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1 Introduction: the Russian option

Consider the Black-Scholes market. That is, a market with a risky asset S and
a riskless bond, B. The bond evolves according to the dynamic

dBt = T'Btdt

where t > 0 and r > 0. The risky asset is written as the process S = {S; : t > 0}
where
St =S exp{aWt + /Jt}

where s > 0 is the initial value of S and W = {W; : t > 0} is a Brownian motion
defined on the filtered probability space (Q,F,F = {F;}i>0, P) satisfying the
usual conditions. Suppose now that P is the risk-neutral measure for S under
the assumption that Sy = s. Recall that standard Black-Scholes theory dictates
that this measure exists and is uniquely defined via a Girsanov change of measure
such that

{e S, :t >0} (1)

is a martingale. We shall denote E, expectation under Pj.



The Russian option with expiry T < oo is an American-type option with
contingent claim of the form

e~ [ max{m, sup S,
u€[0,t]

for a > 0, m > 0 and ¢t € [0,T]. Introduced by Shepp and Shiryayev (1994,
1995) as being a option where one has ‘reduced regret’ because a minimum
payout of m is guaranteed, this option can be considered to be something like
an American-type lookback option.

Classical optimal stopping arguments for American-type options tell us that
the value of this option is given by the process

Vi = ess-sup,c7, . Bs (er("t)eo“’ max {m, sup SUH }'t) (2)

u€[0,t]

where T 7 is the set of F-stopping times valued in [¢,T]. Following the lead of
Shepp and Shiryayev (1995), we use the fact that under P, (1) is an exponential
martingale and thus can be used to make a change of measure via

dP, . e’”St
dPs | £, s
Note that the process S solves
dSt _ P g
?t—U'Wt +(’f‘+§)dt.

where WP = {W}F : t > 0}, defined on (2, F,F), is a standard Brownian motion
under P. Suppose that —T is some arbitrary moment in the past before the
contract was initiated (Tp > 0). Define S, = SUDye[—Ty,4 S, and assume that S
is Fo measurable. With a slight abuse of notation, we can adapt the definition
of the measure P (-) to P, /5 (-) = P (-[So = m, Sp = s) . In that case the value
process of the option can be written more conveniently as

{e=* Sy (¥, T —t) : t € [0,T]} (3)

where ¥ = {¥; = S;/S; : t € [0,T]}, Pypys (¥o =m/s) = 1 and for each
P=m/s>1,
v(hu) = sup By (e7F,) (4)
7€To,u
Effectively the change of measure has reduced an optimal stopping problem for
two stochastic processes to that of one stochastic process, namely ¥. For future
reference, we shall also note that v may be represented in the following forms

v(p,u) = sup E (e‘a"S‘TS—V¢ So=1,5 = 1) (5)
0€T0,u o
= sup B (e (S, vy)). (6)
0€To,u



(ii)

(iii)
(iv)

(v)

Remark 1 At this point it is worth mentioning that, to some extent, one may
consider the parameter « as superficial for the finite expiry option. Its original
purpose for the perpetual case was essentially to justify the existence of a solution
to the optimal stopping problem associated with the option; cf. Shepp and
Shiryayev (1994, 1995). For finite expiry, the existence of a solution to the
optimal stopping problem (4) is guaranteed even when a = 0.

Clearly v (¢,u) > ¢ for all u > 0. Standard theory of optimal stopping tells
us that the optimal stopping time in (2) is given by

1 =inf{s >t:v (U, T —5) < U} AT —1).

[Here and throughout we work with the definition inf () = oc].
Again from the classical theory of optimal stopping (cf. Shiryayev (1978))
we know that for ¢ € [0,T]

{e=v (¥, T —s):s€[t,T]} (7
is a P-supermartingale and that
{e—a(wm, (Caprs, T — (sAT)) 15 € [1, T]} (8)

is a P-martingale.
Let us finish this section by making note of some analytical facts concerning
the functions v and b.

Lemma 2 We have the following properties of v and b.
The function v is convex in .
The optimal stopping time in (5) may be identified in the form
a;:inf{tZO:(gtv¢)/5t2b(u—t)}Au. 9)
where b : (0,00] — [1,00) is defined by
b(u) = inf{e) > 1: 0 (,u) = B}

for u > 0.

The function v is jointly continuous in u and 1 and monotone non-decreasing
mu.

The boundary b is monotone non-decreasing and continuous from the left. Fur-
ther the so called continuation region

C) :={(¢,u):1 <9 <b(u),ue (0,T)}

1S open.

The function v is strictly increasing in 1.



Proof. (i) Since the object in the expectation in (6) is convex for each o € 7o 4,
and convexity is preserved by integration and taking the supremum, convexity
of v in 9 follows. Since v > 9 the form of the stopping time follows.

(ii) As a partial step, let us prove that for each u > 0 the function v(¢,u) — 1
is non-increasing in 9. To this end, consider 1 <9y < ¥2 < c0. Write

o3 = {t > 0:0((S; V) /Ss,u—1) < (S; V) /Si} Au

for the optimal stopping time associated with the right hand side of (5) and note
by optimality that

o(tr,u) > By (e~ T 7%, (5052 V).
It now follows that

o) —o(w) < B0 [Soy V) — (Soy, Vi)

By (e~ ") %52 (3hy — 1))
Y2 —

from which the claimed monotonicity follows. We may now deduce from this
monotonicity together with the fact that v(y,u) > ¢ that once the function
v(1, u) touches the diagonal v then it remains equal to 1. Together with con-
vexity this latter conclusion implies the statement in part (ii) of the Lemma.

(iii) From the definition (4), the function v is clearly monotone non-decreasing
in u. The proof of joint continuity is a straightforward argument using dominated
convergence. We leave the details to the reader and otherwise we refer to van
Schaik (2003).

(iv) The fact that b is non-decreasing follows from the monotonicity in u of
v. The continuity of v implies that the function b is half-continuous from below
(that is to say liminf, ,, b(v) > b(u)). Further, a monotone non-decreasing
function is half-continuous from below if and only if it is left continuous. Next
note that the region C(b) is open if and only if the function b is half-continuous
from below, which is the case.

