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Abstract. cl matcont and matcont are matlab continuation packages for the interactive
numerical study of a range of parameterized nonlinear dynamical systems, in particular ODEs.
matcont is an interactive graphical package and cl matcont is a commandline version. Both
packages allow to compute curves of equilibria, limit points, Hopf points, limit cycles, flip, fold
and torus bifurcation points of limit cycles. We discuss computational details of the continuation
of limit cycles and flip, fold and torus bifurcations of limit cycles in matcont and cl matcont
using orthogonal collocation. Instead of the more commonly used fully extended systems we use
minimally extended systems. We further describe the use of the matlab sparse matrix routines and
the initialization and adaptation of the bordering vectors that are essential in minimally extended
system. Finally, we compare the use of the minimally and the fully extended systems in the matlab
environment.
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1. Introduction. Numerical continuation is a well-understood subject, see e.g.
[1], [8],[9], [4], [18], [21], [23]. The idea is as follows. Consider a smooth function
F : IRn+1 → IRn. We want to compute a solution curve of the equation

F (x) = 0.(1.1)

Numerical continuation is a technique to compute a sequence of points which approx-
imate the desired solution branch.

In particular, we consider a dynamical system of the form

dx

dt
= f(x, α)(1.2)

with x ∈ IRn, f(x, α) ∈ IRn, and α a vector of parameters where equilibria, limit
points, limit cycles etcetera can be computed.

The existing software packages such as auto [10], content [22] require the user
to rewrite his/her models in a specific form and use special internal formats to store
results; this complicates the export of the results, graphical representation etcetera.

The aim of matcont and cl matcont is to provide a continuation toolbox
which is compatible with the standard matlab ODE representation of differential
equations. General descriptions of cl matcont and matcont are in [7] and [6]
respectively. The current version of the package is freely available for download at:
http://allserv.rug.ac.be/~ajdhooge
cl matcont requires matlab 5.3 whereas matcont requires matlab 6.*. In the
present paper we concentrate on the implementation in cl matcont and matcont
of the continuation of the flip (Period Doubling, PD), fold (Limit Point of Cycles,
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LPC) and torus (Neimark - Sacker, NS) bifurcations of limit cycles, using minimally
extended systems and orthogonal collocation to discretize appearing boundary-value
problems (BVPs). The only existing software to perform these continuations is auto
[10] which uses fully extended systems and their orthogonal collocation. Several al-
gorithms for the continuation of limit cycles and fold bifurcations of limit cycles are
studied in [19]. They are also based on matlab and minimally extended systems but
otherwise very different from ours since they use a combination of multiple shooting
and automatic differentiation, using coarse meshes and Taylor series expansions. Ac-
curacy and robustness are the main object of [19] and these are compared to the auto
results; since no code is available we cannot compare them directly to our results.

The theory of the bordering method for the numerical continuation of bifurcations
of limit cycles was developed in [12] and is summarized in a slightly generalized form
in §2. We note that the convergence properties of the discretized solutions of the PD,
LPC and NS equations can be proved by the method of reformulation of boundary
value problems as described in [3] and applied in [9] to include the period of the orbit,
a phase condition and parameters in the boundary value problem formulation. In
particular, the convergence of the systems for PD, LPC and NS is of order hm where
h is the maximum length of the mesh intervals and m is the number of collocation
points in each mesh interval. Also, there is superconvergence (of order h2m) in the
endpoints of the mesh intervals and for the scalar equations added to the LC equations.

In this paper we deal with the numerical and computational aspects of the imple-
mentation in matcont and cl matcont. Note that this makes matcont the first
fully interactive software that supports the continuation of the limit cycle bifurcations
using orthogonal collocation. In §3 we recall the basic methods for the continuation of
limit cycles. In §4, 5, 6 we discuss the continuation of the PD, LPC and NS bifurca-
tions, respectively. §7 discusses further details on the initialization and adaptation of
the continuation which are largely common to the three cases. In §8 we consider the
computation of multipliers along the three curve types. In §9 we provide an example
with the LP and NS continuation in matcont. In §10 we make a comparison between
the use of the minimally and fully extended systems in the case of PD cycles.

2. Mathematical Background on Limit Cycles and Bifurcations of Limit
Cycles. In this section we summarize the main results of [12]; in the flip and torus
cases we actually present an easy generalization.

2.1. Limit Cycles. A cycle is a closed orbit corresponding to a periodic solution
of (1.2) with period T , i.e. x(0) = x(T ). By definition, in a neighbourhood of a limit
cycle there are no other cycles.

Since T is not known in advance, it is customary to use an equivalent system
defined on the fixed interval [0, 1] by rescaling time [10], [22]:{

dx

dt
− Tf(x, α) = 0

x(0) = x(1)
(2.1)

A phase shifted function φ(t) = x(t + s) is also a solution of (2.1) for any value of
s. To obtain a unique solution an extra constraint is needed. The following integral
constraint is often used [10],[22]∫ 1

0

〈x(t), ẋold(t)〉dt = 0(2.2)
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where ẋold(t) is the tangent vector of a previously calculated limit cycle and is therefore
known, 〈x, v〉 is just a different notation for xT v. This condition tries to select the
solution which has the smallest phase difference with respect to the previous solution
xold.

Thus, the complete BVP defining a limit cycle consists of (2.1) and (2.2).

2.2. Flip Bifurcation of Limit Cycles. A flip bifurcation of limit cycles (Pe-
riod Doubling, PD) generically indicates a period doubling of the periodic solution,
i.e., there are nearby periodic solutions of approximately double period. It can be
characterized by adding an extra constraint G = 0 to (2.1), (2.2) where G is the
flip test function specified below. The complete BVP defining a PD point using the
minimal extended system is 

dx

dt
− Tf(x, α) = 0

x(0)− x(1) = 0∫ 1

0
〈x(t), ẋold(t)〉dt = 0

G[x, T, α] = 0

(2.3)

where G is defined by requiring

N1

(
v
G

)
=

 0
0
1

 .(2.4)

Here v is a function and G is a scalar and

N1 =

 D − Tfx(x(·), α) w01

δ0 + δ1 w02

Intv01 0

(2.5)

where the bordering functions v01, w01, vector w02 are chosen so that N1 is nonsingular
[12]; δ0, δ1 are the Dirac operators defined by δi(f) = f(i) for f ∈ C1([0, 1], IRn). Intv01

is the operator defined by Intv01f =
∫ 1

0
vT
01(t)f(t)dt for f ∈ C1([0, 1], IRn). We note

that in [12] the entry corresponding to w02 is zero; the generalization to (2.5) is easy.

