
φ0

k∏
i=0

√
βi =

√
φk.

This equality still holds to relative machine precision when the division for computing βj in
(2.5) or the square root2 is done in computer arithmetic. Therefore we have, ignoring higher
order terms,

‖A−T F̃
r

k+1(e1 − TkT
−1
k e1)

√
φ0‖ ≤ εO(1) ‖A−T ‖‖AT‖‖zk‖.

Since we assume that ‖rk‖ becomes orders of magnitude smaller than machine precision, the
‖zk‖ have the same property and this term is therefore harmless.

It is a little more challenging to show that

‖AF̃
p

kT
−1
k e1

√
φ0‖ ≤ εO(1) ‖A‖‖x‖, (3.10)

or, using (3.8) and that
√

φj equals ‖rj‖ to machine precision [11, Section 2.4.5] and subse-
quently ignoring higher order terms:(

3 + 2
‖pj‖
‖rj‖

)
|eT

j+1T
−1
k e1

√
φ0| ≤ O(1) ‖x‖. (3.11)

We will show (3.11) by assuming that the occurring quantities are computed in an exact
CGLS process. Using [14, Theorem 5.3] we have that ‖pj‖/‖rj‖ = ‖rj‖/ρj with ρj ≡
(
∑j

i=0 ‖ri‖−2)−1/2. The value ρj is essentially the norm of the minimal residual approximation
from the subspace corresponding to the approximation xMR

j , thus ρj = ‖ATb − (ATA)xMR
j ‖.

The obvious estimates |eT
j+1T

−1
k e1| ≤ ‖VkT

−1
k e1‖ = ‖xk‖ and ‖rj‖ ≤ ‖A‖‖A−1‖ ρj lead to

the crude bound

(3 + 2‖rj‖/ρj)|eT
j+1T

−1
k e1

√
φ0| ≤ (3 + 2‖A‖‖A−1‖)‖xk‖.

This is not sufficient for proving (3.11). However, we can show that large perturbations are
canceled against smaller elements in the vector T−1

k e1. To see this we first write

‖rj‖ |eT
j+1T

−1
k e1|

√
φ0 = |rT

j (ATA)−1r0|.

Then, we note that

|rT
j (ATA)−1r0| = |(x− xj)T(ATA)x| = |(x− xj)T(ATA)(x− xMR

j )| ≤ ‖x− xj‖ρj ≤ ‖x‖ρj .

2The square roots are assumed exact since we disregard rounding errors in the transformation from (2.6)
to (2.7).
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Here, we used that (ATA)(x−xj) = rj ⊥ xMR
j and the fact that the errors for the CG method

are also in 2-norm monotonically decreasing [14, Theorem 6.3]. Combining these expressions
for all j we can prove (3.10).

We have simplified our analysis by using relations that are not necessarily preserved in the
finite precision context. (This is not uncommon.) In a recent paper [22] Strakos̆ and Tichý
give a detailed error analysis of the conjugate gradient method. Using some of their results
it can be shown that many of the used identities are still valid (up to a constant) in the finite
precision context and a more refined analysis than presented here is possible. However, the
observations in this section coincide with our numerical experience and a detailed analysis is
beyond the scope of this paper.

In this section we have collected evidence that constructing Lanczos approximations to the
least squares problem build “on top of” the CGLS method can lead to accurate solutions for
the least squares problem. Applying the standard Lanczos method to the normal equations
can lead to a perturbed Lanczos relation as in (3.1) with a normwise smaller perturbation
(since it is possible that ‖pj‖/‖rj‖ � 1). However, for the alternative Lanczos method the
perturbation and T−1

k e1 have a desirable structure that allows much more accurate solutions.
Freund et al. present in [6] a version of the QMR method based on coupled two–term re-

currences. In the QMR method there is a clear separation between the Lanczos part and the
solution part as there is also for the multi–shift CG methods. They observe that, when com-
pared to the three–term recurrence version of QMR, the difference is typically not very large
[6, Section 9] for most problems. Similarly, we do not expect and see large differences between
the various multi–shift CG implementations. However, the structure of the perturbation F̃k

can become relevant for some problems as seen in this section.
We conclude this section by remarking that an alternative for the multi–shift CG method

for regularized systems can be obtained based on Lanczos bidiagonalization e.g., [11, Sec-
tion 9.3.3]. With similar arguments as given here, the accuracy of this method can be under-
stood.