(v) Note that for 1 < = < y, on the event {S; < y} we have

INIA TN

SiVz S v
t <y=ty

Sy Sy Sy
and on the event {S; > y} we have

gt Vx . E o St V Yy

Sy S S
It follows from the continuity of the paths of S that the stopping time o7 is
itself is stochastically monotone in 1 and further, for any 11 > 2 > 1, P(U;'Z1 <

03,150 = 1,So = 1) > 0. Noting from (5) that

v(,u) = E(e™*7% (ga;; \ 1/1)/50,*; 1So =1,50=1),

the claim follows by taking account of the aforementioned stochastic monotonic-
ity, part (ii) and the fact that b(u — -) is non-increasing. ®



2 Main results

In this paper we have two clear and simple goals. The first is to show that v may
be characterized as the unique solution to a free boundary problem where the
boundary turns out to be monotone and continuous and the second is to give a
numerical algorithm for solving this free boundary problem. We summarize our
results as follows.

Theorem 3 The pair
v:[l,00) x [0,T] = [1,00) and b:[0,T] — [1,00)

form the unique solution to the free boundary problem

Tt ap -l = omc
f@W,u) = 4 on [[1,00) x (0,T)]\C ()
fW,u) > ¢ onC(p)
f@,0) = 4 for ¢ €[1,00)
g—j; (p(u)",u) = g—j; (p(w)t,u) = 1 forue (0,T) (smooth pasting)
g—j; (L,u) = 0 foru e (0,T] (reflection) (10)

where C () = {(¢Y,u) : 1 < ¢¥ < p(u), u € (0,T)} for some monotone non-
decreasing, bounded continuous function ¢ : (0,T) — (1, 00).

[Note, the solution to the above free boundary problem is the pair (f,¢)].
The proof of this theorem will be the result of the combined conclusions found
in the next section.

Next we turn to a numerical algorithm which serves as a good approximation
to the solution to the above free boundary problem.

Algorithm 4 For each n > 1, the solution to the free boundary problem may be
approzimated by

o) = o) () and bu) = Ty i€ (6= 1) 70

for k =1,...,n where the functions v*™ : [1,00) = [1,00) and thresholds {bv(k,n)
relate to one another as follows. Let
n A

A== and 6, = —————

T ™ rta+ A,

and let B1 < B2 be the two solutions to the quadratic equation

%Qﬂ2—(r+%2)ﬂ—(a+)\n):0.



Then v(®™ () = ¢ and J(O,n) =land fork=1,...n

vt () = ¢
if Y > ¢(k n) and otherwise, when v € [1,& (i—1,n)> ’tﬁ (i) andi=1,.. k,

k—1
B () = 1/);91( (1,i, k) +Zamzklog¢) )
m=1

k—
+epP2 <c(2,i, k) + Z b(m, i, k) log(¢)m> +or Y
m=1
All the constants in the latter are defined recursively and on account of the
complexity of the recursion are given in the Appendiz.

The algorithm will be dealt with in Section 4.

The formulation in Algorithm 4, although somewhat complicated, allows for
one to construct quite precise numerical approximations to the free boundary
problem in a package such as Mathematica for example. Indeed in the final
section of this paper we give an exposition of the value functions as surfaces and
optimal exercise boundaries produced by this algorithm with some indication of
the efficiency of the programme.

Let us conclude this section by making some final remarks on our main re-
sults. To some extent our conclusions are not surprising on account of analogous
results being available and well studied in the literature for American put op-
tions as well as the known results for perpetual Russian options. The reader
is referred to Lamberton (1998), Karatzas and Shreve (1991), Myneni (1991),
Shepp and Shiryayev (1994, 1995), Graversen and Peskir (1998), Kyprianou and
Pistorius (2003), Avram et al. (2003a,b) and Carr (1998). None the less, until
very recently, there was no literature concerning finite expiry Russian options.
In parallel to the writing of this paper however, the authors learnt of the work
of Peskir (2003). This paper, which also handles the case of finite expiry Rus-
sian options, has some overlaps with the work presented here, but none the less
deals with slightly different issues to the ones we address here. In particular, the
main objective of Peskir’s paper is to show how the function v may be expressed
in terms of the optimal stopping boundary b which itself is the unique solu-
tion to a non-linear integral equation. Peskir (2002b) also deals with a similar
representation for the American option.

3 Free boundary problem: proof of Theorem 3

We break the proof into a series of Lemmas which themselves are shared between
two subsections dealing with existence and uniqueness respectively.
3.1 At most one solution to the free boundary problem

Lemma 5 If a solution to (10) exists then it is equal to the pair (v,b). That is
to say, (10) has at most one solution.



Proof. Let (f,¢) be any solution to (10). Note that the corresponding
region C(yp) is open for reasons given in the proof of Lemma 2. Define for each
t€[0,T]

X —inf{s >t : U, > (T —t—s)} A (T —t)

and > 5 5

E=U—¢2——r — —a— .

27 oyY? o ou

Since in C(y), f is C*! (that is twice differentiable with continuous derivatives
in the first parameter and once differentiable with continuous derivative in the
second parameter) and £f = 0, Itd’s formula together with boundedness of ¢
easily yields that for each ¢ € [0, T,

{e,a(wfwn f (‘I’wa T — (s A Tf“"’)) cs €t T]}

is a uniformly integrable Py-martingale for ¢ < (T —t).

Making use of a new generalized version of It&’s formula for continuous semi-
martingales given in Peskir (2002a) (see also Eisenbaum (2000) and Folmer et
al. (1995) for developments leading up to Peskir’s formula) together with the
fact that d¥; = —U,(cWF + rdt) + dS;/S; (cf. Shepp and Shiryayev (1995))
we may write

et dle™ f (U, T —t)]

= Lf(¥, T —t)dt — mpt% (U, T — t)dWF
10f -
+§t% (¥, T —t)dS,
1[of of 14— Tt
+3 {@ (5, T-1t) - 7 (¥7.,7T - t)} 1w, —pr—endLf ™Y (11)

where L#T~) is a version of the local time of ¥ at the curve (T —-). An
important note we should make here is that Peskir (2002a) requires continuity of
all derivatives up to and including the boundary ¢, however careful inspection of
his proof reveals that this may be relaxed to continuity of £f up to and including
the boundary. Since Lf = 0 on C(p), Lf = —(r + )y on int{C (¢)°} this is
trivially satisfied. This technique was also used for American options in Peskir
(2002b). The precise definition of £ is not of importance here since by the
smooth pasting assumption we have that the coefficient of dL{ (T=%) is zero. The
reader is otherwise referred to Peskir (2002a) for further details of local time on
a space-time curve (or local time-space).