2.3. Fold Bifurcation of Limit Cycles. A fold bifurcation of limit cycles
(Limit Point of Cycles, LPC) generically corresponds to a turning point of a curve of
limit cycles. It can be characterized by adding an extra constraint G = 0 to (2.1),
(2.2) where G is the fold test function specified below. The complete BVP defining a
LPC point using the minimally extended system is

dx

dt
− Tf(x, α) = 0

x(0)− x(1) = 0∫ 1

0
〈x(t), ẋold(t)〉dt = 0

G[x, T, α] = 0

(2.6)

where G is defined by requiring

N2

 v
S
G

 =


0
0
0
1

 .(2.7)
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Here v is a function, S and G are scalars and

N2 =


D − Tfx(x(·), α) − f(x(·), α) w01

δ1 − δ0 0 w02

Intf(x(·),α) 0 w03

Intv01 v02 0

(2.8)

where the bordering functions v01, w01, vector w02 and scalars v02 and w03 are chosen
so that N2 is nonsingular [12].

2.4. Torus Bifurcation of Limit Cycles. A torus bifurcation of limit cycles
(Neimark-Sacker, NS) generically corresponds to a bifurcation to an invariant torus,
on which the flow contains periodic or quasi-periodic motions. It can be characterized
by adding an extra constraint G = 0 to (2.1), (2.2) where G is the torus test function
which has four components. The complete BVP defining a NS point using the minimal
extended system is 

dx

dt
− Tf(x, α) = 0

x(0)− x(1) = 0∫ 1

0
〈x(t), ẋold(t)〉dt = 0

G[x, T, α] = 0

(2.9)

where

G =
(

G11 G12

G21 G22

)
is defined by requiring

N3

 v1 v2

G11 G12

G21 G22

 =


0 0
0 0
1 0
0 1

 .(2.10)

Here v1 and v2 are functions and G11, G12, G21 and G22 are scalars and

N3 =


D − Tfx(x(·), α) w11 w12

δ0 − 2κδ1 + δ2 w21 w22

Intv01 0 0
Intv02 0 0

(2.11)

where the bordering functions v01, v02, w11, w12, vectors w21and w22 are chosen so that
N3 is nonsingular. We note that in [12] the entries corresponding to w21 and w22 are
zero; the generalization to (2.11) is easy.

3. Numerical Continuation of Limit Cycles. For the numerical continuation
of a limit cycle with respect to a parameter we need to discretize the system consisting
of (2.1) and (2.2); to use a Newton-like method the Jacobian matrix of the discretized
system is also needed. This is a sparse matrix and we exploit the sparsity by using
the matlab routines for sparse matrices. The same applies to the Jacobians of the
equations that define bifurcations of limit cycles in §4,5,6, which have the similar
sparsity patterns.
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3.1. Discrete Representation of the Solution Function.. The method used
to discretize the BVP is the same as in colsys[2], auto[10] and content[22] and is
called the orthogonal collocation [5]. First the interval [0 1] is subdivided in N smaller
test intervals:

0 = τ0 < τ1 < · · · < τN = 1.

On each of these intervals the solution x(τ) is approximated by an order m vector
valued polynomial x(i)(τ). This is done by defining m + 1 equidistant mesh points on
each test interval

τi,j = τi +
j

m
(τi+1 − τi) (i = 0, 1, . . . , N − 1)(j = 0, 1, . . . ,m)

and defining the polynomials x(i)(τ) as

x(i)(τ) =
m∑

j=0

xi,j li,j(τ).

Here xi,j is the approximation of x(τ) at τ = τi,j (we note that xi,m = xi+1,0 for
i = 0, 1, . . . , N − 1) and the li,j(τ)’s are the Lagrange basis polynomials

li,j(τ) =
m∏

k=0,k 6=j

τ − τi,k

τi,j − τi,k
.

On each test interval [τi, τi+1] we require that the polynomials x(i)(τ) satisfy the
BVP exactly in m collocation points ζi,j (j = 1, . . . ,m) (which are different from the
mesh points τi,j). It can be proved that the best choice for the collocation points are
the Gauss points [5]. These are the roots of the Legendre polynomial relative to the
interval [τi, τi+1]. With this choice of collocation points the error in the approximation
is extremely small

||x(τi,j)− xi,j || = O(hm)

where h = max{|ti| : i = 1, 2, . . . , N}, ti = τi − τi−1 and for the mesh points τi it is
even better

||x(τi)− xi,0|| = O(h2m).

3.2. Numerical evaluation of integrals. In (2.6) and several other places we
need to compute integrals over [0, 1] using the discretization discussed in §3.1. For
N = 3 test intervals and m = 2 collocation points the following data are associated
with the discretized interval [0 1]

τ0 τ1 τ2 τ3

◦ ◦ • ◦ • ◦ ◦
τ0,0 τ0,1 τ0,2 τ2,0 τ2,1 τ2,2

τ1,0 τ1,1 τ1,2 τ3,0

t1w1 t1w2 t1w3 + t2w1 t2w2 t2w3 + t3w1 t3w2 t3w3

σ0,0 σ0,1 σ1,0 σ1,1 σ2,0 σ2,1 σ3,0

The total number of mesh points (tps) is N × m + 1, the total number of variables
(ncoords) is tps × dim(x). Each mesh point τi,j in a test interval [τi, τi+1] has a
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particular weight wj+1, the Gauss-Lagrange quadrature coefficient. Some mesh points
(the black bullets) belong to two test intervals. We set ti = τi − τi−1 (i = 1, . . . , N).
The integration weight σi,j of τi,j is given by wj+1ti+1 for 0 ≤ i ≤ N − 1 and
0 < j < m. For i = 0, . . . , N − 2 the integration weight of τi,m = τi+1,0 is given
by σi,m = wm+1ti+1 + w1ti+2 and the integration weights of τ0 and τN are given by
w1t1 and wm+1tN , respectively. The integral

∫ 1

0
f(t)dt is, therefore, approximated by∑N−1

i=0

∑m−1
j=0 f(τi,j)σi,j + f(1)σN,0.

