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Abstract

Stable normal mode vibrations in engineering can be undesirable and one of the
possibilities for quenching these vibrations is by embedding the oscillator in an au-
toparametric system by coupling to a damped oscillator. We have the possibility of
destabilising the undesirable vibrations by a suitable tuning and choice of coupling
parameters. In the case of normal mode vibration derived from a relaxation oscilla-
tions we need low-frequency tuning of the attached oscillator. An additional feature
is that to make the quenching effective we also have to deform the slow manifold by
choosing appropriate coupling; this is illustrated for van der Pol relaxation. A number
of numerical experiments have been done and show some interesting phenomena, such
as a chaotic attractor and effective quenching.

1 Introduction

Autoparametric resonance plays an important part in nonlinear engineering while posing
interesting mathematical challenges. The linear dynamics is already nontrivial whereas
the nonlinear dynamics of such systems is extremely rich and largely unexplored. A
general characterisation of autoparametric systems is given in Tondl, Ruijgrok, Verhulst
and Nabergoj [10]. In studying autoparametric systems, the determination of stability and
instability conditions of the semi-trivial solution or normal mode is always the first step.
After this it is of interest to look for other periodic solutions, bifurcations and classical or
chaotic limit sets.

In actual engineering problems, the loss of stability of the normal mode response depends
on frequency tuning of the various components of the system, and on the interaction (the
coupling) between the components. Autoparametric vibrations occur only in a limited
region of the tuning parameters.

In a self-excited autoparametric system with a relaxation oscillator, to have autoparametric
resonance, destabilisation of the relaxation oscillation of the system is needed. It turns out
that to destabilize relaxation oscillations one needs in addition rather strong interactions
of a special form. This is tied in with the necessity to perturb the slow manifold which
characterises to a large extent the relaxation oscillation. The results in this paper are an
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extension of Verhulst [12].

The monograph by Tondl et al. [10] contains a survey of the literature on self-excited
autoparametric systems, in particular for weak self-excitation and weak interactions; see
also Schmidt and Tondl [9] and Cartmell [2].

2 Formulation of the problem

A typical formulation for autonomous systems runs as follows. Consider the one-degree-
of-freedom i.e. two-dimensional system

&= f(z)

where f(z) is a smooth 2-dimensional vector field and assume that the equation has a
stable periodic solution. Suppose that this corresponds with undesirable behaviour, as
is for instance the case of flow-induced vibrations. Can we introduce a kind of energy
absorber, mathematically speaking can we couple the equation to another system such
that this periodic solution arises as an unstable normal mode in the full system? This
entails the introduction of the system

i = f(z)+g(z,y),
?) = h(z,y), (1)

in which y is n-dimensional, g and h are smooth vector fields, with h(x,0) = 0. In most
cases we assume g(x,0) = 0, so that the original periodic solution corresponds with a
normal mode of the coupled system. Sometimes g(z,y) includes a perturbation resulting
in a normal mode close to the unperturbed one. The important questions are 'what are
the requirements for the coupling terms g and h to achieve effective destabilisation of the
normal mode’ and "how do we choose the system parameters’.

Suppose ¢(t) : R — R? is a stable T-periodic solution of the equation

&= f(x) +g(,0).

We shall study the stability of this normal mode in system (1).

3 Linearisation and decoupling

We put = = ¢(t) + u, y =y and expand to obtain the linearised system

of dg 9y
i = o (0(0)u+ 5 (6(),0) a—y(qﬁ(t),O)y,
io= ho(),0). .

With a slight abuse of notation we kept u and y for the solutions of the linear system.
It is clear that the linear system is decoupled in the following sense. The equation for y
can be studied independently with the requirement to produce instability. Subsequently



in the equation for u the behaviour of y can be introduced to study the behaviour of w.
If y = 0 is unstable for the second equation, the normal mode is unstable. The instability
becomes however effective for our purpose if also the solution u of the first equation is
unstable.