4 Solving the shifted system

In efficient implementations of the multi–shift conjugate gradient method it is required that
the vectors xτ

k are constructed at the same time the Krylov subspace is build up in order to
circumvent that we have to store all Lanczos vectors vj . In case the CG recurrences (2.1) or
CGLS recurrences (2.4) are used as Lanczos process, then it is clear from (2.7) that also the
LTDL factorization of Tk is directly available. The so–called quotient–difference algorithms
introduced by Rutishauser [18] provide a means to construct an LTDL factorization of the
shifted matrix Tk + τI directly from the factors of Tk. These algorithms construct the factors
Dτ

k and Lτ
k in a step–by–step fashion such that

LT
k∆−1

k Lk + τI = (Lτ
k)

TDτ
kLτ

k,

where Dτ
k is diagonal with diagonal elements d0, . . . , dk−1 and Lτ

k is upper bidiagonal with
diagonal elements one and upper diagonal elements l0, . . . , lk−2. If we take the differential
form of the stationary qd transformation (dstqds) presented in [4, Algorithm 4.2], then we
have, with t0 = τ , the following recurrence relations for computing the elements of Dτ

k and
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Lτ
k

dj−1 = tj−1 + α−1
j−1, lj−1 = −

√
βj−1

αj−1dj−1
, tj = −lj−1

√
βj−1tj−1 + τ. (4.1)

Just as for the conjugate gradient method, the construction of the vector xτ
k can be done

efficiently by introducing the auxiliary vectors pτ
j defined by the relation Pτ

k = Vk(Lτ
k)
−1.

Starting with ξ0 = 1, pτ
0 = r0/

√
φ0, xτ

0 = 0 this leads to

xτ
j = xτ

j−1 +
ξj−1

dj−1
pτ

j−1, pτ
j = rj/

√
φj − lj−1pτ

j−1, ξj = −ξj−1lj−1. (4.2)

Notice that the norm the residual of the shifted system is given by the product of the off-
diagonal elements of Lτ

k, which equals the temporary variable ξj in (4.2). Dhillon and Parlett
present [4, Section 4.3] a roundoff error analysis of the dstqds algorithm that shows that
the outcome of this algorithm is relatively close to the exact result when applied to factors
relatively close to the original input. Our implementation of the multi–shift CG or CGLS
method consists of adding (4.1) and (4.2) to the ordinary CG and CGLS methods.

We will now summarize an approach that is used at several places in literature in multi–
shift versions of the (Bi-)CG method based on coupled two–term recurrences [15, 9]. For more
details consult these references. An important observation is that the residuals for shifted
systems are colinear for the CG method, that is, there exist constants γj such that rτ

j = rj/γj .
Writing out the three–term recurrence of the residuals rτ

k (similar to (2.6)) and comparing
terms reveals, with γ−1 = γ0 = 1, the three–term relation

γj = (1 + αj−1τ)γj−1 +
αj−1

αj−2
βj−2(γj−1 − γj−2), (4.3)

and the recurrences for the iterates and search directions are given by

xτ
j = xτ

j−1 + αj−1

(
γj−1

γj

)
pτ

j−1, pτ
j = rj/γj + βj−1

(
γj−1

γj

)2

pτ
j−1, (4.4)

with initially pτ
0 = r0 and xτ

0 = 0.
If a stable method is applied for computing (1.3), then this leads to an approximate solu-

tion that is usually sufficiently accurate when dealing with ordinary linear systems. However,
this might not be the case for normal equations, since then a dependence of the attainable
precision on the square of the condition number of A may have been introduced. Therefore,
a point of concern of the approach (4.3)–(4.4) is that it implicitly forms the ill–conditioned
tridiagonal matrix Sk (cf., (2.6)) in the computation of the γj in (4.3) whereas the qd-method
directly transforms the factorization of the unshifted problem to that of the shifted problem
without forming the tridiagonal matrix.