We may now deduce from (11) that e **f (¥;,T —t) is the sum of a local
martingale and a process of bounded variation which decreases (since Lf =
—(r 4+ a)f < 0 on the complement of the continuation region). Since df /0% is
bounded, the local martingale is in fact a martingale and we are left with the
conclusion that, for each ¢ € [0,T7,

{e=*f(U,,T —s):s€[t,T)} (12)



is a P-supermartingale.
The martingale and supermartingale properties, (8) and (7) respectively,

together with the facts that f > ¢ on C (¢) and that (¥ _c),T—17 ) = T _c()

are now sufficient using classical methods to establish that f = v. Indeed,tfor
each t € [0,T') using the supermartingale property,

ef W, T=t) > sup Ey (e_a(t”)f(‘I’J,T - (t+o)))

o€To,7—t

> e gsup Ey (e_a"lIl,,).
o€To,T—1t

and further
C(w)
T —t) = B (W e, T ) [, = 0)

- E (e*‘”ﬂc(w‘I’Tf(w ¥ = ¢)

< e gsup E, (e_o‘"lIl(,)
o€To, 7+

proving that f (1,7 —t) = sup,er; ,_, By (e7%7¥,). ®

3.2 At least one solution to the free boundary problem

It is clear now that we have one of the two directions in the proof of Theorem
3. The other direction requires more analysis which we now proceed with in the
shape of further Lemmas. For clarity, recall that C (b) = {(¢,u) : 1 < ¢ < b(u),
uw € (0,T)} which defines an open region; the so called continuation region.

Lemma 6 In C(b), the function v is C*' and satisfies Lv = 0.

Proof. The proof is based on an analogous result for American put op-
tions treated in Karatzas and Shreve (1991). Construct the parabolic Dirichlet
problem

Lf 0in R
f = vond'R

where R is the open rectangle (v1,1) x (u1,us) C C (b) with parabolic boundary

R = OR\[(¢1,¢2) x {ua}].

On account of the fact that v is jointly continuous in ¢ and s, classical theory
of stochastic representation of boundary value problems dictates that the above
Dirichlet problem has a unique solution which is C%! in R (cf. Friedman (1976)).
Recall from the martingale property associated with v, given in the previous
Section, that

{e "t (U, T —t) : t € [T — ua, 77}



is a martingale where 7% = inf{t > T —uy : (¥;,7 — t) ¢ R}. Note that
it is in fact a uniformly integrable martingale. On the other hand, stochastic
representation tells us also that

{e " f (@, T —t) : t € [T —ua,7~]}

is a uniformly integrable martingale. Since both have the same terminal value,
we are forced to conclude they are the same martingale and hence f = v in R.
Since R may be placed anywhere in C (¢) the theorem is proved. m

Lemma 7 The boundary b(u) is bounded for each u > 0.

Proof. Since St is integrable (this follows from standard distributional prop-
erties of Brownian motion), dominated convergence together with (6) gives us
that

0 <v(yh,u) = <E[(Sos —9) VO] = 0 (13)

as 1 tends to infinity, where oy, was given in Lemma 2. Using Lemma 6 together
with the properties of v given in Lemma 2 we have that on C(b)

8%v 2r _,0v

Integration of the last inequality in v yields

v 2r [V Ov
S > % [T e
in C(b).

Suppose now that b(u) = oo for some u € (0, 7. For this u, the last inequal-
ity is valid for all ¢ > 1. Also for this u, we know from (13) and convexity that
Ov(1h,u) /0y tends to one as 1) tends to infinity. However, these last two observa-
tions are incompatible because together they also imply that dv(¢, u)/0vy tends
to infinity as ¢ tends to infinity. The contradiction lies in the unboundedness of
b(u) so the proof is complete. m

Lemma 8 The value function v satisfies the boundary conditions

(1) v (¢, u) 2 ¢ foru e (0,T] and v (4,0) = ¢
(ii) For all u € (0,T] we have that v(1,u) > 1.
(iii) In addition, for all u € (0,T],

Ov ov
— (1 =— (1% =0.
Proof. (i) The first two conditions have been discussed in the introduction.
(ii) Suppose there exists a u’ > 0 such that v(1,4') = 1. By the monotonicity
in u established in Lemma 2, it follows that v(1,u) = 1 for all u < v'. This means
that v(1,u) = 9 for any such u and the optimal stopping time in (6) is to stop



immediately. According to the supermartingale property given in (7) it now
follows together with the representation of the value of the Russian option given
in (3) that e=("+2)tG, is a P(:|Sy = Sy = s)-supermartingale for 0 < t < u’. Note
now that the latter process has no martingale component and therefore must be
a process which is monotone decreasing from an initial value s. In particular, it
follows that

sup e’(r‘m)tst = sup sX e (rra)t g oWit(r—o?/2)t <s

0<t<u! 0<t<u!
where W is a P Brownian motion. However this leads to a contradiction since
by the Law of the Iterated Logarithm for Brownian motion as ¢ | 0, it follows
that, given any ¢ > 0, there exists a decreasing sequence of times ¢, (w) J 0 such
that Wy, > \/t, > ct, and hence the supremum above is strictly greater than
s. The consequence of this contradiction is that v(1,u') > 1.
(iii) For each £ > 0 write

u(e) =inf{u € [0,T] : b(u) > €}
and note that
T.=inf{t >0: ¥ > e} AT —u(e))
is a stopping time satisfying
T. <15

P-almost surely provided 1 <1 < e. Note also from the previous part we have
that lim. o u(¢) = 0. Now we have that

{e %y (U, T —t): t < T.} (15)

is a martingale Py-almost surely provided 9 < e. However, it is well known
that for the given starting position 1 < ¢ < € this martingale characterizes the
unique solution to the parabolic boundary value problem

Lf(,u) = 0on[le)x (u(e),T)
= wfor [{e} x (u(e), TIJU[[Le] x {u(e)}]
%(1,@ = O0forue€ (u(e),T].