3.3. Discretization of the BVP. Using the discretization described in §3.1 we
obtain the discretized BVP

(∑m
j=0 xi,j l′i,j(ζi,k)

)
− Tf(

∑m
j=0 xi,j li,j(ζi,k), α) = 0

x0,0 − xN−1,m = 0∑N−1
i=0

∑m−1
j=0 σi,j〈xi,j , ẋi,j

old〉+ σN,0〈xN,0, ẋN,0
old 〉 = 0

The first equation in fact consists of Nm equations, one for each combination of
i = 0, 1, 2, ..., N − 1 and k = 1, 2, ...,m.

3.4. The Jacobian of the Discretized Equations. The Jacobian of the dis-
cretized system is sparse. In the Newton iterations during the continuation process
a system consisting of this Jacobian matrix and an extra row (the tangent vector) is
solved. For N = 3 test intervals, m = 2 collocation points and dim(x) = 2 this matrix
has the following sparsity structure (•’s are a priori non-zero’s).

x0,0 x0,1 x1,0 x1,1 x2,0 x2,1 x3,0 T α
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • •
• • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •



(3.1)

The columns of (3.1) label the unknowns of the discretized problem. The first
dim(x) rows correspond to the first collocation point etc. In (2.1) and (2.2) there
are 3 unknowns: x, the period T and a parameter α. So the part of the Jacobian
corresponding with the first equation of (2.1) has the following form:

[D − Tfx(x, α) − f(x, α) − Tfα(x, α)].

In (3.1) D−Tfx(x, α) corresponds to N = 3 blocks with dimension 4×6 (= (dim(x)∗
m)× (dim(x)× (m + 1))). The part in (3.1) that defines the boundary conditions for
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limit cycles has the form:

[Idim(x) 0dim(x)×(Nm−1)dim(x) − Idim(x) 0dim(x)].

These are in (3.1) the dim(x) = 2 rows following the 4×6 blocks. These rows contain
two nonzero parts corresponding with x0,0 and xN,0(±2 × 2 identity matrix). The
last but one row in (3.1) is the derivative of the discretization of (2.2). The last row
is added by the continuation code.

4. Continuation of PD Cycles..

4.1. Discretization of the PD Equations.. The last equation in (2.3) ex-
presses the condition that the operator[

D − Tfx(x(·), α)
δ0 + δ1

]
(4.1)

that appears in (2.5) is rank deficient [12]. In the implementation in matcont and
cl matcont we replace this by the condition that the discretized operator (matrix)
of (4.1) has rank defect 1. To this end we solve

Nd
1

(
vd

Gd

)
=

 0
0
1

(4.2)

where

Nd
1 =

 [ D − Tfx(x(·), α) ]d w1
d

Idim(x) 0dim(x)×(Nm−1)dim(x) Idim(x) w2
d

v1
d 0

(4.3)

and the bordering vectors v1
d, w1

d and w2
d are chosen so that (4.3) has full rank. Here

and elsewhere the subscript d denotes discretization using orthogonal collocation. The
structure is similar to that of (3.1); however, the two last rows and colums of (3.1)
are replaced by the single last row and column of (4.3).

4.2. The Jacobian of the Discretized PD Equations. To continue the dis-
cretized equations of (2.3) the Jacobian matrix of the system is needed which means
that the derivatives of Gd with respect to the unknowns of the system, i.e., with
respect to xi,j , T, α, have to be calculated.

Taking derivatives of (4.2) with respect to z (being a component of xi,j , T or α)
we obtain

Nd
1

(
vdz

Gdz

)
+

 ([−Tfx(x(·), α)]d)z 0
0 0
0 0

(
vd

Gd

)
=

 0
0
0

 .

Or, equivalently,

Nd
1

(
vdz

Gdz

)
=

 [Tfx(x(·), α]dzvd

0
0

 .

Instead of solving this for every z we solve the transposed equations

(w∗
1 , w∗

2 , w∗
3)Nd

1 = (0, 0, 1)(4.4)
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where w1 is a dim(x)∗N ∗m vector, w2 a dim(x) vector and w3 is a scalar. Combining
(4.2) and (4.4) we find

Gdz = −w∗
1([Tfx(x(·), α]dzvd.(4.5)

So in each iteration step we solve two systems with the structure of (4.3) or its
transpose.

5. Continuation of LPC Cycles..

5.1. Discretization of the LPC Equations.. The last equation in (2.6) ex-
presses that the operator D − Tfx(x(·), α) − f(x(·), α)

δ1 − δ0 0
Intf(x(·),α) 0

(5.1)

that appears in (2.8) is rank deficient. In the numerical implementation in matcont
and cl matcont we replace this by the condition that the discretized operator of
(5.1) is rank deficient. We solve

Nd
2

 vd

Sd

Gd

 =


0
0
0
1

 .(5.2)

where

Nd
2 =


[ D − Tfx(x(·), α) ]d [−f(x(·), α)]d w1

d

Idim(x) 0n×(Nm−1)dim(x) − Idim(x) 0 w2
d

Intf(x(·),α)d
0 w3

d

v1
d v2

d 0

(5.3)

where the bordering vectors v1
d, w1

d and w2
d and scalars v2

d and w3
d are chosen so that

Nd
2 is nonsingular. The structure is similar to that of (3.1); however the two last

rows and colums have a different meaning. The last but one row corresponds with
Int[f(x(·),α)]d and the last but one column corresponds with [−f(x(·), α)]d.

5.2. The Jacobian of the Discretized LPC Equations. To continue the
discretized equations of (2.6) the Jacobian matrix of the system is needed which
means that the derivatives of Gd with respect to the unknowns of the system, i.e.,
with respect to xi,j , T, α, have to be calculated.

