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Abstract. Every integer n has a unique signed binary expansions of the form

n =

k−1X
i=0

ai2
i,

satisfying ai × ai+1 = 0. Based on the signed binary expansion a compact-
ification K of Z is introduced. On K there are two natural operations: the
classical shift map σ and the odometer τ , which extends to K the addition of
1. In this paper the dynamical properties of this set K are studied both under
the shift σ and the odometer τ .

1. Introduction

1.1. Signed binary expansions. Given any non-zero integer n, one can expand
n in infinitely many different sums —‘signed binary expansions’— of the form

n =
k−1∑

i=0

ai2i,(1)

where the digits ai are 0, 1 or −1 and ak−1 6= 0. Motivated by automatic comput-
ing, Booth in [Boo] used signed binary expansions to introduce a new process for
multiplying integers.
In general, a representation (1) is called non-adjacent or separated if

∀ i ∈ N , ai × ai+1 = 0 ,(2)

where × represents the ordinary product (we set ai = 0 for all indices i ≥ k). Re-
itwiesner [R] showed, among other things, that such a representation (1) with con-
straints (2) is unique. We will call this representation the separated signed binary
expansion of n, say SSB expansion of n for short, and set SSB(n) = a0 · · · ak−1,
using the classical notation for words of length k on the alphabet A = {−1, 0, 1}.
It is proved in [Gü-Pa] that among all binary representations (1) of any integer
n, constraints (2) lead to a representation which has the least number of nonzeros
terms. In fact Güntzer and Paul in [Gü-Pa] introduced the notion of SSB expansion
in connection to jump interpolation search trees. Another reason to study SSB
expansions concerns the computation of a power xn in a group where the inverse
x−1 is easily computed; the exponentiation is then optimized by finding expansions
(1) such that the Hamming weight w(n) :=

∑k−1
i=0 |ai| is minimal. This strategy

has been exploited in [Je-Mi], and has several applications in elliptic cryptosystems
[Ko-Ts, Mo-Ol]. A recent detailed combinatorial study of this binary expansion
can be found in [Bo].
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1.2. Outline of this paper. In Section 2, we first introduce the lazy algorithm
which generates the digits ai in (1) under the constraint (2) and yields a constructive
proof of the existence and uniqueness of the separated signed binary expansion.
In the next two subsections we study further the classical transducer which writes
the SSB expansion a0 · · · ak−1 of any non negative integer n by reading its usual bi-
nary representation. We also introduce a greedy algorithm which computes directly
from n its SSB digits ai in reverse order. In Subsection 2.4 an SSB-compactification
K of Z is introduced. In fact, using the notation of infinite words,

K = {x0x1x2 · · · ∈ {−1, 0, 1}N; ∀ i ∈ N, xi × xi+1 = 0}.
On K there are two natural operations: the classical shift map σ and the odometer
τ , which extends to K the addition of 1. In this paper the dynamical properties of
this set K are studied both under the shift σ and the odometer τ . Due to (2) the
shift (K, σ) is a topological mixing Markov chain; the well known Parry measure
νK—giving the maximal entropy of (K,σ) (the topological one)—can be easily
obtained: it is the Markov probability measure νK determined by the transition
probability matrix

P :=




0 1 0
1/4 1/2 1/4
0 1 0


 ,

with initial distribution (1/6, 2/3, 1/6) (which is the stationary distribution). The
shift can be identified with the map S : [−2/3, 2/3) → [−2/3, 2/3), piecewise linear
on [−2/3,−1/3), [−1/3, 1/3) and [1/3, 2/3) and given by S(x) = 2x (mod Z). The
ergodic properties of S are studied in Subsection 2.4.

In Section 3 the operation of adding 1 to an integer, using the SSB expansion, is
extended to K in a natural manner, defining a Z-action τ called the SSB-odometer.
It is then shown that the topological dynamical system (K, τ) is uniquely ergodic
and homeomorphic to the usual dyadic odometer. The τ -invariant measure on K
can be viewed as a Markov measure µ which is nothing but the pull-back of the
Haar measure after identifying K with the compact group of dyadic integers Z2.
The measure µ has also transition matrix P , but now with initial distribution the
vector (1/4, 1/2, 1/4).

In Section 4, we study additive block functions f : N (or Z) → R , which are
natural generalizations of the classical sum–of–digit function s(n), or the Hamming
weight w(n). We show that the function ∆f given by ∆f(n) = f(n + 1) − f(n)
can be extended to a well-defined and continuous function on K \ {α, β}, where
α = (010101 . . . ), and β = (101010 . . . ). This extension is also denoted by ∆f . To
study properties of block functions we use the notion of a cocycle with respect to τ .
More precisely, for any map F : K → A, where A is any abelian group, we consider
the cocycle associated with F . This is the map

(n, x) 7→ F (n, x)(3)

defined on Z × K by F (0, x) = 0A, F (n, x) =
∑n−1

k=0 F (τkx), and F (−n, x) =∑n
k=1 F (τ−kx) for n ≥ 1. Note that F (1, x) = F (x) and for m, n ∈ Z, one has

F (n + m,x) = F (n, x) + F (m, τnx), which is called the cocycle identity. We use
the same notation for a map and its associated cocycle, the distinction will be clear
from the context. In case of a block function f , the cocyle associated to ∆f with
respect to τ will be simply called the ∆-cocycle of f .
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We show that ∆f can be continuously extended if and only if ∆f is a τ -coboundary,
i.e., ∆f = g ◦ τ − g (µ− a.e.) for a Borel map g. If ∆f is not continuous, then the
skew product transformation (x, g) 7→ (τx, g +∆f(x)) defined on K×G is ergodic,
here G is the closed subgroup of R generated by {∆(f + f∗)(n) : n ∈ Z}, where f∗

is a suitable τ -coboundary related to f (see Subsection 4.2). We end this section
with some examples, and a straightforward generalization by replacing R with any
locally compact metrizable abelian group. As a by-product, it is shown that the
Hamming weight function and the classical sum-of-digits function are statistically
independent.

In the final section, K is equipped with the stationary Markov measure νp given
by the transition matrix

Π(p) =




0 1 0
p−1 p0 p1

0 1 0


 ,

with p−1p0p1 6= 0, and it is proved that there is no σ-finite τ -invariant measure
equivalent to νp, unless p = (1/4, 1/2, 1/4).

2. The signed separated binary (SSB) representation

2.1. The lazy algorithm. A natural way to produce expansions (1) with a mini-
mal number of non zero digits is to compute consecutive digits c0, c1, . . . using the
following strategy.

— If n is even, replace n by T (n) = n/2 and set c0 = 0;
— If n is odd, choose c0 ∈ {−1, 1} such that n ≡ c0(mod 4), and replace n by

T (n) = n−c0
2 .

This leads to the maps c : Z→ {−1, 0, 1} and T : Z→ Z given by

c(n) =





0 if n is even,
1 if n ≡ 1 (mod 4),

−1 if n ≡ −1 (mod 4),

and

T (n) :=
n− c(n)

2
.

Due to these definitions, one has

n = c(n) + 2T (n),

and by iterating

n = c0(n) + c1(n)2 + · · ·+ ck−1(n)2k−1 + T k(n)2k,(4)

where cj(n) = c(T j(n)). By convention, T 0(n) = n. It is easy to see that for
n ∈ Z \ {0} one has |T (n)| < |n|. Since T (0) = 0, there exists for any n ∈ Z a
unique non-negative integer h (called the height of n) such that Th(n) = 0, but
T j(n) 6= 0 for 0 ≤ j ≤ h − 1, where we set the height of 0 equal to 0. With these
definitions, for n 6= 0 of height h one has for i ∈ {0, 1, . . . , h− 1}

ci ∈ {−1, 0, 1}, ci 6= 0 ⇒ ci+1 = 0,

and
ch−1 = sgn(n),
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where sgn(n) = n/|n| if n 6= 0, and sgn(0) = 0. Hence, the map T describes the
(lazy) algorithm to compute the SSB expansion of any rational integer n, and if h
is the height of n 6= 0, formula (4) with k = h will be identified with the following
infinite string on the alphabet {−1, 0, 1}:

J(n) = c0(n) · · · ch−1(n)0ω,

where in general vω denotes the infinite string obtain by concatenating the word v
with itself infinitely often. In case n = 0, we simply have J(0) = 0ω.