[This follows again by constructing a uniformly integrable martingale from the
function f (via Itd’s formula for semi-martingales) which has the same terminal
value as the martingale (15)]. In particular, from the last boundary condition,
by considering the same problem for all small € we are lead to conclude that
Ov (1,u) /Oy = 0 for all u > 0 and the proof is complete. m

Lemma 9 The function v exhibits the smooth pasting condition

o
o

ov

% (b(u)*,u) (b(u)",u) =1 foru e (0,T).

10



Proof. Since v(y,u) = ¢ for ¢ > b(u) and v(¢h,u) > 9 for 1 < ¢ < b(u)
and v is convex, it is trivial that

ov ov

1= 7 (b(u)t,u) > 7 (b(u)",u). (16)
It remains to prove then that
0
£ (b(u)~,u) >1 (17)

for all u € (0, 7).
To this end, note from (6) that optimality implies that for u € (0,7

o(b(u),u) > By (e +%0-<(S,; Vb))
where € > 0 is small and a,’;(u)_€ is given in Lemma 2. Tt now follows that

%(v(b(u), u) = v(b(u) — €,u))

> %]El (emtrroicr<[Sy, . Vb)) = By, V (bu) = 6))]) .

Tt is easy to check that [(?ag(u)_e Vb(u))— (gg;(u)_e V(b(u)—e¢))]/eis valued in [0, 1]
and hence regularity of Brownian paths together with dominated convergence
implies that (17). m

Lemma 10 The boundary function b is continuous on (0,T] and b(0%) = 1.

Proof. Left continuity has already been dealt with in Lemma 2. For right
continuity, fix some ug € [0,7) and work with the convention that b(0) := 1.
We shall prove that limy,,, b(u) = b(ug) and hence in the case that ug = 0 this
means that b(0+) = 1.

Since v(b(ug),uo) = b(ug) and v(b(u), u) = b(u) we have the following integral

formula
b(u)

o(b(uo), ) = bluo) = [ , (1- gpew) ae (18)

for each u € (ug,T). Note that b(u) > b(ug). For any b(ug) < & < b(u), we have

L o) _ /““’ Sl u) g
o £ on? ’

because Ov(&,u)/0& — 1 as £ 1 b(u). We now use the second order differential
equation Lv = 0, in combination with v(n,u) > 7 > 0 and dv(n,u)/dn > 0, in
order to obtain the estimate, for each £ <7 < b(u),

o2 T o2n Oy T o2n 8E

2
0 v(n,u)  2r Sv(n,u)  2r Ov(§,u)

11



where we have used the convexity of ¥ — v(¢,u) in the second inequality. This
leads, with the notation

w(&u) = =5 log(b(u)/€),

to the estimates

1 811(655, w) > w(é,u) (91)(655, u))
hence 5
Ut <1+l ),
and therefore
1= 2089 5 e/ 1+ wie, ),

9

which in turn implies that

) (€, u
(0(u0), ) = v0(ua), o) > [ €u) g

b(uo) 1 +w(&,u)

Suppose now that b(ud) > b(ug). Because the left hand side converges to
zero, this would imply that

0 /”‘“0” w(E, uo)
b

d¢,
(uo) 1+UJ(£,U0) ‘f

in which case
2
w(€, up) = o—’; log(b(ug)/€) >0 when 0< & < b(ug).

This contradiction proves the right continuity of the function b. m

4 Canadization

Carr (1998) proposes a novel and yet simple method of approximating the price
of the finite expiry American put at time T via a method randomization or
Canadization as he calls it. The idea is quite simple. As a first approxima-
tion, one may consider randomizing the expiry date, T, of the option by an
independent exponential distribution having mean T and forcing the American
put claim should the option expire at the end of this exponential time. The
logic behind this randomization is that the free boundary problem is converted
from a time variant one to a time invariant one as a consequence of the lack of
memory property; if the holder has not yet exercised, then there is still an ex-
ponential time remaining. It is reasonably intuitive to see that that the effect of
this randomization is to convert the parabolic free boundary problem associated
with the American put to an elliptic free boundary problem. The latter being
explicitly solvable.

12



A natural generalization of this idea which Carr further pursues is to replace
the exponential distribution by a sum of n independent exponential distributions,
each having mean 7T'/n so that the expectation of the sum is T' and again forcing
the American put claim should the option expire at this random time. We shall
refer to this as an n-th order randomization. Suppose we denote each of these
exponentials by e; ,, then by the Law of Large Numbers it follows that

gei,n = i % [%ei,n] - T

i=1

almost surely. This shows that if one can solve the optimal stopping problem
with a randomized expiry according to the independent distribution 2?21 €in
then to some extent for large n one has a good approximation to the finite expiry
case; and hence by the previous section a good approximation to the associated
free boundary value problem. Carr (1998) makes good of this approximation
and provides an explicit expression for the case of the n-th order randomization
of the American put option. This expression is the consequence of a sequence of
iterated elliptic free boundary problems.

In this section we formulate the problem of the n-th order randomization for
the Russian option and show that like Carr’s results for the American put the
resulting approximation is represented by the solution to an iterated system of
elliptic free boundary problems which we solve explicitly. This solution leads to
Alogrithm 4.

4.1 n-th order randomization

The n-th order randomization which approximates the function v(¢,T) is the
solution to the optimal stopping problem

/U("a") (w) = sup £ ® E¢ (eia(‘m@"’")‘];'-r/\@n,n)
TE€T0,00

where under the measure P (having expectation operator &), Oy, , is the sum of
n independent exponential random variables {e;, : i = 1,...,n} with parameter

A i=n/T

and 7y, is the set of F-stopping times valued in [0, 00). The choice of notation
v{™" (1)) and O, ,, will become apparent in a moment.

Lemma 11 The function v{™™ (1) is the final step in the recursion
v(0m) () = v and

v(k,n)(¢) — sup Ey (6_(0‘—'—)‘")7—1117-—}—/\”/ e—(a+kn)sv(k—1,n)(lps)ds>
TE€T0,00 0

fork=1,...,n.