The derivative with respect to z (being a component of xi,j , T or α) is

Nd
2

 vdz

Sdz

Gdz

 +


([−Tfx(x(·), α)]d)z ([−f(x(·), α)]d)z 0

0 0 0
(Int[f(x(·),α)]d)z 0 0

0 0 0


 vd

Sd

Gd

 =


0
0
0
0


Simplifying gives

Nd
2

 vdz

Sdz

Gdz

 =


[Tfx(x(·), α]dzvd + [f(x(·), α)]dzSd

0
−Int[f(x(·),α)]dz

vd

0

 .
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Instead of solving this for every z we solve the transposed equations

(w∗
1 , w∗

2 , w3, w4)Nd
2 = (0, 0, 0, 1)(5.4)

where w1 is a dim(x) ∗N ∗m vector, w2 a dim(x) vector and w3 and w4 are scalars.
Combining (5.2) and (5.4) we find

Gdz = w∗
1([Tfx(x(·), α]dzvd + [f(x(·), α)]dzSd)− w3Int[f(x(·),α)]dz

vd.(5.5)

So in each iteration step we solve two systems with the structure of (3.1) or its
transpose.

5.3. Details of the computation of Gdz. We restrict to the computation of
the contribution of the term −w3Int[f(x(·),α)]dz

vd in (5.5), the computation of the
other terms being similar. We first introduce the vector

Σ = (σ0,0, . . . , σ0,0, σ0,1, . . . , σ0,1, . . . , σ1,0, . . . , σ1,0, . . . , σN,0, . . . , σN,0)T

where each weight σi,j is repeated dim(x) times.
Let (Σ. ∗ vd) be the element-by-element product of the vectors Σ and vd. Then

Int[f(x(·),α)]dvd = (Σ. ∗ vd)T F ((xi,j), α)

where F ((xi,j), α) is the column vector consisting of the f(xi,j , α) for i = 0, . . . , N −
1, j = 0, . . . ,m− 1 and f(xN,0, α). So

Int[f(x(·),α)]dz
vd = (Σ. ∗ vd)T F ((xi,j), α)z.

Since T does not appear in this expression, there is no contribution to GdT . The
contribution to Gdxi,j is

−w3(Σ. ∗ vd)T
(i+mj)dim(x)+1,...,(i+mj+1)dim(x)fx(xi,j , α);

The contribution to Gdα is

−w3(Σ. ∗ vd)T
(i+mj)dim(x)+1,...,(i+mj+1)dim(x)fα(xi,j , α).

6. Continuation of NS Cycles..

6.1. Discretization of the NS Equations.. The last equation in (2.9) ex-
presses that the operator [

D − Tfx(x(·), α)
δ0 − 2κδ1 + δ2

]
(6.1)

that appears in (2.11) has rank defect 2. In the numerical implementation in matcont
and cl matcont we replace this by the requirement that the discretized equation of
(6.1) has rank defect 2. We solve

Nd
3

 v1
d v2

d

G11
d G12

d

G21
d G22

d

 =


0 0
0 0
1 0
0 1

 .(6.2)
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where

Nd
3 =


[D − Tfx(x(·), α)]d w11

d w12
d

(δ0 − 2κδ1 + δ2)d w21
d w22

d

v01
d 0 0

v02
d 0 0

(6.3)

and

[(δ0 − 2κδ1 + δ2)d] =

= [Idim(x) 0dim(x)×(Nm−1)dim(x) − 2κIdim(x) 0dim(x)×(Nm−1)dim(x) Idim(x)]

and the bordering vectors v01
d , v02

d , w11
d , w12

d , w21
d and w22

d are chosen so that (6.3) has
full rank. Here the subscript d denotes discretization using orthogonal collocation
over the interval [0 2]. For N = 2 test intervals and m = 2 collocation points the
following data are associated with the discretized interval [0 2]:

0 1 2
τ0 τ1 τ2 τ3 τ4

◦ ◦ • ◦ • ◦ • ◦ ◦
τ0,0 τ0,1 τ0,2 τ2,0 τ2,1 τ2,2 τ4,0

τ1,0 τ1,1 τ1,2 τ3,0 τ3,1 τ3,2

t1w1 t1w2 t1w3 + t2w1 t2w2 t2w3 + t1w1 t1w2 t1w3 + t2w1 t2w2 t2w3

σ0,0 σ0,1 σ1,0 σ1,1 σ2,0 σ2,1 σ3,0 σ3,1 σ4,0

The total number of mesh points (tps) is now 2N ×m+1, the total number of points
(ncoords) is tps× dim(x).

The structure is quite similar to that of (3.1); the first part((2dim(x)Nm ×
ncoords) is now over [0 2] in (6.3) , so it is duplicated (the dimension is approxi-
mately doubled). The two last rows and colums are also different. They correspond
with the borders.

6.2. The Jacobian of the Discretized NS Equations. To continue the dis-
cretized equations of (2.9) the Jacobian matrix of the system is needed which means
that the derivatives of Gd with respect to the unknowns of the system, i.e., with
respect to xi,j , T, α, have to be calculated.

The derivative with respect to z (being a component of xi,j , T or α) is

Nd
3

 v1
dz v2

dz

G11
dz G12

dz

G21
dz G22

dz

 =


[Tfx(x(·), α]dzv

1
dz [Tfx(x(·), α]dzv

2
dz

0 0
0 0
0 0

 .

Instead of solving this for every z we solve the transposed equations

(
w1∗

1 w2∗
1 G11

dz G12
dz

w1∗
2 w2∗

2 G21
dz G22

dz

)
Nd

3 =
(

0 0 1 0
0 0 0 1

)
(6.4)

where w1∗
1 , w1∗

2 are dim(x)∗2N∗m vectors and w2∗
1 , w2∗

2 are dim(x) vectors. Combining
(6.2) and (6.4) we find

Gij
dz = w1∗

i ([Tfx(x(·), α]d)zv
j
d.(6.5)
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So in each iteration step we solve two systems with the almost doubled structure of
(3.1) or its transpose.