2.2. From the usual binary expansion to the SSB one. A simple way to
transform any usual binary expansion n =

∑k−1
i=0 ei2i (represented by the infinite

binary string e0 · · · ek−10ω) into the corresponding SSB expansion has been given
in [Gü-Pa] (see also [Prod]), using rewriting rules which lead to a simple transducer
given in Figure 1:

• ◦ 20|0 1|0
1|∧

0|10 0|∧

1| −1 0
.....................

....................................................................................................................................... ................
......................................................................................................................

......................................................
.....................

....................................................................................................................................... ................
......................................................................................................................

......................................................
..............
..................
................................................................................................................................................................................................

..............
...........
.....................................

..............
..................

.............................................................................................. ..................................................................................................
..............
...........
... ..................................

Figure 1. The SSB transducer TSSB

The transducer, denoted by TSSB , reads the successive inputs e0, e1, e2, . . . starting
from the black state •, following a unique labelled path • e1−→s1 . . .

ek−→sk . . . and
writes at the same time the output string of blocks w1 . . . wk . . . , where each labelled
arc sj−1

ej−→sj corresponds to a block wj such that ej |wj is the label of a unique
arc from xj−1 to xj . Here and after, we have set wj = ∧ to point out that wj is the
empty block ∧. Notice that after the input ek−1, (and reading at least 2 more digits
which are both 0) the path goes back to the black state where it stays forever.
In the sequel, given any binary string (finite or infinite) b = b0 · · · bk−1 · · · we shall
denote by TSSB(b) the output string one gets when the input b is read by the
transducer.
For example, 91 corresponds to the binary string 11011010ω which gives the se-
quence of states (• ◦2 ◦22 ◦2 ◦ • • • . . . ) and the output sequence (writing from
left to right) ∧(−10) ∧ (−10)0 ∧ (−10) ∧ (10)000 . . . corresponding to the SSB ex-
pansion 91 = −1 − 4 − 32 + 128. Hence TSSB(1101101) = (−)10(−1)00(−1)0 but
TSSB(11011010ω) = (−1)0(−1)00(−1)010ω.

From the transducer, we easily see that if 2k−1 ≤ n < 2k, the height of n is k or
k + 1. We are interested to find all integers of the same height. To this end, let us
introduce for any h ∈ N the following integers:

dh =





2 · 2h − 1
3

if h is odd (= 2m + 1),

2 · 2h − 2
3

if h is even (= 2m),

and denote by h(n) the height of n. Notice that d0 = 0.
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Proposition 1. For h ∈ N one has
(a) T (dh+1) = dh, and for n 6= 0

h(n) = h ⇔ |n| ∈ {dh−1 + 1, dh−1 + 2, . . . , dh}.
(b) The signed dyadic expansion of dh is given by

J(dh) =





(10)m10ω if h = 2m + 1,

(01)m0ω if h = 2m.

Proof. Property (b) is an immediate consequence of the following two observations

d2m+1 =
4m+1 − 1

3
= 1 + 4 + · · ·+ 4m = 20 + 22 + 24 + · · ·+ 22m,

and

d2m = 2
(

4m − 1
3

)
= 2(1 + · · ·+ 4m−1) = 21 + 23 + · · ·+ 22m−1.

To prove property (a), let n = c0 + c1 · 2 + · · ·+ ch−12h−1 be the SSB expansion of
n. Suppose that ch−1 = 1, so that if h = 2m + 1 we get

n ≤ 1 + 4 + · · ·+ 4m =
4m+1 − 1

3
= d2m+1 = dh

and

n ≥ 4m − 4m−1 − · · · − 1 = 4m − 4m − 1
3

=
2 · 4m − 2

3
+ 1 = dh−1 + 1.

Now, for h = 2m (m > 0) we get

n ≤ 0 + 2 + 0 + 2 · 4 + · · ·+ 2 · 4m−1

= 2(1 + 4 + · · ·+ 4m−1) = 2 · 4m − 1
3

= d2m = dh,

and

n ≥ 2 · 4m−1 − 2 · 4m−2 − · · · − 2

= 2 · 4m−1 − 2
(

4m−1 − 1
3

)

=
4m − 1

3
+ 1 = d2m−1 + 1 = dh−1 + 1.

It remains to show that if n ∈ {dh−1 + 1, . . . , dh}, then h(n) = h. By considering
the signed binary expansion of such numbers n, the above estimate shows that
h(n) = h. The case where ch−1 = −1 is similar. ¤
2.3. A greedy algorithm. For a given integer n 6= 0, let h be the height of n such
that dh−1 + 1 ≤ |n| ≤ dh. Proposition 1 and a straightforward computation leads
to

J(dh−1 + 1) =





((−1)0)m10ω if h = 2m + 1,

(0(−1))m−1010ω if h = 2m,

and furthermore
dh−1 + dh

2
= 2h−1 − 1

2
.

This shows that the sequence dh can be recursively defined. Notice that

{{0}, [−dh,−dh−1), (dh−1, dh]; h ≥ 1}
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is a partition of Z such that each atom consists of all integers of the same height
and parity. Hence, if n is given then the height is easily determined. Suppose n has
height h, then the SSB expansion of n has the form n = c0 +c1 ·2+ · · ·+ch−1 ·2h−1,
with ch−1 = sgn(n). Let G1(n) = n− sgn(n) · 2h−1, then G1(n) = c0 + c1 · 2+ · · ·+
ch−2 · 2h−2 and ch−2 = sgn(G1(n)). Continuing in this manner, just by knowing n
one can calculate its SSB digits in reverse order.
This suggests the following greedy algorithm to calculate the SSB digits of n.

SSB-Greedy Algorithm (n)
Input n (rational integer);
Output (S(n),H(n), G(n)).
begin
h := 0;
if n 6= 0 then
begin

repeat h := h + 1 until dh−1 < |n| ≤ dh;
S := sign(n)),
H := h− 1,
G := n− sign(n)2h−1;

endbegin;
else S := 0, H := 0, G := 0;
endif;
endbegin.

By iterating the SSB-Greedy Algorithm successively with the first input n = n0 6= 0
we derive the sequence

(S0,H0, G1), . . . , (S`−1,H`−1, G`)(5)

with S0 = S(n) (= sign(n)), H0 = H(n) (= h(n) − 1), G1 = G(n) and after r
iterations (1 ≤ r ≤ `), Sr−1 = S(Gr−1(n)), Hr−1 = H(Gr−1(n)) (= h(Gr−1(n))−1)
and Gr = Gr(n). Moreover, ` is the least positive integer m such that Gm(n) = 0,
hence G` = 0. If we start with n = 0, the SSB-Greedy Algorithm gives the output
(0, 0, 0) (` = 1). According to (4), the sequence (5) leads to the SSB expansion

n =
∑

0≤i<`

Si2Hi .

2.4. SSB-expansions of numbers in [-2/3, 2/3). Consider the following set K
of infinite strings on the alphabet A = {−1, 0, 1}:

K :=
{
x0x1x2 · · · ∈ AN; ∀i ≥ 0, xi 6= 0 ⇒ xi+1 = 0

}
.

Clearly K is a nonempty compact subset of AN endowed with the weak topology,
so two points are close if they agree on a sufficiently large beginning block. The set
K can be viewed as a straightforward compactification of Z in connection with the
separated signed binary expansion.
To each word a0 · · · ak−1 ∈ Ak of length k, we associate the so-called cylinder set

[a0 · · · ak−1] = {x ∈ AN ; x0 · · ·xk1 = a0 · · · ak−1}.
We denote by Wk the set of words a0 · · · ak−1 ∈ Ak such that [a0 · · · ak−1] ∩K 6= ∅
or equivalently a1 × ai+1 = 0 for all i satisfying 0 ≤ i < k− 1. Such words are said
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to be admissible. For the sake of simplicity, the notation [a0 · · · ak−1] will be also
used to denote a cylinder set in K, where a0 · · · ak−1 ∈ Wk.