13



Proof. Suppose that under measure P we now define

n
®k,n = E €in,
i=k
We have

o™ ()

= sup EQEy (e‘“(TA@"’")‘I’TAGH,n (1(T591,n) + 1(r>®1,n)))
TET0,00

= sup EQEy(e7¥ ¥, 1(,<0,,)
TET0, 00 -

—aO1,n e*a((T*(‘)l,n)/\@

+1r50,..)€ "‘1’")‘I’el,n+((r—el,n)Aen_1,n))

= sup EQREy (e_‘”lIITI(T<@1,n)
TET0,00 B

_ Form [ —a((r—O1.n im
+1(‘r>®1,n)e a@1)ng®E¢91, [6 a((T—©1,n)AOn_1, )lp®1,n+((r—@1,n)/\@n—1,n)])
where in the third equality Fe, , = 0 (F; : t < ©1,) . The Strong Markov Prop-

erty together with the dynamic programming principle and lack of memory prop-
erty now gives us

o™ ()

= sup E® E¢. (e_aT\I'Tl(T<@1!")
TET0, 00 -

+lrse,e 2% sup E@Eg,, | [e_a(we"_l’")q"”@"-l’"} '
’ 0€T0,00 ’

Now writing

oL () = sup € @ By [e*““”@"‘l’")‘l’w@n—w]
0€T0, 00

it follows that

’U(”’") (w) — Esgp E® EUJ (eiaTlI’Tl(‘rgel,n) + 1(T>el’")efa@1,n,u(nfl,n) (111@1’“))
T7€T0,00
— sup E¢ (e—(a-i-/\n)TlI,T +/\n/ e—(a+)\n)sv(n—1,n)(q,s)ds> .
TE€T0, 00 0

Iterating this argument and noting that

v(l’”)(w) = sup E, (6_(a+’\")TlI’T+)\n/ e—(a-i-)\n)slIlsds)
T7€T0,00 0

the proof is complete. =
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Remark 12 Using similar reasoning it is easy to deduce that we may also iden-
tify
vk (,(p) = sup £® E¢. I:e—a(o/\@k,n)\]ja/\gkm]
0€T0,00

for each 1 < k < n.

Remark 13 Roughly speaking, by considering the case k = 1, one may establish
that v(1™) (1)) is a convex function associated to which is the value Y > 1
=: {ﬁv(o,n) such that the optimal stopping time in the definition of v (1) is
given by ~

o(bm) = inf{t>0:9,> ¢(1,n)}'

Indeed, similar conclusions were drawn for the 1-st order randomization in Kypri-
anou and Pistorius (2003) for the case that « = 0 and n = 1. Proceeding to
the cases n > k > 2, using an iteration which takes advantage of the convex-

ity of v*=17)(¢)) it is possible to show that, the optimal stopping time in the
definition of v(*™ (¢) takes the form

o®™ = inf{t > 0: T, > P}

for some {bv(k,n) > J(k—1,n)- Although this explination is not rigourous, one will
see this behaviour appearing in the treatment of the sequel.

4.2 Discrete Stefan system

The goal of this subsection is to show that the discrete Stefan system, defined
below, has at exactly one solution which can be described explicitly. Further,
we will show that any solution must correspond to the n-th order randomization
{v®m) : k =0,...,n} and hence the justification of 4 will follow.

Definition 14 (Discrete Stefan system) We say the pair {f*7™ . k
0,...,n} and {p*™ : k=0,...,n} where

f(k’") :[1,00) = [1,00) and go(k’") >1

solves the discrete Stefan system if f©O™) (¢) = o and p(®™ =1 and for k =
1,...,n we have

2 L, d2flen) d£(km)
% 2 c.1f¢2 —-r fd¢ (W) — (o + )\")f(k,n) () = _A"f(kfl,n) )
forl << Qo(km) and
f(k,n) () = for ¢ > go(k’"). (19)

Furthermore, for k=1,...,n,

dftkn) _ ) dfkm)

lim =0, lim =1and lim f&» = plkn)
i =3 s S (¥) W(J(M)f (W) =¢

15



The following theorem is proved at the end of this subsection.

Theorem 15 A wunique solution exists to the discrete Stefan system. In ad-
dition, this unique solution has the additional properties that (™™ > .. >
00" =1 and for all k=1,....n
dfkm)
di
when 1 < ¢ < ") Fyrther the unique solution may be identified by flbm) —

v®") for all k = 0,...,n and hence the thresholds {1 k=1,...,n} referred
to in Remark 13 are preczsely {pFom) . ey M}

() < 1 and f&™ () > 1

Remark 16 Equation (19) can be rewritten
FEm (@) = A1 (9)

2
FUIEN @) = rp 0 @) — af b (g) = (20)

SN

For partial differential equations, such as the Stefan problem with solution v
from the previous section, one has the so-called method of lines as a method of
approximation. In this case, it could consist of putting a uniform grid on some
fixed interval [0,T] with distance T'/n and approximate the derivative in the
T-direction by its difference quotient

U(wak%) - (wa (k - 1)%)
T

such that the pde is broken up in a set of differential equations. Note that if
we associate fm) (1)) with v(y), k ) this method precisely results in the set of
differential equations of the form (20)

One important difference between the discrete Stefan system we deduced and
this method of lines, is that it’s not a priori clear how to deal with the fact that
the boundary of the definition area of the pde is a curve rather than fixed.

Next we identify the promised explicit solution to the discrete Stefan system.