The homogeneous part of the first equation of (2) reads

. Of dg
o= 2 e+ 2 o). 0,

which is a linear equation with T-periodic coefficients. One of the solutions is ¢(t) and
we can easily construct a second independent solution by d’Alembert’s method. What
interests us, however, are the characteristic (or Flocquet- or Lyapunov-) exponents. The
exponent corresponding with qﬁ(t) is of course zero, as this solution is periodic. The second
exponent, A, is negative by assumption and reads

T
A= [ 1rGheo) + Fow.0ne ®

For a proof of these classical statements see for instance Verhulst [11]. This result can
now be used to study the stability of the trivial solution of the equation for u where the
inhomogeneous part wu;(¢) may destabilize u = 0.

It follows from Flocquet-theory that the second independent solution is of the form
e My(t), where t(t) is T-periodic. With fundamental matrix ©(t) = (¢(t), e~ a(t)),
the inhomogeneous part of the solution for u becomes

uilt) = (1) /O e—1<s>§—j<¢<s>,0>y<s>ds.

It is clear from this expression that the growth of y(t) - the instability of y = 0 - is
a necessary condition for the instability of w = 0. Whether this condition is sufficient
depends on the actual autoparametric system as we shall see in the applications.

Often the first equation of (2) is a scalar second order equation of the form

i+ p(t)i+q(t)u = F(t)y (4)

with scalar independent (homogeneous) solutions ¢(t) and e~*1(t) and the Wronskian
e Mx(t), x(t) a T-periodic function. In this case the inhomogeneous solution of equation
(4) reads

P(s
x(s

w( =) [ §F<s>y<s>ds—e-”w<t> |

Note that x(t¢) has no zeros.

4 Weak coupling of self-excited oscillations

For reasons of comparison with the results in the sequel we make some observations about
weak self-excitation and weak interaction. We shall express these by using the small,
positive parameter €.



Figure 1: Example of an autoparametric system with flow-induced vibrations.
The system consists of a single mass on a spring to which a pendulum is attached as an
energy absorber. The flow excites the mass and the spring but not the pendulum.

Consider the case of flow-induced vibrations represented by the Rayleigh oscillator em-
bedded in the autoparametric system (different from the example in the figure)

itz = e(l—i%)i+e(crz? + comy + c3y?) (5)

j+erg+d’y = ey(diz+ day).
The damping coefficient s is positive, the frequency ¢ and the coefficients ¢;, d; will be
chosen suitably, i.e. to provide optimal instability of the normal mode ¢(t) obtained by
putting y = 0. The T-periodic solution ¢(t) corresponds with self-excited vibrations and
we linearise around this normal mode, putting = ¢(t) + u, y = y, to find:

itu = e(1=36(t))i+ee1d(t)u+ c26(t)y), )
j+ery+qly = edig(t)y.

The equation for y is Hill’s equation with damping added which can be reduced to Math-

ieu’s equation by using that ¢ is small.

It is well known that we have for the periodic solution of the modified Rayleigh oscillator

i+r=e(l—i*i+eciz?

the approximation

o(t) = 2cos(t) + O(e).

The estimate for amplitude and period is valid for all time. Inserting this into the equation
for y yields
i+ ery + (¢* — 2edy cos(t))y = 0.

In parameter space a relatively large instability domain arises on choosing ¢ = % The
usual analysis (Poincaré-Lindstedt, averaging or harmonic balance) leads to the (known)
requirement |dq| > %/{ for instability of y = 0.



Returning to the equation for u we note that we have from equation (3) and the first

equation of (6)
2m

Ao [ (1= 30(s)2)ds = —5¢ + O(2).
2 Jo
Independent solutions of the homogeneous part of the first equation of (6) are according
to Flocquet theory ¢(t) and e 5ty (t) + O(e) with ¥ (t) a T-periodic solution which can
be obtained by d’Alembert’s construction. The Wronskian to O(g) becomes e~ %ty (t)
with again x(¢) a T-periodic function without zeros. The inhomogeneous solution of the
equation for u takes the form

u;(t) :502¢.5(t)/0 %y(s)d,ﬁ _502655251][)(75)/ 65es¢(5)¢(5)

. ; ) y(s)ds. (7)

We conclude that on choosing ¢ = %, dy > %FL the solution y = 0 becomes unstable which
destabilises the normal mode in the y-direction. On choosing co # 0 the solution v = 0
also becomes unstable which enforces the instability of the normal mode. The parameters
c1, c3, do play no part at this level of approximation.