Let σ be the usual shift map on AN, then σ(K) = K. In this section we will study
the shift σ on K. To do so, we first identify K, up to a countable set, with an
interval of R. By considering the usual binary expansion of real numbers, it is
natural to introduce the map Ψ : K → R given by

Ψ(x) =
∞∑

k=0

xk

2k+1
.(6)

Lemma 1. The map Ψ has the following properties.

(i) The map Ψ is continuous.

(ii) Ψ(K) = [− 2
3 , 2

3 ], Ψ([−1]) = [− 2
3 ,− 1

3 ], Ψ([0]) = [− 1
3 , 1

3 ], Ψ([1]) = [ 13 , 2
3 ].

(iii) For any a0 · · · ak−1 ∈ Wk with k ≥ 2, if ak−1 6= 0

Ψ([a0 · · · ak−1]) = [Ψ(a0 · · · ak−10ω)− 1
3.2k

,Ψ(a0 · · · ak−10ω) +
1

3.2k
],(7)

and if ak−1 = 0

Ψ([a0 · · · ak−20]) = [Ψ(a0 · · · ak−20ω)− 1
3.2k−1

, Ψ(a0 · · · ak−20ω) +
1

3.2k−1
].(8)

Proof. Clearly Ψ is continuous, and min Ψ(K) = Ψ((−10)ω) = − 2
3 , maxΨ(K) =

Ψ((10)ω) = 2
3 . For each admissible word a = a0 · · · ah−1 let ã = ah−1 · · · a0 be the

reverse word of a. Clearly ã is also admissible. Using Proposition 1, one see that for
any integer n ∈ [−dh, dh]∩Z the height is at most h, so there exists a0 · · · ah−1 ∈ Wh

such that J(n) = ã0ω and consequently Ψ(a0 · · · ah−10ω) = n
2h . In particular,

Ψ(Wh0ω) = { n

2h
; −dh ≤ n ≤ dh}

and

−2
3

+
3 + (−1)h

6.2h
≤ Ψ(a0 · · · ah−10ω) ≤ 2

3
− 3 + (−1)h

6.2h
.

Since
⋃

h∈NΨ(Wh0ω) is a dense subset of [− 2
3 , 2

3 ], by continuity of Ψ it follows that
Ψ(K) = [− 2

3 , 2
3 ]. Now, since min Ψ([0]) = Ψ((0(−1))ω) = − 1

3 and maxΨ([0]) =
Ψ((01)ω) = 1

3 , the above shows that Ψ([0]) = [− 1
3 , 1

3 ]. Similarly for the other two
cases of (ii).
To show (iii), consider any y = a0 . . . ak−1x0x1 · · · ∈ K. Then x = x0x1 . . . belongs
to K, and

Ψ(y) = Ψ(a0 . . . ak−10ω) +
1
2k

Ψ(x).

If ak−1 6= 0, then x is any element of [0]. Using (ii), one has

Ψ([a0...ak−1]) = [Ψ(a0...ak−1(0(−1))ω), Ψ(a0...ak−1(01)ω)]

= Ψ(a0...ak−10ω) +
1
2k

[−1
3
,
1
3
],

i.e., (7) follows. On the other hand, if ak−1 = 0, then x can be any element of K,
hence

Ψ([a0...ak−20]) = [Ψ(a0...ak−2(0(−1))ω), Ψ(a0...ak−2(01)ω)]

= Ψ(a0...ak−20ω) +
1

2k−1
[−1

3
,
1
3
],
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and (8) follows. ¤

Lemma 1 shows that every t ∈ [− 2
3 , 2

3 ] has a separated signed binary expansion
(SSB) of the form

t =
∞∑

k=0

xk

2k+1
,(9)

where xk ∈ {−1, 0, 1}, and xk × xk+1 = 0 (k ≥ 0)), i.e., x = x0x1x2 · · · ∈ K and
Ψ(x) = t. From the proof of the above lemma, it is straightforward to see that
for each k ≥ 1, and any two distinct elements a0 . . . ak−1, b0 . . . bk−1 in Wk, the
intervals Ψ[a0 . . . ak−1] and Ψ[b0 . . . bk−1] are either disjoint or intersect at one of
the endpoints. These endpoints have exactly two SSB-expansions, one ending with
the infinite string (01)ω, the other ending with (0(−1))ω. More precisely,

Ψ(a0 · · · ak−1(0(−1))ω) =
{

Ψ(a0 · · · ak−20(−1)(01)ω) if ak−1 = 0,
Ψ(a0 · · · ak−2(01)(01)ω) if ak−1 = 1,

(ak−1 6= −1).

Notice that the endpoints of the intervals Ψ[a0...ak−1], except for −2/3 and 2/3,
have exactly two SBB-expansions.
There is a dynamical way of directly generating an SSB-expansion of points [− 2

3 , 2
3 ).

Consider the map S : [− 2
3 , 2

3 ) → [− 2
3 , 2

3 ), defined by

S(t) = 2t− a(t),(10)

where

a(t) =




−1 if − 2/3 ≤ t < −1/3

0 if − 1/3 ≤ t < 1/3
1 if 1/3 ≤ t < 2/3,

(11)

see also Figure 2. Setting ak = ak(t) := a
(
Sk(t)

)
, for k ≥ 0, it follows from (10)

− 2
3 − 1

3
0 1

3

− 2
3

2
3

2
3

t

S(t)

.................
.................
.................
.................
.................
.................
.................
.................
.................
.................
.........

.................
..................
..................
..................
..................
..................
..................
..................
.................
..................
..................
..................
..................
..................
..................
..................
..................
.................
..................
..................
.

.................
.................
.................
.................
.................
.................
.................
.................
.................
.................
.........

1
2

1

− 2
3 − 1

3
0 2

3
1
3

Figure 2. Graph of S and density ρ
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that

t =
a0

2
+

1
2
S(t) =

a0

2
+

1
2

(
a1

2
+

1
2
S2(t)

)

= · · · = a0

2
+

a1

4
+ · · ·+ ak

2k+1
+

1
2k+1

Sk+1(t).

Since
∣∣Sk(t)

∣∣ ≤ 2
3 , the infinite series

∑∞
k=0 ak/2k+1 converges to t.

In the expansion

t =
∞∑

k=0

ak/2k+1(12)

obtained from S, the digits ak satisfy (2). We call this expansion the canonical
SSB-expansion of t, referred to as the CSSB-expansion of t. For example

1
3

=
1
2
−

∞∑

k=1

1
2.4k

.

Let Ia be the interval [−2/3,−1/3), [−1/3, 1/3) or [1/3, 2/3) according to whether
a = −1, 0 or +1, and more generally, for any a0 · · · ak−1 ∈ Ak, set

Ia0···ak−1 =
⋂

0≤j<k

S−jIaj .

By construction, Ia0···ak−1 6= ∅ if and only if a0 · · · ak−1 ∈ Wk, and in that case,
Ia0···ak−1 is the set of t in [−2/3, 2/3) such that Sj(t) ∈ Iaj (and so aj(t) = aj) for
0 ≤ j < k. Using Lemma 1 we can easily prove

Lemma 2. For any x = x0x1x2 · · · ∈ K and any k ≥ 1,

Ψ([x0 · · ·xk−1]) = Ix0···xk−1

The above shows that the SSB-expansion of points in [− 2
3 , 2

3 ) generated by S is
the one which does not end with the infinite string (01)ω. In fact S has one cycle
of order 2, namely {− 2

3 ,− 1
3}. A point t ∈ (− 2

3 , 2
3 ) has two SSB-expansions if and

only if there exists an integer k ≥ 0 such that Sk(t) = − 1
3 . Further, the CSSB-

expension of t is the one which ends with (0(−1))ω. The other points t have an
unique SBB-expansion which is canonical. In particular −2/3 = Ψ((−1)0)ω), but
2/3 = Ψ(10ω), this SSB-expansion being unique and not canonical.