Lemma 17 The pair {v*™ : k =0,...,n} and {J(k,n) :k=0,..,n} are given
by Z,Zo = ].,

Wb for > Pim

R OER P ( (1,4,k) + Zm La(m,i, k) log(¢)m) 21)
0 (e(2,0,K) + U7, blam, i, ) og()™ ) + 5+
L for € [¢i—1,¢(,~,n)] andi=1,..k

where By < Ba are the two solutions to the quadratic equation

%2ﬂ2—(r+%2),3—(a+)\n):0
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0= /(r+a+A,) and, on account of their complezity, the constants a(e,-,-),
b(.,+5), (.,-,.) and the thresholds Yy ) are given in the Appendiz. This pair
solves, fork=1,...,n,

o? ., d2y(km) do(km)

Z _ _ (k,n) —  _\fk-D)
2 102 (¥) —ry a0 (1) = (a+ A)o'™™ (¥) Av (%)
forl<y < @Z(k,n)
vF () = for > Pem,
and furthermore
do®m) dv(km) ~
lim =0, lim (W) =1and lim o®™ () =P -
vl dy Vo AP PP (e,m) k)

Proof. Given that we have identified the pair {v(*™ : k = 0,...,n} and
{’(Z(km) :k =0,...,n} as the unique solution, it sufficies to check that the right
hand side of (21) solves the discrete Stefan system. Sadly there is no elegant
proof of this and a manual computation is the quickest way of establishing this
result. In the computation, one should use the result of Theorem 15 to ensure
that the defining equation for ¢(; ) (equation (25) in the Appendix) indeed

has a unique solution that is strictly bigger than J(,H,n). Otherwise there is
nothing special involved in the calculation other than the need for endurance.
We leave the proof to the reader. m

Returning to the proof of Theorem 15, we first need the following result
which, as we shall see, easily resolves the issue of existence together with some
of the conditions stipulated in Theorem 15. These latter conditions turn out to
be crucial in order to prove that the unique solution is precisely {v(k*") k=
0,...,n}.

Theorem 18 Fiz A > 0. Suppose that the function f : [1,00) — [1,00) satisfies
the following

(i) there exists a b> 1 such that f(¢)) = for all p > b and
(ii) fb> 1 then f'(¢) <1 for all 1 <1 < b.

Then the system

2
o
SV (W) -l () — (@ + Nu@) = =Af(¥)  forl<gp<c  (22)
and u(y) = ¢ for 1 > ¢, with the boundary conditions
lim«'(¢) =0, li = d limu'(y) = 1,
lirn v (%) lim u(¥) =c an lim u (%)
has at least one pair (u,c) with ¢ > 1 as its solution. Every possible solution

(u, ) possesses the property u'(v) < 1 for all 1 < ¢ < ¢ and either we have ¢ > b

orforallc <y <b

fw) < T,

17



Proof. From general theory of differential equations it follows that every
solution of (22) can be written in the form

u(y) = app? + dp®* + ug (1) (23)

w0 =g [ () - (1)) s

B1 < B2 solutions to the quadratic equation

with

0.2
gﬂ(ﬂ—l)—Tﬂ—(a—F)\):O

and the a and d free constants.

Now pick any =z > 1. We can choose the constants a = a, and d = d,
now such that two out of three boundary conditions are satisfied: u(x) = x and
u'(x) = 1. A straightforward calculation shows that the appropriate choices are

2\ s J1(§) 1-B1 1.5,
)/1 13 dé + x

“ = 528 — By € By — B
and N
— — —B1 Jk 2= 1-pB1
s ﬂwrwwKE e Xt 5"

The solution u we’re looking for thus must be a member of the family of functions
uz (V) = azhP? + dy1pPt + ug(¢p). We define the following operator:

Fftl’l—)u;(l)

and note that we’re looking for a root of this operator, meaning a ¢ > 1 such
that F¢(c) = 0. Once again straightforward calculation shows

_ 2\ ? —B2 _ —B1 @ 1- '81 12
) = gy ) B me M Ty
+61 ﬂi i ﬂllasl—ﬁl. (24)

Now, ¢ is a root of Fy if and only if the pair (u.,c) is a solution as meant in
theorem 18. Tt is easy to check that F(1) =1 and using f(§{) =§ forall { > b

lim Fy(z) = lim Cz'™™

T—r00 T—>00
with
261(r + @)
(1= B1)(B2 — B1)o?
so that we can be sure that there exists at least one root of Fy on (1,00) and
therefore a solution (u, c).

C =

< 0and 8 <0,
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To prove that u'(¢)) < 1 for all 1 < 9 < ¢, note that the representation of
u, given by (23), indicates that in fact u is a C*°-function on the interval (1,c).
With this in mind we do the following. Define £()) = u'()) and suppose that &
attains a maximum in some %y, where 1 < 99 < ¢. As a consequence we have

that £'(1ho) = 0 and £" (1) < 0.
By differentiating the de in (22) once, we see that this boils down to

TR (W) - (r-+ @+ NE(Wn) = <A ()

which leads to

2
(r+a+ NE(o) = TUE" (o) + A (o) < X,

and
A

E(tho) = Frat A <L

So the only possibility for u' to be bigger than or equal to 1 somewhere on the
interval [1, ¢), with u/(¢) = 1 in mind and avoiding reaching a maximum, is when
there exists a 1o such that for all ¥y < 9 < ¢ we have u'(1) = 1. For such a v
we would have &'(¢0) = £" (1) = 0 and the above reasoning would still be valid,
again leading to £(y) = v'(¢) < 1. Thus «'(¢) < 1 for all 1 <4 < ¢ is proven.

For the last part, suppose that ¢ < b. From v'(¥)) < 1 for all 1 < 9 < ¢ and
u'(c) = 1 it follows that u''(c—) > 0. Using this with u'(c) = 1 and u(c) = ¢ in
taking the limit ¢ 1 ¢ in (22) leads to

r+a+ A
—c.

flo < =25

Combining this with f/ <1 we arrive at

r+a+ A

) <5

(8

forallc<y¥<b. m

Proof of Theorem 15. Note that the matter of existence is covered
by inductively applying the result from Theorem 18, starting from f(©m)(y)) =
1. Now the proof breaks up in two parts. First we use the properties that a
solution to the discrete Stefan system has according to Theorem 18 to prove that
every possible solution may be identified by f*%) = (k%) obviously implying
uniqueness together with the other properties mentioned in Theorem 15, except
for the fact that the thresholds ¢(®™ ..., ("™ are strictly increasing, which will
be dealt with in the second part of this proof.