Note that Abadi [1] studied this autoparametric system in the case ¢; = co = dy = 0 with
emphasis on the bifurcation phenomena in the case of an unstable normal mode.

We mention that in the case of weak interaction the analysis does not change much when
we replace the Rayleigh oscillator by van der Pol self-excitation. The Lyapunov exponents
of the normal mode in this case are 0 and A = —& + O(e?).

5 Interaction with relaxation oscillations

A different problem arises when we wish to quench a relaxation oscillation. We take as
an example the van der Pol relaxation oscillator embedded in an autoparametric system
of the form

L T (8)
j+ry+qy = yG(z,,9,9),

where £ is again a positive damping coefficient. We assume that if the (y, y)-vibration is
absent, F' vanishes to produce a pure van der Pol relaxation oscillation: F(z,,0,0) = 0.
The functions F' and G, and the remaining parameters have to be chosen to produce
instability of the (periodic relaxation) normal mode, obtained by putting y = 0 in the
case 1 > 1. We will use results on this relaxation oscillator which were summarised and
extended by Grasman [7]. We will also use results on slow manifolds in geometric singular
perturbations; for an introduction see Kaper [8] and the original papers by Fenichel [3, 4,
5, 6].

Introducing ¢(t) for the T),-periodic relaxation normal mode, putting x = ¢(t) +u, y =y
produces
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Figure 2: The phase plane of the van der Pol relaxation oscillation. The slow
manifold is approximated by the cubic curve, fast motion is indicated by double arrows.

it = (1= 62— 2ud()d(thu+ -+

G+ s+ (P —dipt))y = -, (9)

where the nonlinear terms are indicated by dots. The linearised equations suffice for the
stability analysis.

6 The Lyapunov exponent of relaxation

The normal mode is T),-periodic with the estimate (see Grasman [7])

T, =(3—2log2)u+ O(—) as p — oo.

=
| T

To compute the rate of attraction from the integral in (3) we use the slow-fast motion in
the Liénard plane by replacing the van der Pol equation by

1
t=plz+z— gx?’), wi = —zx.

In the x — z Liénard plane we have

1 5 .dz T
(z+z - 37 )@ =T
which illustrates that as u is large dz/dz is very small except if z = —z + %x?’. This cubic

curve in the Liénard plane corresponds with the slow manifold of the system. See Figure

(2).
With this knowledge it is not difficult to obtain a first order approximation of the charac-
teristic exponent. From equation (3) and the first equation of (9), we have

T
A= uTiu /0 (1 - 6(0)?)dt.
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Integration of van der Pol’s equation for the periodic solution yields

[ @0+ soyi = [ - an
0 0

or, using the periodicity,
Ty
o(t)dt = u?é(l —2?)dz =0,

0

where the contour integral is taken over the limit cycle in the phase plane. With this
result, using partial integration and the equation for z we have
Ty Ty .
ovrat=— [ ([ owandei —p § 2wy
0

0

Integration in the Liénard plane yields the approximation

which, as p > 1, corresponds with strong attraction.

7 Instability of y =9y =10

The periodic coefficient ¢(¢) in the equation for y has a period proportional to p > 1, so

o T, . . .
it is natural to rescale ¢ = 57 which, after linearisation, produces

d’y KT, dy qQTH2 lei
a2t o ar T g T g =0 (10)

with ¢, (1) = ¢(g—;‘r7), 27r-periodic in 7. We observe that the instability behaviour of the so-

lutions of the Flocquet equation (10) is qualitatively the same as for the damped Mathieu-

equation. A consequence is that to obtain prominent instability of y = 0 and so desta-

bilisation of the relaxation oscillation we have to couple to a low-frequency oscillator (y)

with, using the first-order estimate for the period,

1 T

k=0(-),q=————,d

(M) T B 2l0g2)

The actual choice of k and dy depends on the amount of quenching one wants to achieve.
We explore the small parameter case

1
=0(—) as u — oo.
(MQ)

R, _ro @10 TE

2 plom2 7 Am? g
with ko and d independent of p. We have from equation (10)

>y ko % 1 d

dr2 ;dT (Z - ;(br(T))y =0. (11)
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To obtain the boundaries of the Flocquet-tongue we impose the periodicity conditions