We introduce the set K0 of infinite strings in K which do not end with (01)ω and
summarize the above results in the first part of following proposition; the second
part is a simple fact and is left to the reader.

Proposition 2. The map Ψ is Borel measurable, one-to-one and onto the interval
[−2/3, 2/3). For any t ∈ [−2/3, 2/3), the CSSB-expansion (12) of t corresponds
to the unique point x ∈ K0 such that Ψ(x) = t. Moreover, extending S at 2

3 by
S( 2

3 ) = 1
3 , then Ψ is a conjugation between σ and S, namely

Ψ ◦ σ = S ◦Ψ .

The map S is non-singular with respect to λ, where λ denotes normalized Lebesgue
measure on [− 2

3 , 2
3 ). In order to find an S-invariant probability measure of density

ρ with respect to λ on ([−2/3, 2/3),B) (where B denotes the σ-algebra of Borel sets
of [−2/3, 2/3)), we introduce (a version of) the natural extension of S. Let

Ω =
(
[− 2

3 ,− 1
3 )× [− 1

3 , 1
3 ]

) ∪ (
[− 1

3 , 1
3 )× [− 2

3 , 2
3 ]

) ∪ (
[ 13 , 2

3 )× [− 1
3 , 1

3 ]
)
,
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and let S̃ : Ω → Ω be defined by

S̃(x, y) =
(

S(x),
a(x)

2
+

y

2

)
,

see Figure 3. Note that on Ω the normalized Lebesgue measure λΩ is S-invariant. It

− 2
3

2
3− 1

3
1
3

0

− 1
3

− 2
3

2
3

Figure 3. Domain of definition of the Natural Extension S̃

is easy to show that the dynamical system (Ω,BΩ, λΩ, S̃), where BΩ is the collection
of Borel sets of Ω, is isomorphic to a two-sided mixing Markov chain with state space
{−1, 0, 1}, transition matrix

P =




0 1 0
1/4 1/2 1/4
0 1 0


 ,

and initial distribution the stationary distribution (1
6 , 2

3 , 1
6 ). This implies that

(Ω,BΩ, λΩ, S̃) is isomorphic to a Bernoulli shift. Projecting on the first coordi-
nate, yields that

([−2/3, 2/3), B, ν, S)
is a mixing Markov chain, where ν is the first marginal probability measure on
[−2/3, 2/3). A straightforward computation shows that ν has density function
ρ(x) = dν

dλ (x) given by

ρ(x) =





1/2 if − 2/3 ≤ x < −1/3
1 if − 1/3 ≤ x < 1/3
1/2 if 1/3 ≤ x < 2/3,

see also Figure 2. From this we see that the measure ν̄ given by ν̄(A) = ν (Ψ(A))
is S-invariant. On the other hand, (K,σ) is a topological Markov chain with state
space {−1, 0, 1}, and adjacency matrix


0 1 0
1 1 1
0 1 0


 .

This adjacency matrix is irreducible, and ν̄ is the unique shift-invariant measure of
maximal entropy (the Parry measure).
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3. The separated Binary odometer

3.1. Construction and dynamical properties. Using the SSB expansion of
integers, we would like to extend the operation of adding 1 on Z to a map τ : K →
K. To this end, recall that we have embedded Z into K via the map

J : n 7→ J(n) = c0c1 · · · ck−10ω,

where ck−1 = sgn(n) and n = c0 + c1 · 2 + · · ·+ ck−1 · 2k−1 is the SSB expansion of
n. Given x ∈ K, we set for any m ∈ N:

x[m] = x0 + x12 + · · ·+ xm−12m−1.

A natural way to extend the operation of adding 1’s to K is to set

τ(x) := lim
m→∞

J (x[m] + 1) .(13)

If x corresponds to an integer n, we have τ(J(n)) = J(n + 1), and the limit in (13)
exists. However, it is not obvious that this limit exists for any x ∈ K.

We have the following theorem.

Theorem 1. The limit in (13) always exists and defines an homeomorphism τ :
K → K.

Proof. We study the definition of τ in detail. For any x = x0x1x2 · · · ∈ K, using
2k + 2k+1 = −2k + 2k+2 and 2k − 2k+1 = −2k, we get

τ(x) =





00x2x3 · · · if x = (−1)0x2x3 . . . ,
(−10)m10x2m+2x2m+3 · · · if x = (01)m00x2m+2x2m+3 · · · ,
(−10)m(−1)0x2m+2 · · · if x = (01)m0(−1)x2m+2 · · · ,
(0(−1))m010x2m+3 · · · if x = (10)m100x2m+3 · · · ,
(0(−1))m0(−1)0x2m+3 · · · if x = (10)m10(−1)x2m+3 · · ·

(14)

And finally
τ((01)ω) = ((−1)0)ω, τ((10)ω) = (0(−1))ω,

proving that τ is well defined by (13) and moreover, if x0x1 · · ·xk = y0y1 · · · yk

(k ≥ 2) then
τ(x)0τ(x)1 · · · τ(x)k−2 = τ(y)0τ(y)1 · · · τ(y)k−2

implying that τ is continuous. The bijectivity of τ can be obtained easily from for-
mula (14) (or from the next proof) and continuity of τ−1 follows from compactness
of K. ¤

We want to show that (K, τ) is homeomorphic to the translation by 1 on the
compact group Z2 of 2-adic integers. To this end we define Z2 as the limit of the
inverse system {cm,n : Z/2m → Z/2n} where m ≥ n and cm,n are the canonical
maps.
We also identify Z2 to the compact infinite product space {0, 1}N by means of the
classical dyadic Hensel expansion.

Lemma 3. For all integers m ≥ 1 the map ϕm : K → Z/2mZ defined by

ϕm(x) = x[m] (mod 2m)

is a continuous epimorphism from (K, τ) to (Z/2mZ, τm).
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Proof. We denote by τm the translation ξ 7→ ξ + 1 on the group Z/2mZ. It is clear
that ϕm is a continuous map from K onto Z/2mZ. Let x be an element of K distinct
of (01)ω or (10)ω. By the above construction (see (14)), there exists an integer
N ≥ 0 such that for all n ≥ N , τ(x)[n] = x[n] + 1. Reducing mod 2m (m < n),
we get ϕm(τ(x)) = τm(ϕm(x)). If x = (01)ω, a straightforward computation shows
x[2n]+ 1 = τ(x)[2n]+ 22n and x[2n+1]+1 = τ(x)[2n+1]− 22n+1. The other case
is similar and consequently ϕm ◦ τ = τm ◦ ϕm in all cases. ¤
From Lemma 3 the family of epimorphismes ϕm defines a continuous epimorphism
(a factor map) ϕ : K → Z2 such that

ϕ(τ(x)) = ϕ(x) + 1

for all x ∈ K.

Theorem 2. (K, τ) is homeomorphic by ϕ to the translation by 1 on the compact
group Z2. In particular (K, τ) is uniquely ergodic with invariant probability measure
µ = µ2 ◦ ϕ where µ2 is the standard Haar measure on Z2.

Proof. It remains to show that ϕ is injective. Let x 6= y in K. There exists n ≥ 0
such that xi = yi for all indices i < n but xn 6= yn. If xn = 0 or yn = 0 then
ϕn+1(x) 6= ϕn+1(y). Otherwise xn = −yn (6= 0). In that case ϕn+1(x) = ϕn+1(y)
but xn+1 = yn+1 = 0 so that ϕn+2(x) 6= ϕn+2(y). Hence ϕ(x) 6= ϕ(y). ¤
Corollary 1. The inverse map ϕ−1 : Z2 → K can be computed by the transducer
TSSB:

∀ y ∈ Z2 ; ϕ−1(y) = TSSB(y).