One also needs the derivatives with respect to κ; for this we find

M1
d

 v1
dκ v2

dκ

G11
dκ G12

dκ

G21
dκ G22

dκ

 =


0 0

2v1
d(1) 2v2

d(1)
0 0
0 0

 .

So for κ we find

Gij
dκ = w2∗

i vj
d(1).(6.6)

where i, j ∈ {1, 2}.

7. Initialization and adaptation of the borders. The bordering vectors
in (4.3), (5.3), (6.3) must be such that the matrices Nd

1,2,3 are nonsingular. We
actually choose them in such a way that the corresponding matrices Nd

1,2,3 are as
well conditioned as possible. This involves an initialization of the borders when the
continuation is started and a subsequent adaptation during the continuation.

7.1. The flip and fold cases. During the initialization the borders must chosen
so that the extensions Nd

1 of

O1 =
[

[ D − Tfx(x(·), α) ]d
Idim(x) 0dim(x)×(Nm−1)dim(x) Idim(x)

]
in the flip case and Nd

2 of

O2 =

 [ D − Tfx(x(·), α) ]d [−f(x(·), α)]d
Idim(x) 0dim(x)×(Nm−1)dim(x) − Idim(x) 0

Intf(x(·),α)d
0


in the fold case have full rank. We first perform a QR orthogonal-triangular decom-
position with column pivoting.

The matlab command [Q,R,E] = QR(full(O1,2)) produces a permutation ma-
trix E, an upper triangular matrix R of the same dimension as O1,2 and a unitary
matrix Q so that O1,2 ∗ E = Q ∗ R. The column pivoting guarantees that the QR
pivoting is rank revealing and in particular that abs(diag(R)) is decreasing, cf. [16],
§5.4. Since O1,2 has rank defect 1, the last element on the diagonal of R should be
zero (up to approximation). The borders v1

d in (4.3) in the flip case and v1
d in (5.3)

in the fold case are chosen as the right null vector p of respectively O1 and O2. It
is well known that this makes the bordered matrices nonsingular. This is sometimes
called Keller’s Lemma, cf. [20]. A detailed study of the rank of bordered matrices is
given in [18], Proposition 3.2.2. From O1,2p = 0 follows that RET p = 0. Setting the
bottom right element of R to zero, we obtain

∗ ∗ ∗ . . . ∗ ∗
0 ∗ ∗ . . . ∗ ∗
0 0 ∗ . . . ∗ ∗

. . . . . .
0 0 0 . . . ∗ ∗
0 0 0 . . . 0 0

 ET p =


0

0

 .(7.1)
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This defines ET p up to a scalar multiple. Since its last entry must be nonzero we

represent ET p as ET p =
(

p1

1

)
. Therefore (7.1) has the form

 R1 b

0 0


 p1

1

 =

 0

0


with R1 an nonsingular upper triangular matrix. This is equivalent to

R1p1 = −b.

So the right border is the normalization of E ∗ [(R1\−b); 1] (in matlab notation).
The computation of the left null vector q which corresponds to w1

d and w2
d in (4.3) in

the flip case and to w1
d, w2

d and w3
d in (5.3) in the fold case, is easier. In fact q is the

last column qL of Q because qT
L ∗O1,2 = qT

LQRET = (0 . . . 0, 1)RET = 0ET = 0.
It is an attractive idea to use the sparsity of O1,2 to do a Q-less QR decomposition,

R = QR(O1,2) as provided in matlab, which returns only R. This is enough to find
the right singular vector of O1,2. The left null vector would then be computed as
the normalized right null vector of the transposed O1,2. However, we found that this
method is not robust and that a QR factorization with pivoting is needed. We tested
this by comparing a sparse Q-less QR decomposition, a full QR decompositon without
column pivoting and a full QR decomposition with column pivoting for OT

2 , for the
system  u̇1 = −u1 + p1(1− u1)eu3

u̇2 = −u2 + p1(1− u1 − p5u2)eu3

u̇3 = −u3 − p3u3 + p1p4(1− u1 + p2 ∗ p5 ∗ u2)eu3

where u1, u2, u3 are state variables and p1, p2, p3, p4, p5 are parameters. This is the
classical model of the A → B → C chemical reaction in a stirred tank [11]; we recall
that 1 − u1 and u2 denote the concentrations of A and B respectively and u3 is
the temperature. The parameters p1, . . . , p5 have a physical meaning; e.g. p1 is the
Damkohler number and p3 is the heat transfer coefficient. There is a Hopf point for
p1 = 0.19547, p2 = 1, p3 = 1.5, p4 = 8, p5 = 0.04 and u1 = 0.57456, u2 = 0.54511, u3 =
1.9328. Starting an LC continuation with p1 as a free parameter, we find an LPC
point at p1 = 0.19545. Starting an LPC continuation from this LPC point with p1

and p3 both free parameters for N = 30 and m = 4, we obtain O2 as a matrix of
dimension 364× 364. The matrix

Rs =
(

0 0.000101297163
0 0

)
is the bottom right 4× 4 block of the Q-less decomposition of OT

2 . The matrix

Rf =
(

−0.000000000001 0.000088855185
0 0.000048640223

)
similarly corresponds to the QR decomposition without pivoting of OT

2 as a full matrix
and

Rcp =
(

0.009688518843 0.000000271536
0 0.000000423924

)
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corresponds to the QR decomposition with column pivoting of OT
2 as a full matrix.

Remarkably, there is a clear difference between the bottom right 2 × 2 blocks of Rs

and Rf . The presence of a zero as the first entry on the diagonal of Rs leads to a
division by zero in the computation of the left null vector q where q is the result of the
analogue of E ∗ [(R1\ − b); 1]. We further note that the QR decomposition as a full
matrix without column pivoting is not satisfactory because the third element on the
diagonal of Rf is the smallest one and so it does not define the rank. With column
pivoting the fourth element on the diagonal of Rcp is the smallest and the diagonal
elements indeed define the rank.