2 dy(T) T
/0 (—/ﬁ0?+d¢r(7))y(r)s1n§ = 0,

) (12)
T d
/0 (—HQ% + do (7))y(7) cos% = 0.
With the Poincaré expansion y(7) = ag cos § + bgsin § + % -+, we have
1 1
5/@0&0 - dIb(] = O, dICLO - §Kob0 = O,
where we used the symmetry of ¢,.(7); I is a positive number given by
2
I= ¢r(T) cos Tdr.
0
Nontrivial solutions arise if the determinant vanishes or
1
—kKo) = +dlI.
2
We have instability of y = 0 if |d| > §%. This is the analogue of the result obtained in

section 4 for weak interaction.

8 Deformation of the slow manifold

To analyse the relaxation oscillation in the 4-dimensional problem of system (8) we assume
that the interaction term F' contains quadratic and cubic terms and is of the form

F(I‘, j:.a Y, y) = /’L(Clxy + CZQUQ'U?J + C3i.y2)'

An easy way to see that these are the leading terms of F' runs as follows. Transform the
time in the first equation of (8) ¢ — p7 and indicate differentiation with respect to 7 with

a prime:
1 1 1
—a’ +r=(1- )2’ + F(z,—2',y, —y)
[t 1 1
o 1 11
o =v, v =1 -2+ F(z,—v,y,—y).
Il T
The slow manifold is obtained by putting the right-hand side of the equation for v to zero.
For F' to induce a significant deformation its terms have to depend on v but this produces
a factor %; terms containing v? or vy’ produce terms of order 45 and can be omitted.
As an illustration we choose for the attached (y) oscillator G = dzx.
We generalise the Liénard transformation (z, &) — (x, 2) to

1 . 1 3 1 2 2
L3 = ztr—gattamyt Sorty+ oy,
p 1 (13)
3 = ——x—cixy — —cox’y — 2e3xYY).
M 2



The slow manifold is given by

z——x+1x3—c —1 2y — 2
= 3 17y 2023:y 3Ty .

It is unstable if
1 — 22 + c1y + coxy + 3y > 0.

The c3-term is semidefinite, which is important, as far as stability is concerned. So, we
choose this term for our model of destabilisation of the relaxation oscillation. Replacing
c3 by ¢ we have the system

itz = p(l—zHi+ peiy?, (14)
j+ry+q’y = duy.
In generalised Liénard variables this becomes

1 1

- = z—l—m—gmg—i-ca:yQ,

: (15)
z = ——x—2cTyy

1

with the equation for y added. The slow manifold is given by
2 1 3
z=—1+4cy )ac—i—gx ,

which is unstable if 14 c¢y? — 22 > 0. The slow manifold corresponds with a 3-dimensional
cubic cylinder parallel to the y-axis.
We are now able to illustrate the behaviour of this autoparametric system.

9 Numerical experiments

At present the dynamics of system (14) in the case of an unstable normal mode is far
from clear. In anticipation of a more theoretical analysis in the near future we perform a
number of numerical experiments to illustrate interesting phenomena. We choose p = 10

throughout.
The stability of the slow manifold is determined by the sign of 1 + c¢y? — z2. We shall
take ¢ negative, ¢ = —2.2, to illustrate the effect of a growing y-oscillation. In this case

14+ cy? =0if y = 0.67---. Figure 3 describes the slow manifold and the corresponding
stability manifold.

1. Choose ¢ = —2.2, d =0.03, x = 0.075.
Starting the y-oscillation near the normal mode plane y = y = 0, the 3-dimensional
projection of the solution is rather messy but a projection on the x— plane produces
an orbit which seems to fill up a large part of the space taken by the unperturbed
orbit; see Figure 4. Calculation of the Lyapunov exponents of the solution gives the
result
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Figure 3: The slow manifold and the stability manifold for ¢ = —2.2. The slow
manifold is a 3-dimensional cubic cylinder in the complete 4-dimensional phase space. The
stability of the flow on the slow manifold is determined by its position with respect to the
manifold given by 1 + cy? — 22 = 0.

A1 =0.05205---, A =0, A3 =—0.13449--- |, \y = —13.14938-- - .