Proof. Both ϕ−1 and TSSB(·) are continuous and coincide on all infinite binary
strings corresponding to binary expansions of natural numbers. ¤
Remark. For any integers k and n, n ≥ 1, set

ψk,n(x) = e2πi
k·x[n+1]

2n ,

and observe that for all ` ≥ n + 1:

ψk,n(x) = e2πi
k·x[`]
2n .

As an easy consequence of the definition of τ we have

ψk,n(τx) = e2πi k
2n ψk,n(x),(15)

showing that the maps ψk,n are continuous eigenfunctions for τ with corresponding
eigenvalues e2πik/2n

and by Theorem 2, all eigenfunctions of the dynamical system
(K, τ, µ) are given by the family ψk,n.

3.2. Computation of the Haar measure viewed on K. In the previous section
we have shown that there exists a continuous factor map ϕ : K → Z2 such that
ϕ(τx) = ϕ(x) + 1. On Z2 we have the Haar measure µ2, which is the (1/2, 1/2)-
Bernoulli measure,
and on K we consider the measure µ = µ2 ◦ϕ. We show that µ is a Markov measure
on K. From the transducer of Section 2.2 (see Figure 1), one sees that

ϕ([0]) = [0], ϕ([−1]) = ϕ([−10] = [11] and ϕ([1]) = ϕ([10]) = [10].

Therefore

µ([0]) = 1/2, µ([−1]) = µ([−10]) = 1/4 and µ([1]) = µ([10]) = 1/4.
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Now, for any cylinder [c0c1 · · · cn] in K, let

B(c0, . . . , cn) = ϕ([c0 · · · cn]) = {y ∈ Z2 : ϕ−1(y)i = ci, i = 0, 1, . . . , n}
so that µ([c0 · · · cn]) = µ2(B(c0, . . . , cn)). We want to find a relationship between
µ2(B(c0, . . . , cn)) and µ2(B(c0, . . . , cn, a)) where c0 · · · cna ∈ En+1.
First we claim that B(c0, . . . , cn) is always a cylinder set [y0 · · · ym] in Z2 with

cn = 0 ⇒ n = m.(16)

From above B(0) = [0], B(1) = B(1, 0) = [10], B(−1) = B(−1, 0) = [11] and
also B(0, 0) = [00]. Assume that B(c0, . . . , cn) = [y0 · · · ym] (n ≥ 2). By construc-
tion TSSB([y0 · · · ym]) = [c0 · · · cn] and we can assert that the state s where the
transducer is staying after reading the word y0 · · · ym belongs to {•, 2} (otherwise
the output is already c0 · · · cn after reading y0 · · · ym−1 and then [y0 · · · ym−1] ⊂
B(c0, . . . , cn), a contradiction).
Now observe that if cn ∈ {−1, 1}, then a = 0. This implies that B(c0, . . . , cn) =
B(c0, . . . , cn, 0) = [y0 · · · ym] and by recurrence assumption, one gets n + 1 = m.
Finally, for cn = 0, considering all possible cases depending on the value of s, one
has

B(c0, . . . , cn−1, 0, 0) =





[y0 . . . ym0] if s = •

[y0 . . . ym1] if s = 2

B(c0, . . . , cn−1, 0, 1) =





[y0 . . . ym10] if s = •

[y0 . . . ym00] if s = 2

and

B(c0, . . . , cn−1, 0,−1) =





[y0 . . . ym11] if s = •

[y0 . . . ym01] if s = 2.

This ends the prove of our claim by induction on n and in addition, shows that

µ([c0 . . . cn−100]) =
1
2
µ([c0 . . . cn−10])

µ([c0 . . . cn−101]) =
1
4
µ([c0 . . . cn−10])

µ([c0 . . . cn−10(−1)]) =
1
4
µ([c0 . . . cn−10]).

We have proved the following theorem.

Theorem 3. Let M be the Markov chain with state space A := {−1, 0, 1} and
probability transition matrix (with index-set A)

P :=




0 1 0
1/4 1/2 1/4
0 1 0


 .

Then µ (= µ2◦ϕ) is the Markov measure which corresponds to the initial probability
vector p := (1/4, 1/2, 1/4). In other words

µ([c0 · · · cn]) = pc0

n−1∏

i=0

Pcici+1(17)
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Remark. The Markov chain M is irreducible and aperiodic with stationary dis-
tribution νK given by initial probability vector π := (1/6, 2/3, 1/6). Hence µ is not
the stationary measure. Since νK is also defined by formula (17) after replacing pc0

by πc0 , we readily get

dνK

dµ
(x) =

{
4/3 if x ∈ [0]
2/3 otherwise.

Passing to the interval [−2/3, 2/3] with Ψ one gets

µ ◦Ψ = λ[−2/3,2/3]

where λ is the normalized Lebesgue measure on [−2/3, 2/3). Let T : [−2/3, 2/3) →
[−2/3, 2/3) be the map defined by T (t) = τ(x) if x corresponds to the SSB-
expansion of t, so that Ψ ◦ τ = T ◦Ψ and T is right continuous. From (14) one sees
that T is piecewise linear. More precisely,

T (t) =





t +
1
2

if t ∈ [−2
3 , −1

3 ),

t− 1 +
3

22m+1
if t ∈ [ 13 − 1

22m+1 , 1
3 − 1

3.22m+1 ),

t− 1 +
3

22m+2
if t ∈ [ 13 − 1

3.22m−1 , 1
3 − 1

4.22m−1 ),

t− 1 +
3

22m+2
if t ∈ [ 23 − 1

22m+2 , 2
3 − 1

3.22m+2 ),

t− 1 +
3

22m+3
if t ∈ [ 23 − 1

3.22m , 2
3 − 1

4.22m ),

and in particular T (1/3) = Ψ(τ(10((−1)0)ω) = −7/24, limt→2/3 T (t) = −1/3. The
map T is similar to the adding-machine on [0, 1) introduced by von Neumann in
[voN], which corresponds to the usual dyadic expansion. Figure 4 shows partially
the graph of T on the first five intervals (m = 0):

− 2
3 − 1

3
0 1

3

− 2
3

2
3

2
3

ξ

T (ξ)

......................
......................
......................
......................
......................
..................

......................
......................
......................
......................
......................
..................

......................
......................
....................

......................
......................
....................

......................
..........

− 1
3

1
3

1
6

− 1
6

Figure 4. Partial graph of T
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4. Block functions and associated cocycles

It is an old arithmetical tradition to study the statistical and harmonic properties
of the sum-of-digits function

s(n) =
∑

j

ci(n).

and the Hamming weight w(n)

w(n) =
∑

j

|ci(n)|.

These are examples of additive 1-block maps, defined in general as follows.

Definition 1. A map f : Z → R is said to be an additive k-block map if there
exists a map f̃ : {−1, 0, 1}k → R, such that f̃(0k) = 0 and for any integer n ∈ Z,
with SSB digits cj(n) given by (4), one has

f(n) =
∑

j≥0

f̃(cj · · · cj+k−1).(18)

4.1. Additive k-block maps. For any function f : Z→ R, let

∆f(n) = f(n + 1)− f(n).

In this section we are seeking functions f : Z→ R such that for x ∈ K the limit

lim
n→∞

∆f(x[n])

exists almost everywhere according to the Haar measure µ on K. The family of
additive k-block maps defined above has this property.
One can extend f̃ in Definition 4.1 to a function on K, by simply setting f̃(x) =
f̃(x0 · · ·xk−1), hence

f(n) =
∑

j≥0

f̃(σjJ(n)).

Note that, for x 6∈ {(01)ω, (10)ω}, and n sufficiently large, one has

(τx)[n] = x[n] + 1.