During the computation of a curve of limit cycle bifurcations the borders v1
d in

(4.3) in the flip case and v1
d and v2

d in (5.3) in the fold case can be adapted by replacing
them respectively by the normalized vd in (4.2) and by the normalized vd and S in
(5.2). The borders w1

d, w2
d in (4.3) and w1

d, w2
d and w3

d in (5.3) are adapted by solving
the transposed equations and replacing them respectively by the normalized w∗

1 , w∗
2 in

(4.4) and by w∗
1 , w∗

2 and w3 in (5.4). Only one border is adapted at the same time. An
adaptation is performed after each number of k computed continuation points where
k is an user-chosen number; k = 0 means no adaptation at all.

7.2. The torus case. To initialize the borders in the case of a torus bifurcation,
the borders are chosen so that the extension

O3 =
[

[ D − Tfx(x(·), α) ]d
Idim(x) 0dim(x)×(Nm−1)dim(x) − 2κIdim(x) 0dim(x)×(Nm−1)dim(x) Idim(x)

]
of Nd

3 has full rank. We implement this by using a QR orthogonal-triangular de-
composition with column pivoting, [Q, R,E] = QR(full(O3)). Here R is an upper
triangular matrix whose bottom right 2×2 block consists of zeros up to approximation.
Setting this block to zero, we obtain



∗ ∗ ∗ . . . ∗ ∗ ∗
0 ∗ ∗ . . . ∗ ∗ ∗
0 0 ∗ . . . ∗ ∗ ∗

. . . . . . ∗
0 0 0 . . . ∗ ∗ ∗
0 0 0 . . . 0 0 0
0 0 0 . . . 0 0 0


ET p =


0 0

0 0


if p is a two-column matrix whose columns span the right null space of O3. By
imposing some structure on ET p we get

R1 b1 b2

0 0 0
0 0 0




p1 p2

1 0
0 1

 =

 0 0

0 0

 .

or

R1(p1 p2) = −(b1 b2)

where R1 is a nonsingular square upper triangular matrix. So the two right bordering
vectors in (6.3) are initially chosen as the normalization and orthogonalization of



14 W. Govaerts, Yu.A. Kuznetsov and A. Dhooge

E ∗ [(R1\[−b1,−b2]); eye(2)] where eye(2) is the 2-by-2 identity matrix. The left null
matrix consists of the two last columns of Q. Indeed, if we denote this part of Q as
QL then

QT
L ∗O3 = QT

LQRET =
(

0 . . . 0, 1, 0
0 . . . 0, 0, 1

)
RET = 0ET = 0.

From (2.9) and (2.10) we get four equations Gij = 0 ((i, j) ∈ {1, 2}) in the case
of a torus bifurcation. The continuation algorithm needs only two of them. To select
those two we start with the full QR decomposition, [Q1, R1] = QR((jac jacT jacp 0)′)
where (jac jacT jacp) is the Jacobi matrix of the limit cycle equations with respect
to the state variables, period and parameters, respectively. Extending the equality
(jac jacT jacp 0)Q1 = RT

1 by some simple computations we obtain a decomposition
jac jacT jacp 0
G11x G11T G11p G11κ

G12x G12T G12p G12κ

G21x G21T G21p G21κ

G22x G22T G22p G22κ

 Q1 =


∗ 0 . . . 0 0 0 0
∗ ∗ . . . 0 0 0 0

. . . . . .
∗ ∗ . . . ∗ 0 0 0
∗∗ ∗ . . . ∗ J ′

res


(7.2)
where Jres is a 3 × 4 matrix with rank 2. We now want to choose two among the
last four rows of the right-hand-side of (7.2) to make the right-hand-side as wel con-
ditioned as possible. We perform a QR decomposition with pivoting [Q2, R2, E2] =
QR(full(Jres)). So

JresE2 = (q1 q2 q3)

 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 0


= ( q1 q2 )

(
∗ ∗ ∗ ∗
0 ∗ ∗ ∗

) ,

from which it follows that the first two columns of JresE2 are linearly independent.
This also means that the columns of Jres we need to use (equivalently, which Gij we
need to choose), are those where the first or second column of E2 contains an entry
equal to 1.

The borders v01
d and v02

d in (6.3) are adapted by replacing them respectively by
the normalized and orthogonalized v1

d and v2
d in (6.2). The borders w11

d , w22
d and

w12
d , w22

d in (6.3) are adapted by solving the transposed equations and replacing them
respectively by the normalized and orthogonalized w1∗

1 , w2∗
1 and w1∗

2 , w2∗
2 in (6.4).

The new indices are computed in the same way as in the initialization. The general
strategy for adaptation during the computation of a curve of NS cycles is the same
as in the fold and flip cases.

8. Multipliers. Multipliers are (optionally) computed in matcont as in auto[10]
and content[22] by making a special decomposition(condensation of parameters) in
(3.1). A periodic solution always has a multiplier equal to 1. At a fold, the multiplier
1 has algebraic multiplicity 2 and geometric multiplicity 1, at a flip there is a simple
multiplier equal to −1 and at a torus bifurcation there is a simple conjugate pair of
complex eigenvalues with modulus 1. This can be used to check the correctness of the
continuation. We note that the computation of multipliers is expensive because the
sparse matrix is not handled with the sparse matlab routines.
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Fig. 9.1. LPC in the Steinmetz – Larter model.

9. Example : Fold and torus bifurcations in a chemical model. The
following model of the peroxidase - oxidase reaction was studied by Steinmetz and
Larter [24] where A,B,X, Y are state variables and k1, k2, k3, k4, k5, k6, k7, k8, k−7

are parameters:
Ȧ = −k1ABX − k3ABY + k7 − k−7A,

Ḃ = −k1ABX − k3ABY + k8,

Ẋ = k1ABX − 2k2X
2 + 2k3ABY − k4X + k6,

Ẏ = −k3ABY + 2k2X
2 − k5Y.

(9.1)

In [24] Hopf bifurcations, torus bifurcations and onset of chaos are studied. It has
been shown recently that (9.1) also possesses generalized Hopf points and associated
limit points of cycles (see [17]).