For the first part, note that it is clear that f(™ () = v(%™ () and prop-
erties (i) and (ii) in Theorem 18 are satisfied. Next suppose that we have es-
tablished that f(*=17) () = v(*=1:7) () and such that properties (i) and (ii)
of Theorem 18 hold. Then Theorem 18 tells us that a solution f#™) (1), p(#:n)
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exists and has the stated properties. To finish this part, we must henceforth
show that f(k7) () = v(Fm) (3h) .
To this end we make an application of 1t6’s formula to the process

{e—at FER () ¢ > o} :

Noting that f(*7) is sufficiently smooth to use the standard version of It&’s
formula, that is to say it is smooth everywhere except at o(*) where it is C!
(cf. Karatzas and Shreve p215 for example), we have

d[e_(a+)m)tf(k,n) ()] + )‘ne—(a—i-)m)tf(k—l,n) (W,) dt
~ o2 42 (k,n) d (k,n) _
e (a+An)t 7¢2 afw2 — rzb fd’LL' - (Ol + /\n)f(k’n) + /\nf(k 1.n) (\I’t) dt

dfkn)

—67(a+/\")t0'l1’t (‘I’t) thP.

Noting that the first derivative of f(**) is bounded, and that from the conclu-
sions of Theorem 18 we have
[i 2d2f(k,n) df(k,n)

i T —<a+An)f<’“*">+Anf““’”>] (¥) <0

both if pk:n) > pk=1n) and pkn) < HE=10) we deduce that
{e—(a“n)t £ () + A, / et {1 (3, ds st < TW")}
0
is a martingale where 7(#") = inf{t > 0: ¥; > o™} and
{e_(a+)‘")t 50 @) + 0 [ s () (g, ds <1 > o}
0

is a supermartingale.

Once again we appeal to classical arguments from the theory of optimal
stopping to finish the proof. That is, using the supermartingale property to-
gether with the lower bound on f(*) we have with the help of Doob’s Optional
Stopping Theorem

FED @) 2 sup By (e (w)
TET0,00

+ )\n/ ef(a+/\n)5f(kfl,n) (‘I’s) dS)
0

sup Fy (e—<a+xn>r\pr+xn / e=(@tAn)s flk—1m) (@s)ds).
TET0,00 0
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On the other hand, by the martingale property, we also have that

JED@) = By (TP ) (@)

0

= E¢, (e_(a‘i"\n)"—(k’n)ql,r(k,n) + )‘n/
0

rEm)

ef(a+)\n)5f(kfl,n) (\I’s) dS)

7 0em)

e—(a—i—)\n)s.f(k—l,n) (‘I’s) ds)

showing that f*-7) () = v (¢)) and that ¢(*™) is the optimal threshold.

Now for a proof that (™™ > > (") again by induction. It is straight-
forward that ¢ > (0 = 1. Suppose that o1 < o(*7)  From Theo-
rem 18 we have for all p*=17) < o) < (1) that fE7) (h) > o = fFE=L1)(y)).
Furthermore we have from the part above and by definition of v(") (see Remark
12) that for all ¢ > 1

FEm () = oM () > o (@) = fETE ().

Combining these two inequalities shows that for all z > ¢(*-7)

’ (k;n) z (k—1,n)
[ =) e > [T (e - e e Pae
1 § 1 é-

Now, recall the operator F we saw before in the proof of Theorem 18 as defined
in equation (24). In this notation and using the uniqueness of solutions we
proved in the part above, we have that the unique root of F, _, determines
©*:1) and the unique root of Fy, determines p(k+1.m) By construction we have
Fy,_, (™)) = 0 and the above inequality shows that for all z > o*™) it follows
Fy, (z) > Fy,_, (z). Recalling that F (1) = 1 we have as a consequence that the
unique root of Fy,, which equals ¥+ is strictly bigger than o). m

Justification for Algorithm 4. The function v(*™ characterizes the
value of the n-th order randomization of the optimal stopping problem at hand
during the k-th exponential period. The expression given in Algorithm 4 is the
function which is equal to v(*™ over the time interval ((k—1)T/n, kT /n] rather
than over the k-th exponential period. m

Remark 19 For a > 0, we may see the approximation in the previous the-
orem is good in the sense that if k(n) is a sequence such that k(n)T/n — u
then (v(*(m):7) (1), B(k(M):7) (1)) converges pointwise to (v(t,u),b(u)) as n tends
to infinity. To see why this is true, one may simply re-consider the proof of
Proposition 5.1 of Kyprianou and Pistorius (2003) and note that with minor
changes it also delivers the above statement. The requirement that o > 0 is nec-
essary in order to check the conditions used in the aforementioned Proposition.
Whilst we expect that this requirement on « is not necessary, we leave this point
for future work.
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5 Numerical results and implementation

In this section we discuss the implementation of the algorithm for a numerical
approximation of v and b as implied by Algorithm 4 and present some of the re-
sults, where we focus on how the output depends on the values of the parameters
a, r and o. We used the package Mathematica to generate graphical output.
Although Algorithm 4 suggests a piecewise constant approximation of v and b
with respect to the time u, we used Mathematica’s interpolation functionality to
produce a smooth surface rather. Due to the monotone nature of v, this doesn’t
hurt the interpretation of the plots below as the approximation suggested by
Algorithm 4 at all.

Some technical remarks about the implementation. With the computer facil-
ities we had available, we were limited to n = 100. This limitation is due to the
fast growth of the amount of constants a(., .,.), b(.,.,.) and c(., .,.) involved as n
gets bigger. Furthermore we have T' to be chosen for every combination of pa-
rameters. If & > 0, v and b are for every u bounded from above by 1) — v (1), 00)
and by, the value function and optimal threshold corresponding to the perpet-
ual Russian option respectively. With the monotonicity of v and b with respect
to u in mind, we take T such that the difference between ¢ — v{™™ (1)) and
¥ — v(,0), and between {E(n,n) and by both are less than a small (artifi-
cial) value: 1072. This small difference, together with the upper bound and
the monotonicity, indicates that nothing interesting will happen if we increase
T more. If a = 0 than the perpetual option has infinite value, in that case the
above reasoning doesn’t make sense and we make an educated guess for a good
value of T'.

Now we turn to the plots. Figures 1-7 plot the value function on the left
and its corresponding free boundary on the right to give a general overview and
some feeling for the dependence on the parameters r, a and o.

Figures 8-10 show plots of the free boundary only, while keeping two param-
eters fixed and varying the third.

Finally, Figures 11 and 12 investigate the behaviour of the free boundary
when a = 0 some more.