Hence, if f is an additive k-block map on Z, then

∆f(x) = lim
n→∞

(
f((τx)[n])− f(x[n])

)

is well-defined for x ∈ K \ {(01)ω, (10)ω}; in fact, ∆f(x) can be written as a finite
sum. To see this, let m(x) be the least integer m such that τ(x)j = xj if j > m.
Then

∀ ` ≥ m(x), ∆f(x) =
∑̀

i=0

(f̃(σiτx)− f̃(σix)).(19)

Theorem 4. Let f be an additive k-block map. Then ∆f is continuous at all points
x ∈ K \ {(01)ω, (10)ω} and

∫

K

∆f(x)dµ(x) = 0 .(20)
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Proof. Using the fact that the function m(·) has the constant value s = m(x) on
the cylinder set [x0 · · ·xs], the first part of the theorem follows from the continuity
of τ , σ, f̃ (extended to K) and (19). For any integer M ≥ 1 let ΩM the set of
x ∈ K such that m(x) ≤ K. Obviously ΩM ⊂ ΩM ′ if M < M ′ and from (14), ΩM

is a finite union of cylinder sets such that
⋃

M≥1 ΩM = K \ {(01)ω, (10)ω}. Put
gM (x) =

∑
0≤i≤M (f̃(σiτx)− f̃(σix)). The measure µ being invariant under τ , one

gets
∫

K
gM (x)dµ(x) = 0. Now, the sequence of maps gM (·) (which are continuous

on K) converges simply to ∆f on K \ {(01)ω, (10)ω}. In fact, gM (x) = ∆f(x)
as soon as x ∈ ΩL (L fixed) with M ≥ L. For all x ∈ (K \ {(01)ω, (10)ω}), the
inequality

|∆f(x)− gM (x)| ≤ 2||f̃ ||∞(m(x)−M)1K\ΩM
(x)

holds, and consequently, it is enough to prove that the Borel map m(·) is µ−inte-
grable, the Lebesgue dominated convergence theorem doing the rest for establish-
ing (20). From Theorem 3 and constraints (2), the inequality

µ([c0 · · · cn−1] ≤ 1
2n

follows for any c0 · · · cn−1 ∈ Wn. Formula (14) giving τ , shows that m(x) = 1 on
[−1], m(x) = 2s + 1 on As = [(01)s00], m(x) = 2s + 2 on Bs = [(01)s0(−1)] and
B′

s = [(10)s100], and finally m(x) = 2s + 3 on Cs = [(10)s10(−1)]. But

K \ {(01)ω, (10)ω} = [−1] ∪
⋃

s≥0

(As ∪Bs ∪B′
s ∪ Cs),

this union being disjoint. That implies
∫

K

m(x)dx =
1
4

+
∞∑

s=0

(2s + 1)µ(As)

+
∞∑

s=0

(2s + 2)(µ(Bs) + µ(B′
s))

+
∞∑

s=0

(2s + 3)µ(Cs)

≤ 1
4

+
∞∑

s=0

(2s + 1)2−2s−2

+
∞∑

s=0

(2s + 2)(2−2s−2 + 2−2s−3)

+
∞∑

s=0

(2s + 3)2−2s−3

< +∞,

as expected. ¤

We now investigate the case where ∆f can be extended to a continuous function
on K.

Theorem 5. Let f : Z→ R be an additive k-block map, and suppose that ∆f can
be continuously extended to the points α := (01)ω and β := (10)ω. Then

f̃(α) + f̃(β) = f̃(τα) + f̃(τβ).(21)
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Further, the continuous extension of ∆f , still denoted by ∆f , depends on at most
the first 2k coordinates, and

∆f(x) =

{
∆f(α) for x ∈ [(01)b

k+1
2 c],

∆f(β) for x ∈ [(10)b
k+1
2 c].

In particular (∆f) ◦ τ22k+1
= ∆f . Finally,

∆f(α) = f̃(τα)− f̃(α) + ∆f(β),
∆f(β) = f̃(τβ)− f̃(β) + ∆f(α).

Proof. Notice that for m ≥ 1 and x ∈ [(01)m] ∪ [(10)m], formula (14) implies the
important relation τ(σ(x) = σ(τ(x)) Consequently, for any m > bk+1

2 c and any
sequence c0c1c2 · · · ∈ K, we have

∆f((01)m0c0c1c2 · · · ) = f̃(τα)− f̃(α) + ∆f
(
(10)mc0c1c2 · · ·

)
= f̃(τα)− f̃(α) + f̃(τβ)− f̃(β)

+∆f
(
(01)m−10c0c1c2 · · ·

)
.

(22)

Suppose ∆f is continuous at α and β. Taking limits as m → ∞, and using the
continuity of ∆f at α, one gets (21). After m−bk+1

2 c iterations of (22), and using
(21), we find that

∆f
(
(01)m0c0c1 . . .

)
= ∆f

(
(01)b

k+1
2 c0c0c1 . . .

)
.

Similarly,
∆f

(
(10)mc0c1 . . .

)
= ∆f

(
(10)b

k+1
2 cc0c1 . . .

)
.

Taking the limit as m →∞, one gets for any sequence c0c1c2 · · · ∈ K,

∆f(α) = ∆f
(
(01)b

k+1
2 c0c0c1 . . .

)

and
∆f(β) = ∆f

(
(10)b

k+1
2 cc0c1 . . .

)
.

This shows that on [(01)b
k+1
2 c], ∆f has the constant value ∆f(α) and on [(10)b

k+1
2 c]

it has the constant value ∆f(β). For 2p < k, we now consider ∆f on each cylinder
of the form [(01)p00], [(01)p0(−1)], [(10)p0] and [(10)p(−1)]. In view of (14), it
appears that ∆f depends on at most the first 2p+1+k coordinates, but 2p+1+k
is at most 2k for k odd, and at most 2k − 1 if k is even. On the cylinders [00]
and [(−1)0], ∆f depends only on the first k coordinates and finally, on [0(−1)], it
depends on at most the first k + 1 coordinates.
Since for any n ≥ 2 and x ∈ K,

(
τ2n

x
)
i
= xi for 0 ≤ i ≤ n− 2, one has that ∆f is

invariant under τ22k+1
if k is odd, and invariant under τ22k

if k is even.
Finally, from

∆f((01)m0c0c1 . . . ) = f̃(τα)− f̃(α) + ∆f((01)mc0c1 . . . )

and
∆f((10)m0c0c1 . . . ) = f̃(τα)− f̃(α) + ∆f((01)m−10c0c1 . . . ),

one has by taking limits that

∆f(α) = f̃(τα)− f̃(α) + ∆f(β)

and
∆f(β) = f̃(τβ)− f̃(β) + ∆f(α).
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¤

Lemma 4. Let F : K → R in L1(K, µ) such that
∫

K
F (x)dµ(x) = 0 and assume

there exists an integer s > 0 such that

F ◦ τ2s

= F (µ− a.e.)

(in particular F depends only on the first s + 1 variables). Then, there exists a
continuous map g : K → R such that g ◦ τ2s

= g and

F = g ◦ τ − τ (µ− a.e.).

Proof. Let g(x) = F (2s, x) =
∑2s−1

i=0 F (τ ix), then g(x) = g(τx). Hence by ergodic-
ity of τ , the function g must be a constant a.e. with respect to µ. But

∫

K

g(x)dµ(x) = 2s

∫

K

F (x)dµ(x) = 0.

Hence, g = 0 a.e. with respect to µ. Let h(x) = 1
2s

∑2s−1
p=0 F (p, x). Using the cocycle

identity, and the fact that F (2s, x) = 0, one has

h(τx) = h(x)− F (x).

Hence F is a coboundary. Since τ is continuous, and for each 0 ≤ p ≤ 2s − 1
the function F (p, x) is continuous, it follows that h is continuous. Further, by the
cocycle identity, the invariance of F under τ2s

, and the fact that F (2s, x) = 0, we
have h(x) = h(τ2s

x). Hence, h depends on at most the first s+1 coordinates. This
proves the lemma. ¤

We remark that by using character theory one can give another short proof of the
above Lemma. For any non trivial character ψk,n, the invariance of µ under τ gives
the relation

(1− e2πik2s−n

)
∫

K

Fψk,ndµ = 0 ,

which implies
∫

K
Fψk,ndµ = 0 if n > s. Consequently, F is a linear combination

of characters ψk,n with 0 < n ≤ s. If n > 0 (and 0 ≤ k < 2n) then, ψk,n =
1

e2πik2−n−1
(ψk,n ◦ τ − ψk,n). Therefore F has the form g ◦ τ − g where g : K → R

is continuous and satisfies g ◦ τ2s

= g, as required.