The following values correspond to an unstable equilibrium in (9.1):
Variable Value Parameter Value
A 31.78997 k1 0.1631021
B 1.45468 k2 1250
X 0.01524586 k3 0.046875
Y 0.1776113 k4 20

k5 1.104
k6 0.001
k7 4.235322
k8 0.5
k−7 0.1175

First, we continue this equilibrium with increasing k7 while keeping all other
parameters fixed. The computed equilibrium branch is a nearly-horizontal curve in
Fig. 9.1. At k7 = 4.59004 . . . a subcritical Hopf bifurcation is located (point H).
Indeed, there are two complex eigenvalues of the equilibrium with Re λ1,2 ≈ 0 at
this parameter, while the first Lyapunov coefficient l1 is positive. Thus, there should
exist an unstable limit cycle bifurcating from this equilibrium. Selecting the found



16 W. Govaerts, Yu.A. Kuznetsov and A. Dhooge

Fig. 9.2. NS continuation in the Steinmetz - Larter model.

Hopf point as the new initial point, we can continue in matcont a branch of the
bifurcating limit cycles and obtain the rest of Fig. 9.1. There is a limit point of
cycles (LPC) at k7 = 4.74839 . . ., where two cycles collide an disappear. The critical
cycle has a double multiplier µ = 1 (counting the trivial one). The continuation
algorithm automatically follows the second (stable) cycle branch after the LPC point.

Computing the original equilibrium curve in the opposite direction, we get another
Hopf point at k7 = 0.712475 . . ., where the first Lyapunov coefficient is negative. This
means that a stable limit cycle bifurcates from the equilibrium when it looses stability.
Starting from this Hopf point, we obtain the family of stable limit cycles bifurcating
from it. At k7 = 0.716434 . . . a message indicates that a torus (NS) bifurcation occurs.
Indeed, there are two complex multipliers with (approximately) |µ| = 1. After the
bifurcation point the limit cycle becomes unstable (with two multipliers satisfying
|µ| > 1) but regains stability at k7 = 0.818566 . . . through another NS bifurcation.

The found Hopf, LPC and NS points can be used as starting points for the 2-
parameter continuation of the corresponding codim 1 bifurcations, using k7 and k8 as
two control parameters. Fig. 9.2 gives a graphical impression of a typical matcont
session. This figure shows the matcont main window, the Starter and Continuer
windows for the NS continuation and also graphical output in a 2D - plot window; in
the latter A is plotted versus B. For more information on the matcont windows we
refer to the matcont website.

The computed with matcont bifurcation curves are presented in Fig. 9.3,
where a (partial) bifurcation diagram in the (k7, k8)-plane is shown together with the
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Fig. 9.3. Bifurcation curves in Steinmetz - Larter model: H - Hopf bifurcation with two
generalized Hopf points (labeld by GH); LPC - limit point of cycles; NS - Neimark-Sacker (torus)
bifurcation curve with two 1 : 1 strong resonances.

enlargement of an interesting region. There are two generalized Hopf points in the
Hopf bifurcation curve (labeld by GH), where the associated first Lyapunov coefficient
l1 vanishes [17]. As theory predicts (see, for example, [21]), from each GH point
emanates a LPC-curve. Actually, there is just one LPC curve connecting the GH-
points; while approaching these points, the critical nonhyperbolic cycle shrinks to the
equilibrium point. The shape of the NS curve is more complicated: There are two
more codim 2 points on it, where a triple multiplier µ = 1 is present (counting the
trivial one). These are 1:1 strong resonance points [21], where the LPC and NS
curves meet tangentially. Between the 1:1 points, the NS curve is a neutral saddle
cycle curve. Near such codim 2 points complicated homoclinic structures exist.

It should be noted that the implemented in matcont algorithms for the LPC
and NS continuation are robust enough to pass through the 1:1 resonance points and
to closely approach the GH points (within the 10−3-range in the parameters).
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10. Fully versus minimally extended system. The methods described in
this paper to continue bifurcation points of limit cycles are different from the tra-
ditional ones. Classical software like AUTO uses fully extended systems where ad-
ditional vector functions are added to the system for the limit cycle to form a big
system of approximately double size in the fold and flip cases and triple size in the
torus case. In the PD case this leads to

dx

dt
− Tf(x, α) = 0

x(0)− x(1) = 0∫ 1

0
〈x(·), ẋold(t)〉dt = 0

v̇(t)− Tfx(x, α)v(t) = 0
v(0) + v(1) = 0∫ 1

0
〈vold(t), v(t)〉dt− 1 = 0

where x, v, T , α are the unknowns and v is a rescaled version of the variable with the
same name in (2.4).

This system is easier to code since there is no need to find and adapt the bordering
vectors. However, it has a big disadvantage: it has approximately twice the size of the
minimally extended system. On the other hand, for the minimally extended system
the additional system (2.4) has to be solved. But solving 2 systems of size n×n takes
in general less time then solving one system of size 2n×2n (in the case of full matrices
about a quarter). This suggests that using the big system will be slower than using
the minimally extended system.

We did some comparisons in the case of the PD bifurcations in a feedback control
system, described in [14], [15] and further used in [21] (Example 5.4, p. 178):

 ẋ = y
ẏ = z
ż = −αz − βy − x + x2

Due to the special structure of this system, a good approximation to the PD curve
can be found by the harmonic balance method, cf. [25], [26].

We compute numerically a branch of PD cycles as described in the cl matcont
manual and [7]. To avoid the overhead of the GUI all computations were done in
cl matcont. Both the minimally and the fully extended systems were implemented
and tested for several numbers of test and collocation points. In each case we compute
300 continuation points with the same continuation parameters.

From Table 10.1 it appears that the minimally extended system is faster; more-
over it computes a longer stretch of the PD branch. We illustrate this in Fig. 10 in
the case (e) (N = 30,m = 4) but it holds in all cases.