6 Conclusion

In parallel with Peskir (2003) this paper offers a characterization of the finite ex-
piry Russian option as the unique solution to a free boundary problem. Further,
using Carr’s idea of ‘Canadization’ we deduce an algorithm to approximate the
solution to this free boundary value problem. The algorithm captures numeri-
cally all the expected behaviour from the optimal stopping problem represented
in (4) and (6). That is to say the free boundary respects the following logic.

e The greater the value of r or a the greater punishment the holder experi-
ences for waiting causing the exercise threshold to move more dramatically
to the origin.
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e The larger the expiry date of the contract, the more the solution behaves
like the perpetual case (for a > 0) for which the optimal strategy is to
exercise once the process ¥ crosses a fixed threshold.

e The larger the value of ¢ the more volatile the underlying Brownian motion
is and hence it experiences ‘larger’ excursions. This allows for the holder to
feel more free about waiting longer resulting in a larger exercise threshold.

Appendix

The constants in Algorithm 4 and Lemma, 17 are given in a recursive way by the
following systems of equations. Suppose that the functions v and thresholds
Y(jn) are known for all j =0,....,k - 1.
First we show how the a(.,., k) and b(., ., k) can be determined directly.
The constants a(.,4, k) and b(.,4, k) for 1 < i < k can be defined by a back-
wards recursion over 4 from their predecessors in the following way:

- if 4 = k there are no af(.,, k) and b(.,1, k) present;

- if § = k — 1 then we have only one of each:
-
a(lik) = ———— c(1,k—1,k—1),
S 26/—1)—r

-2
b(l,i,k) = ——————c(2,k—1,k—1);
(28, —1) =7
-if 1 <4 < k— 2, then for every 7 we have a(m,i,k) and b(m,i,k) to be
determined, for 1 < m < k —i. This is again done by a backwards
recursion, this time over m. So we start out with m =k — 4:
—A
alm,i k) = = a(m—1,i,k—1),
m(% (261 —-1) —r)

: _ -2 o
b(m,i, k) = m(%2(2ﬁ2_1)_r)b(m 1,i,k—1),

followed by, form =k —i—1,...,2:

, Aa(m—1,i,k—1) — 20 g(m 4 1,0, k)
alm,i k) = 2 5 ,
S22 —-1)—r
Y . o2 (m+1) .
=2b(m —1,i,k—1) — Z=5=b(m + 1,i,k
b, k) = monZbLBEZ DD G bmdLLR)
%(Zﬂg - 1) -Tr
and we conclude by defining the first two:
-Xe(1,i, k—1) — o%a(2,i,k)
226 —1)—r
—Xe(2,i,k — 1) — 0?b(2,i, k)

b(l,ik) = 205 1) < .

a(l,i, k)

’
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The terms ¢(1,4,k) and ¢(2,4,k) for 1 < i < k together with the threshold
Y(k,n) > Y(k—1,n) are determined by the following conditions given in Lemma 17

(i) v®m(1) =0,
(ii)
o (G ) = o (4 ) and
o (§ ) = o (G ) foral 1<) <k -1,

(iii) ok ("Z(Ic,n)) = Y(k,n) and vk ({E(k,n)) =
Since a(., ., k), b(.,.,k) and J(i,n) for 1 < i < k—1 are known at this time, we

can define for 1 <7<k —1

k—i—1 k—1i
G = ¢(, n) ( Z a(m,i+1,k) IOg(w(z n) Z a(m, i, k) IOg(w(z n)) )

m=1

k—i—1 k—1
(e ( D bm,i+ 1, k) log(@m)™ = Y, b(m, i, k) log(thim)™ )
m=1

m=1

k—i—1
D; = g ( > Bra(m,i+1,k)log(¢him)™ +ma(m,i + 1, k) log(¢gim) ™"

m=1

k—1i
=Y Bia(m, i, k) log(din)™ + ma(m, i, k) log(i(i,n>)m—1>

m=1

k—i—1
+ ( D Bab(m, i+ 1,k) log(dim)™ + mb(m, i + 1, k) log(ti,m)™ "
m=1

k—1i
=" Bab(m, i, k) log(P(s )™ + mb(m, i, k) log@(i,n))m—l>

m=1
and
K= Bo 151 Zzz:ll [ (51¢(17; )~ ﬂ2$(1n_,ﬁf)) + B152Cm (@Z’(Ki’;’n) @b(lm’il))] )

Now J(k,n) is defined as the unique solution bigger than J(kq,n) to the equation
Ba+1 T B1+1 232 TB1+P2)
181/82(1 ) (¢(k n) ¢ (k n)) + ﬂ2 ("p(k n) ¢ (k,n) ) -
" 1 182 1
((1 - 6)¢(k,n) - Kﬁb(k’n)) (ﬂlw(k,n) - /Bﬂb(k,n)) ) (25)
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and ¢(1,k, k) and ¢(2, k, k) solve the linear system

/Blc(]-ak7k)+ﬂ20(27k7k) = K:
B oLk k) + B e(2,k, k) +6 = 1. (26)
Finally, the remaining ¢(1,4, k) and ¢(2,4,k) for 1 <4 < k — 1 can be found by
a backwards recursion over i, at every step using the pair
{bv(ﬁiln)c(la i; k) + {E(ﬂfn)c(Qa i; k) - ’lZ'(len)C(l,Z + 17 k) - {5227,,)0(27 i7 k) = Ci7
By e(Lyd k) + Bz (2,1, k) — By te(Lyi + 1, k)
— B2 e(2,1,k) = Di. (27)

Acknowledgement 20 We are grateful to Goran Peskir for his remarks and
discussion concerning some aspects of this paper and his own recent work on this
topic. The research for this paper began in June 2002.
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Figure 1: r=0.1,=0.3,0 =09 and T' = 7.
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Figure 2: r =0.1, =0, 0
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Figure 3: r =0.1,a=0.3,0 =0.1 and T = 0.1.
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Figure 4: r =0.1,a=0,0 =0.1 and T = 2.
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Figure 5: r =0.1, =02, 0 =03 and T = 2.

Figure 6: r =0.1, a =04, 0 =

Figure 7: r =0.1, =04, 0 = 0.7 and T = 3.5.
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Figure 8: r = 0.1 and ¢ = 0.3.
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Figure 9: r =0.1 and o = 0.1.
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Figure 11: «a =0,r=02and T = 1.
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Figure 12: « =0,0 =0.2 and T = 1.
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