Corollary 2. Let f : Z → R be an additive k-block map, and suppose that ∆f
can be continuously extended to K. There exists a continuous map g : K → R
depending on at most the first 2k + 1 coordinates, such that

∆f = g ◦ τ − g.

Proof. The result follows from Lemma 4, Theorem 4 and Theorem 5. ¤

Remark. For k = 1, a straightforward computation shows that if ∆f can be
extend by continuity, then f̃ is constant (and ∆f = 0). For k = 2, relations (i) and
(ii) allow us to determine explicitly f̃ . Up to an additive constant, f̃ is given by
the following table where a and b are any real numbers. Notice that in that case,
(∆f) ◦ τ4 = ∆f . (See Table 4.1)
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c0c1 f̃(c0c1) ∆f(c0c1 · · · )
0 0 0 −b
(−1)0 a −a
0(−1) −a a
0 1 b a
1 0 −b b

Table 1. Continuous ∆-cocycles generated by 2-block maps

4.2. Skew product with ∆-cocycles. Let f be an additive k-block map gener-
ated by the function f̃ . If f cannot be continuously extended at α and β, we set
∆f(α) = ∆f

(
(01)k0ω

)
and ∆f(β) = ∆f

(
(10)k0ω

)
. Define the map f∗ : K → R

as follows

f∗(x) = f̃(0x0x1 . . . xk−2) + f̃(00x0x1 . . . xk−3) + · · ·+ f̃(0k−1x0).

If f̃ is a 1-block map, then f∗ = 0. Set ∆f∗(x) = f∗(τx)−f∗(x), and let G = G(f̃)
be the closed subgroup of R generated by {∆(f + f∗)(n) : n ∈ Z}. Let λG be the
Haar measure on G, and consider the skew product τf̃ : K ×G → K ×G, defined
by

τf̃ (x, γ) = (τx, ∆(f + f∗)(x) + γ) .

It is easy to see that τf̃ is measure preserving w.r.t. the product measure µ ⊗ λG.
Using the cocycle notation, notice that

τn
f̃
(x, γ) = (τnx, ∆(f + f∗)(n, x) + γ).

We are interested in characterizing additive ∆-cocycles such that τf̃ is ergodic.
Using the tools developed by K. Schmidt, the question of ergodicity of τf̃ can
be completely answered by studying the set of essential values E(∆(f + f∗)) of
∆(f + f∗). The set E(∆(f + f∗)) consists of all elements γ ∈ G with the property
that for every neighborhood Vγ of γ and for every Borel subset B of K of positive
µ-measure

µ
( ⋃

n∈Z
B ∩ τ−nB ∩ {

x ∈ K : ∆(f + f∗)(n, x) ∈ Vγ}
)

> 0.

Notice that since ∆f∗ is a τ -coboundary, we have

E(∆(f)) = E(∆(f + f∗)),

where E(∆(f)) is the set of essential values of ∆f .

Remark. For any z ∈ K, any n ≥ 0 and h ≥ 1, since the first k-coordinates of z

and τ2h+k

z are the same,

∆f∗(2h+k, x) =
2h+k−1∑

i=0

∆f∗(τ iz) = f∗(τ2h+k

z)− f∗(z) = 0.

Lemma 5. For any k-block function f , E(f̃) = G(f̃). Moreover, ∆f can be
extended continuously if and only if G(f̃) = {0}.
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Proof. Let γ be any value of ∆(f +f∗). Clearly, if we prove that γ ∈ E(∆(f +f∗)),
then E(∆(f + f∗)) = G. To this end, let e be an integer with SSB-expansion e =
e0 . . . e`0ω such that γ = ∆(f+f∗)(e). For any non empty cylinder C = [x0 · · ·xh−1]
in K, consider the cylinder

Ce = {y ∈ C , yh · · · yh+k−1 = 0k, yh+k · · · yh+2k+`+1 = e0 . . . e`0k+1}.
Then, µ(Ce) > 0. Since τ−2h+1

C = C, we see that Ce ⊂ C ∩ τ−2h+k

C = C. Now,
for any y ∈ Ce, we have ∆f∗(2h+k, x) = 0. Thus,

∆(f + f∗)(n, y) =
2h+k−1∑

i=0

∆f(τ iy)

=
m2h+k (z)∑

i=0

f̃ (σiτ2h+k

y)− f̃(σiy),

where m2h+k(z) = max
(
m(z), . . . , m(τ2h+k−1(z))

)
. By definition of Ce, one has

m2h+k(z) ≤ h + k + l + 2, and since the first h + k coordinates of z and τ2h+k

(z)
are the same, one has

∆(f + f∗)(2h+k, y) =
h+k+`+2∑

i=h+1

f̃(σiτ2h+k

y)− f̃(σiy)

=
k−1∑

i=1

f̃(0k−iτe)− f̃(0k−ie)

+
`+2∑

i=0

f̃(σiτe)− f̃(σie)

= ∆f∗(e) + ∆f(e) = γ.

Let ργ be the map defined on the Borel σ-algebra B of K by

ργ(B) = µ
( ⋃

n∈Z
τ−n(B) ∩B ∩ {x ∈ K : ∆(f + f∗)(n, x) = γ}

)

for B ∈ B. Then ργ is subadditive, and the above computations show that for all
cylinder sets C,

ργ(C) ≥ µ(Ce) ≥
(

1
4

)2k+`+2

µ(C).

Hence this inequality also holds for all finite disjoint unions of cylinders, i.e., for all
elements of the generating algebra B0 of B. Setting

C = {B ∈ B : ργ(B) ≥ ( 1
4 )2k+`+2µ(B)},

then it is easily checked that C is a monotone class containing B0, hence C = B.
Therefore γ belongs to E(∆(f + f∗).

Now suppose that ∆f is continuous on K, then by Corollary 2 there is a continuous
map g : K → R such that

∆f(x) = g(τx)− g(x).
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Thus ∆f and ∆(f +f∗) are coboundaries, implying that E(∆(f +f∗)) = E(∆f) =
{0} (see [Sch]) and from the first part of the lemma G(f̃) = {0}. Conversely, if
G(f̃) = {0} then ∆f = −∆f∗. Hence ∆f is continuous. ¤

The following theorem is a simple corollary of the above lemma, see [Sch].

Theorem 6. If ∆f is not continuous, then the skew product (K × G, τf̃ , µ ⊗ λG)
is not trivial (i.e., G 6= {0}) and ergodic.

Remark. Since ∆f∗ = g ◦ τ − g, with g continuous, Ig : K × G → K × R
defined by Ig(x, γ) = (x, γ − g(x)) is a continuous metrical isomorphism between
(X ×G,µ⊗ λG, τf̃ ) and (X × R, (µ⊗ λG) ◦ I−1

g , τ ′
f̃
) where τ ′

f̃
is given by

τ ′
f̃
(x, γ) = (τx, ∆f(x) + γ)

and the support of (µ⊗ λG) ◦ I−1
g is exactly Ig(K ×G). Recall that g is constant

on cylinder sets of length k + 1.