This leads us to a conclusion that we have a chaotic attractor, with the corresponding
Kaplan-Yorke dimension near 2.3. Figure 5 shows the projection of the 3-dimensional
Poincaré section of the orbit in & —y plane, taking x = 0.5 as the section (the vertical
line in Figure 4). The projection fits with the previous calculation that the attractor
has a dimension larger than 2.

151

Figure 4: A limit set of system (14) for 4 = 10, ¢ = —2.2, d = 0.03, x = 0.075
with small starting values of the y-oscillation, projected on the x — & plane. SM is the
stable part of the slow manifold. The vertical line corresponds with the Poincaré section
of Figure 5
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Figure 5: The Poincaré section of the limit set of Figure 4, projected on the  — y
plane.

2. Consider the same dynamics, ¢ = —2.2, d = 0.03, « = 0.075, but starting at
y(0) = 3, y(0) = 0.1 we have oscillations so that y(¢) takes alternating values above
and below 0.67 - --. Leaving out the transient we find a periodic limit set illustrated

in Figure 6; this is a projection in 3-dimensional space. Projecting the limit set on
the x, 2-plane we find a strongly perturbed relaxation oscillation, see Figure 7. For
comparison the unperturbed relaxation oscillation (coupling ¢ = 0) is indicated by
dots.

Thus, we have at least two attractors.

Figure 6: A periodic limit set of system (14) for u = 10, ¢ = —2.2, d = 0.03, k =
0.075 with high starting values of the y-oscillation. Transient orbits are left out. The
stable part of the slow manifold is present near the extreme values of y.

3. For certain parameter values we find unbounded solutions. We discard these cases
as they may correspond with a break-down of the model.

11



SM

Figure 7: A periodic limit set of system (14) for u = 10, ¢ = —2.2, d = 0.03, k =
0.075 with high starting values of the y-oscillation, projected on the x — & plane. The
dotted orbit corresponds with the unperturbed relaxation oscillation. In the perturbed
state the slow manifolds are reduced and the limit cycle becomes asymmetric. SM is the
stable part of the slow manifold.

10 A simplified model

Another possibility to clarify the dynamics is to replace system (14) by the equation
i+ x = p(l —2?)i + pci cos? gt. (16)

This equation might be illustrative for the behaviour of the relaxation oscillation in the
special case when the solutions for y are 27/g-periodic. At the same time it is a model of
the van der Pol relaxation oscillator with parametric excitation added.

15

Figure 8: A limit set of system (16) for u = 10, ¢ = —16. The limit set contains one
periodic orbit. The relaxation oscillation corresponding with ¢ = 0 is dotted.
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Figure 9: A limit set of system (16) for © = 10, ¢ = —18.1. The limit set is long-
periodic or aperiodic. The relaxation oscillation corresponding with ¢ = 0 is dotted.

Figure 10: A limit set of system (16) for y = 10, ¢ = —19. The limit set contains
of two periodic orbits, both attracting (one is indicated by a full line and the other by
dashes). The relaxation oscillation corresponding with ¢ = 0 is dotted.

Interesting phenomena arise when varying ¢, see Figures (8-10). Choosing ¢ = —16 we
have periodic limiting behaviour; near ¢ = —18 it is not clear whether the attractor is (long-
) periodic or not periodic. This behaviour corresponds with a small window in parameter
space as for ¢ = —19 we have again periodic behaviour with two periodic attractors; see
Figure 10. In all cases we observe quenching of the van der Pol relaxation oscillation.
If we increase ¢ above —16 or if we decrease ¢ below —19 the quenching is diminished.

11 Discussion

The most important conclusion is that to quench relaxation oscillations, apart from the
usual tuning conditions, we have to choose the interaction such that strong deformation
of the slow manifolds is possible.

13



In the case that the normal mode relaxation oscillation is destabilised, a number of different
limit sets are possible.

The numerical experiments show some interesting results. We obtain a chaotic attractor
coexisting with a stable periodic solution. The results also show the effectiveness of the
coupling to deform the relaxation oscillation of the system. Related results seem to arise
for the simplified model in section 10.

In the case of coupled oscillators the jumps from one part of the slow manifold to another
part can become quite unpredictable and chaotic. More analysis and experiments are
needed to understand qualitatively and quantitatively these phenomena.
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