This comparison is crude because the continuation variables are in different spaces
and therefore thresholds and stepsizes have a different meaning in the two cases. To
describe the more refined comparisons we note that in matcont and cl matcont
the convergence of Newton iterations in the continuation of a branch of solutions to
(1.1) is declared if two conditions are satisfied, namely

‖F (x)‖ ≤ Ft, ‖δx‖ ≤ Vt,

where δx is the Newton correction and Ft (function tolerance) and Vt (variable tol-
erance) are user - chosen threshold values. Also, the code uses an integer parameter
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N m minimally extended system fully extended system
(a) 10 4 183,2 s 198,3 s
(b) 10 5 230,2 s 251,7 s
(c) 20 4 360,7 s 409,5 s
(d) 20 5 458,0 s 534,1 s
(e) 30 4 540,6 s 642,0 s
(f) 30 5 683,6 s 857,8 s
(g) 50 4 885,6 s 1184,8 s
(h) 50 5 1150,6 s 1616,5 s

Table 10.1
Time comparison between two methods for 300 PD cycles.

Na which indicates that the settings of the continuation are adapted after each Na

computed points. Adaptation is a curve - type dependent process. In the continua-
tion of limit cycles it always includes the adaptation of the mesh. In the minimally
extended systems it also includes updating the borders as described in §7. Setting
Na = 0 means no adaptation at all. This cannot be recommended but it can be
studied usefully as the limit case for large Na.

In the other experiments we choose situations where both methods compute the
same stretch of curve with the same number of points but with Ft, Vt adapted to
the dimension of the space of continuation variables. In all cases we have N =
50,m = 5, dim(x) = 3. The object function of the minimally extended system
(F in (1.1)) has dimension Nmdim(x) + dim(x) + 2 = 755. The dimension of the
space of independent variables (x in (1.1)) is therefore 756. For the fully extended
system these dimensions are, respectively, 2Nmdim(x) + 2dim(x) + 2 = 1508 and
1509. In the case of the minimally extended system we choose Ft = Vt = 10−4. If
we ignore scaling problems then corresponding bounds for the fully extended systems

are 10−4
√

1207
605 = 1.4133e− 4 and 10−4

√
1508
606 = 1.4128e− 4, respectively.

Both algorithms were forced to compute 150 points in the given stretch by varying
the maximal stepsizes. With Na = 0 the minimally extended system took 561.0 sec-
onds, the fully extended system 617.2 seconds. With Na = 1 the minimally extended
system took 586.3 seconds, the fully extended system took 687.4 seconds.

In a similar experiment with only 25 computed points and Na = 0 the minimally
and fully extended systems took 108.56 and 111.70 seconds, respectively. With Na = 1
the time spans were 111.39 and 118.43 seconds, respectively.

Since scaling is a difficult issue, one might wonder if setting Ft, Vt in the above way
really corresponds to the same accuracy in the computed solutions. We therefore did
an additional test in the last mentioned experiment (25 points, Na = 1) by computing
the norms of the (x, T, α) parts in the last Newton correction in each continuation
point. For the minimally extended system the average value of these norms was
5.086e−8, for the fully extended system it was 1.111e−6. This clearly indicates that
the solutions obtained by the minimally extended system are an order of magnitude
more precise. Also, it shows that the computations are actually much more accurate
than the modest bounds for Ft, Vt suggest.

To obtain more detailed information we used the matlab Profiler. The lines
where the most time was spent are given in Table 10.2 and Table 10.3, respectively.

The most obvious conclusion is that in both cases the newtcorr procedure (the
process of Newton iterates from a predicted to a declared continuation point) con-
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Fig. 10.1. Period doubling curves computed in Table 10.1(e)

Filename Calls Total Time
cont 1 111.390 s
perioddoubling 177 107.093 s
newtcorr 25 105.654 s
contjac 50 84.091 s

Table 10.2
Profile report of PD curve continuation with minimally extended system.

sumes nearly all the time spent in the continuation process; therefore a separate
compilation of this algorithm seems highly desirable.

The second observation is that in newtcorr most of the time is spent in contjac,
i.e. in the evaluation of the Jacobian matrix of the system, rather than in the solvers.
In Table 10.4 and Table 10.5 we provide more detailed information. An application
of the sparse solver in the first system takes only 0.0487 seconds; in the second system
it takes 0.1381 seconds, a clear advantage for the minimally extended system. The
total time spent during solves is 5.9790 s versus 10.3550 s; we note that the 5.9790 s
include not only the times in the 4th and 5th rows of Table 10.4 but also a part of the
3rd row since the evaluation of the object function of the minimally extended system
involves solving the linear system (2.4). These more detailed data were also provided
by the matlab Profiler.

For the evaluation of the Jacobians the times are 1.6824 and 1.8014 seconds
respectively, a small advantage for the minimally extended system.

The superior performance of the minimally extended system is even more apparent
if a higher precision is required. In another experiment we put Ft = Vt = 10−6 for

the minimally extended system and correspondingly Ft = 10−6
√

1207
605 = 1.4133e− 6,

Vt = 10−6
√

1508
606 = 1.4128e − 6 for the fully extended system. We computed 25

points with Na = 1; the minimally extended system needed 117.57 seconds, the fully
extended system 176.21 seconds.

Our conclusion is that the minimally extended system outperforms the fully ex-
tended system. However, the gain is modest because most of the computing time
is not spent in the solves (these are performed by the compiled built-in solvers of
matlab) but in constructing the Jacobian matrices. We can therefore expect that
future developments (compiling parts of the code or better handling of for-loops in
matlab) will make the advantages of the minimally extended system even greater.
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Filename Calls Total Time
cont 1 118.430 s
perioddoubling2 178 107.243 s
newtcorr 25 110.169 s
contjac 50 90.071 s

Table 10.3
Profile report of PD curve continuation with fully extended system.

Code Calls Total Time
A = contjac(x) 25 42.081 s
A=contjac(x) 25 42.040 s
Q =[feval(cds.curve,x);. . . 49 17.756 s
D=b \[Q R’] 49 2.484 s
D=([A;v’] \R’ 25 1.123 s
All other lines 0.170 s
Totals 105.654 s

Table 10.4
Detailed profile report of newtcorr in Table 10.2.

Code Calls Total Time
A = contjac(x) 25 45.064 s
A=contjac(x) 25 45.007 s
Q =[feval(cds.curve,x);. . . 50 9.443 s
D=b \[Q R’] 50 7.141 s
D=([A;v’] \R’ 25 3.214 s
All other lines 0.300 s
Totals 110.169 s

Table 10.5
Detailed profile report of newtcorr in Table 10.3.
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