4.3. Examples. (1) For additive 1-block maps f , one has f∗ = 0 and by the above
remark τf̃ is ergodic if and only if f̃ is not constant. If r, s ∈ R and

f̃(x) =





r if x0 = 1
s if x0 = −1
0 if x0 = 0,

then G(f̃) = E(∆f) = rZ+ sZ. Hence, all possible closed subgroups of R can be
realized by the group G(f̃). For instance, if r = s 6= 0, then G(f̃) = rZ and if r,
s are rationally independent, then G(f̃) = R. Two 1-block maps are of particular
interest. The first one is the Hamming weight function w, given by

w(n) =
∞∑

i=0

|ci| = # nonzero SSB digits of n

if n = c0c1 . . . cm0ω is the SSB-expansion of n. From formula (14) one easily sees
that

∆w(n) = w(n + 1)− w(n) ∈ {−1, 0, 1};
more precisely ∆w = −1 on [−1] and [(10)m10(−1)], ∆w = 1 on [(01)m00], and
∆w = 0 on [(01)m0(−1)] ∪ [(01)m100]. Extending ∆w on K, one has that ∆w is
generated by the 1-block map w̃ : K → R, defined by w̃(x) = |x0|. ∆w is not
continuous at α = (01)ω and β = (10)ω and G(w̃) = E(∆w) = Z. The second
1-block map is the sum-of-digits s defined by

s(n) =
∞∑

i=0

ci.

Formula (14) shows that ∆s = 1 on [−1], ∆s = −2m on [(01)m0(−1)]∪ [(10)m100],
∆s = −2m + 1 on [(01)m00] and ∆s = −2m− 1 on [(10)m10(−1)]. Obviously, ∆s
is not continuous at α and β and G(w̃) = E(∆w) = Z.

(2) Table 1 gives all 2-block maps which are coboundaries. Theorem 8 (in the next
section) gives examples of 2-block maps which are not coboundaries.
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4.4. Generalization. In the definition of k-block functions we may replace R by
any locally compact metrizable separable abelian group A. The definition of essen-
tial values remain unchanged and the tools developed in [Sch] can be used. In this
general setting, Theorem 5 remains unchanged but Corollary 5 cannot be applied
except for particular group like A = Rs. The first part of Lemma 5 still holds, that
is to say

G(f̃) = E(∆f)(23)

and as a consequence, if ∆f is a coboundary, then G(f̃) = {0A}, hence ∆f = −∆f∗

on Z, so that ∆f extends continuously on K. Now, Theorem 6 is true in full
generality. It is worth to notice that if ψ : A → A′ is a group homomorphism, then
ψ ◦ f is the k-block function associated to = ψ ◦ f̃ and formula (23) yields

G(ψ ◦ f̃) = E(∆(ψ ◦ f)) = ψ(G(f̃)).

Using the fact that ∆f is always µ-continuous (i.e. the set of discontinuity points
is µ negligible, see [Ku-Nie]), Theorem 6 in [Li2] and classical results on generic
points for skew products (see [Li1] for example) give the following Theorem.

Theorem 7. With the above notations, if A is compact, then τf̃ is uniquely ergodic
and all points are generic; in particular, for any bounded µ ⊗ λG-continuous map
ϕ : K ×G → C, one has

lim
N

1
N

∑

0≤n<N

ϕ(J(n), f(n)) =
∫

K×G

ϕd(µ⊗ λG).

To end this section, let us consider the Z2-valued 1-block functions (w, s) : n 7→
(w(n), s(n)). The above computations show that G((w̃, s̃)) = Z2 hence the skew
product τ(w̃,s̃) is ergodic and, for any irrational numbers η, ξ, the sequence

n 7→ (w(n)η, s(n)ξ)

is uniformly distributed mod Z2 (and in fact, well distributed in the sense of
[Ku-Nie]). Analogous results hold if η or ξ are rational. The details are left to
the reader.

5. σ-finite invariant measures

In this section we use the Markov chain structure of K to build Markov shift in-
variant measures ν′ for which τ is non-singular, and there is no τ -invariant measure
which is equivalent to ν′, except if ν′ = ν. Such a result is a natural generalization
of a theorem of Arnold [Arn]. To do that we study some Maharam transformations.
For any given positive probability vector p = (p−1, p0, p1), consider the Markov
chain with state space S = {−1, 0, 1} and transition matrix

Π(p) :=




0 1 0
p−1 p0 p1

0 1 0




which we denote by Π if the reference to p is unambiguous. The stationary Markov
measure associated to Π has initial distribution q = ( p−1

2−p0
, 1

2−p0
, p1

2−p0
), which we

denote by νp. From the classical theory of Markov chains, we see that (K, σ,B, νp)
is ergodic and more precisely is exact i.e., the tail σ-algebra

⋂
n≥1 σ−nB is trivial.
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Theorem 8. The measure νp is non-atomic. Moreover, let f : Z → R be the
additive 2-block function defined by f̃ : K → R, with f̃(0(−1)) = log p−1, f̃(01) =
log p1 and f̃ is zero otherwise. Let g : K → R defined by g(x) = |x0|. Then

log
(

dνp ◦ τ

dνp
(x)

)
= ∆(f + f∗)(x)− (g(τx)− g(x)) log p0.(24)

More explicitly,

g(τx)− g(x) =
{

1 if x0 = 0
−1 otherwise,

and

dνp ◦ τ

dνp
(x) =





p0
p -1

if x ∈ [−1];
p1
p0

(
p -1
p1

)m

if x ∈ [(01)m00];

p0

(
p -1
p1

)m

if x ∈ [(01)m0(−1)];
1
p0

(
p -1
p1

)m

if x ∈ [(10)m100];
p0
p1

(
p -1
p1

)m

if x ∈ [(10)m10(−1)];

(25)

with m ≥ 0.

Proof. The proof that νp is non-atomic is left to the reader (recall that the coor-
dinates of p are positive). Formula (25) follows from (14), and the fact that the
Radon-Nikodym derivative is constant on cylinders of the form [−1], [(01)m00],
[(01)m0(−1)], [(10)m100], [(01)m10 − 1]. Now, formula (24) follows from the defi-
nition of f̃ and formula (25). ¤

Remark. If one coordinate of the probability vector p is 0, then the calculations in
Theorem 8 show that the derivative dνp◦τ

dνp
takes the value 0 on at least one cylinder

set of positive νp measure, and the value ∞ on at least one cylinder of positive νp

measure. In other words, the positivity of p is necessary and sufficient for νp ◦ τ to
be equivalent to νp, and so τ is non-singular with respect to νp.

Proposition 3. The map τ is an invertible, conservative, ergodic non-singular
transformation of (K, νp).

Proof. Due to the above results, we only need to prove the ergodicity. Let B be a
Borel set of K such that τ−1(B) equals B up to a set of νp-measure 0. Without
loss of generality, we may assume that τ−1(B) = B. Hence, for any b = b0b1b2 · · ·
in B, we have τ−b[n]b = 0nbnbn+1bn+2 · · · ∈ B. Now for any x0 · · ·xn ∈ An such
that x0 . . . xn−1bnbn+1bn+2 · · · is an element of K, one has that x = τ−b[n]+x[n]b,
and hence x ∈ B. Consequently, for any integer n ≥ 0, we have B = σ−n(σn(B)).
In particular, B is measurable with respect to the tail σ-algebra

⋂
n≥1 σ−nB which

is {∅,K} mod νp by exactness of (K, σ,B, νp). Therefore, νp(B) is 0 or 1. ¤

Theorem 9. The Markov measure νp admits no τ -invariant equivalent measure
unless p = ( 1

4 , 1
2 , 1

4 ).

Proof. Suppose ρ is a τ -invariant measure on K which is equivalent to νp. Then
there exists a measurable function h which is positive νp a.e. such that

dνp ◦ τ

dνp
=

h ◦ τ

h
νp-a.e.
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From formula (24), one sees that ∆(f) is a coboundary, and by a result of K.
Schmidt this is equivalent to saying that the group of essential values of ∆(f) is
reduced to {0}. By Lemma 5, ∆f is continuous. Using Table 1 (or Theorem 5), we
derive that log p−1 = log p1 = 2 log p0, hence p1 = p−1 = p2

0, but p−1 + p1 + p0 = 1
(and p0 ≥ 0) so that p0 = 1

2 and p−1 = p1 = 1
4 . ¤
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