Numerical experiments suggest that (4.4) is often remarkably accurate and in most cases as
accurate as (4.2). Nevertheless, there are examples where differences are clear. We show this
for two simple regularized systems. The matrix A has eigenvalues {1/250, 240, 241, . . . , 250}
(n = 12) and the orthonormal eigenvector basis is random. The right-hand-side has equal
components in all eigenvector directions except for the direction corresponding to the smallest
eigenvalue, there the component is 2502 times as large. The results for solving the system (1.4)
are presented in Figure 1 for τ = 10−8 and τ = 1. In this picture we have also presented the
results for the CGLS method when applied to the regularized problems directly. An algorithm
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Figure 1: Relative error as function of k for the CGLS method (solid), Algorithm 6 from [7]
(dashed), multi–shift CGLS with (4.2) (dash-dot) and (4.4) (dotted) for two different shifts:
τ = 10−8 (left) and τ = 1 (right).

for this is given in, e.g., [7, Algorithm 3]. In this case (4.2) clearly gives more accurate results
than (4.4) for τ = 10−8. For larger values of τ and very small values the difference becomes
smaller. For these results and the ones in the next section, we used Matlab.

The multi–shift CG method presented in [7, Alg. 6] uses a variant of the standard Lanczos
method. This implementation uses a three–term recurrence for the least squares residuals and
results in a tridiagonal matrix in standard form. So, even if the Lanczos part is more accurate
due to these changes, the accuracy is expected to be limited by the inversion of the tridiagonal.
The dashed lines in Figure 1 show this.

5 Numerical experiments

In this section we compare the attainable precision of the CGLS method (for regularized
systems) to the approximations from our version of the multi–shift CGLS method (MCGLS),
that is the CGLS method combined with (4.2) to solve the additional shifted system. The
“exact” solution, xτ , was computed using a singular value decomposition and we report the
relative error given by

‖xτ
k − xτ‖/‖xτ‖,

where xτ
k is the computed approximation with either method. The number of iterations, k,

was chosen such that the error for the particular method was minimal. The results for various
test problems from [13] are given in Table 1.

The results in this table confirm that this multi–shift CG method achieves a comparable
accuracy to applying the CGLS method directly to the regularized system. However, there
are a few interesting differences that occur now and then. One aspect of the CGLS method
for regularized systems is that for large shifts the method tends to diverge after reaching
its maximal precision. An interesting observation is that the multi–shift version of CGLS
does not have this behavior. This is illustrated in the left figure in Figure 2. The computa-
tional costs per step are much lower for the multi–shift version of CGLS (no matrix-vector
multiplication, no inner products, less vector updates for solving the shifted problems) than
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τ 10−8 10−4 1 104

HEAT(100)

CGLS 4.9(-13) 5.1(-15) 6.6(-16) 6.5(-16)
MCGLS 4.8(-13) 5.2(-15) 6.1(-16) 7.0(-16)

URSELL(100)

CGLS 6.7(-14) 2.9(-15) 2.9(-16) 2.6(-16)
MCGLS 8.7(-14) 3.3(-15) 2.5(-16) 2.7(-16)

FOXGOOD(100)

CGLS 2.2(-13) 3.0(-15) 3.7(-16) 6.7(-16)
MCGLS 2.7(-13) 3.0(-15) 3.7(-16) 7.3(-16)

ILAPLACE(100)

CGLS 9.2(-13) 1.8(-14) 1.2(-15) 6.7(-16)
MCGLS 8.4(-13) 1.8(-14) 1.3(-15) 6.0(-16)

Table 1: Attainable relative errors for various problems and various choices for τ .

the direct application of CGLS. However, it is remarkable that, in addition, the multi–shift
version sometimes needs less iteration steps. An example of this is given in the right picture
in Figure 2.
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