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Abstract

Various supposedly local hidden variables models for the singlet
correlations exploit the detection loophole, or other loopholes con-
nected with post-selection on coincident arrival times. I consider the
connection with a probabilistic simulation technique called rejection-
sampling, and pose some natural questions concerning what can be
achieved and what cannot be achieved with local (or distributed) re-
jection sampling.
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1 Introduction

It has been well known since Pearle (1970) that local realistic models can
explain the singlet correlations when these are determined on the basis of
post-selected coincidences rather than on pre-selected event pairs. These
models are usually felt to be unphysical and conspiratorial. However, Ac-
cardi, Imafuku and Regoli (2002), Thompson and Holstein (2002), and others
have argued that their models could make physical sense. Further examples
are provided by Hess and Philipp (2001a,b), Kracklauer (2002), Sanctuary
(2003), in many cases unwittingly! Already, Gisin and Gisin (1999) show
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that these models can be simple and elegant, and should not be thought of
as being artificial.

In this paper I do not want to enter into philosophical debate, nor address
questions of physical legitimacy of these models. Instead I would like to
extract a mathematical kernel from this literature, exposing some natural,
probably open, problems concerning properties of these models. I would
like to pose these problems to experts in probability theory (though possibly
some answers are already known to experts on Bell-type experiments and on
distributed quantum computation).

I will therefore use the language of Applied Probability: simulation,
rejection-sampling, and so on; and avoid reference to physics or philosophy.

2 The Problem

Suppose we want to simulate two random variables X, Y from a joint prob-
ability distribution depending on two parameters a, b. To fix ideas, let me
give two key examples:

Case 1 (The Singlet Correlations). X, Y are binary, taking the values
±1. The parameters a, b are two directions in real, three dimensional space.
We will represent them with two unit vectors in R3 (two points on the unit
sphere S2). The joint density of X, Y (their joint probability mass function)
is

Pra,b{X = x, Y = y} = p(x, y; a, b) =
1

4

(
1− xy a · b

)
, (1)

where a · b stands for the inner product of the unit vectors a and b and
x, y = ±1. Note that the marginal laws of X and Y are both Bernoulli (1

2
)

on {−1, +1}, and their covariance equals their correlation equals −a · b. In
particular, the marginal law of X does not depend on b nor that of Y on a.

Case 2 (The Singlet Correlations Restricted). This is identical to the
previous example except that we are only interested in a and b taking values
in two particular, possibly different, finite sets of points on S2.

Next I describe two different protocols for “distributed Monte-Carlo simula-
tion experiments”; the difference is that one allows rejection sampling, the
other does not. The idea is that the random variables X and Y are going to
be generated on two different computers, and the inputs a, b are only given
to each computer separately. The two computers are to generate dependent
random variables, so they will start with having some shared randomness be-
tween them. The programmer is allowed to start with any number of random
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variables, distributed just how he likes, for this purpose. Cognoscenti will
realize that it suffices to have just one random variable, uniformly distributed
on the interval [0, 1], or equivalently, an infinite sequence of fair independent
coin tosses. There is no need for the two computers to have access to fur-
ther randomness—they may as well share everything they might ever need,
separately or together, from the start.

The difference between the two protocols, or two tasks, is that the first
has to get it right first time, or if you prefer, with probability one. The
second protocol is allowed to make mistakes, as long as the mistakes are also
“distributed”. Another way to say this, is that we allow “distributed rejection
sampling”. Moreover, we allow the second protocol not to be completely
accurate. It might be, that the second protocol can be made more and
more accurate at the expense of a smaller and smaller acceptance (success)
probability. This is precisely what we want to study. Success probability and
accuracy can both depend on the parameters a and b so one will probably
demand uniformly high success probability, and uniformly good accuracy.

Task 1 (Perfect Distributed Monte-Carlo). Construct a probability dis-
tribution of a random variable Z, and two transformations f and g of Z,
each depending on one of the two parameters a and b, such that

f(Z; a), g(Z; b) ∼ X, Y for all a, b. (2)

The symbol ‘∼’ means ‘is jointly distributed as’, and X, Y on the right hand
side come from the prespecified (or target) joint law with the given values of
the parameters a and b.

Task 2 (Imperfect Distributed Rejection Sampling). As before, but
there are two further transformations, let me call them D = δ(Z, a) and
E = ε(Z; b), such that δ and ε take values 1 and 0 or if you like, ACCEPT
and REJECT, and such that

f(Z; a), g(Z; b) | D = 1 = E ∼̇ X, Y. (3)

The symbol ‘|’ stands for ‘conditional on’, and ‘∼̇’ means ‘is approximately
distributed as’. The quality of the approximation needs to be quantified;
in our case, the supremum over a and b of the variation distance between
the two probability laws could be convenient (a low score means high qual-
ity). Moreover, one would like to have a uniformly large chance of accep-
tance. Thus a further interesting score (high score means high quality) is
infa,b Pr{D = 1 = E}.
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3 The Solutions

By Bell (1964) there is no way to succeed in Task 1 for Case 1. Moreover,
there is no way to succeed in Task 1 for Case 2 either, for certain suitably
chosen two-point sets of values for a and b.

Consider now Task 2, and suppose first of all that there are only two
possible different values of a and b each (Case 2). Let the random variable
Z consist of independent coin tosses coding guesses for a and b, and a re-
alization of the pair X, Y drawn from the guessed joint distribution. The
transformations δ and ε check if each guess is correct. The transformations
f and g simply deliver the already generated X, Y . One obtains perfect ac-
curacy with success probability 1/4. It is known that a much higher success
probability is achievable at the expense of more complicated transformations.

Now consider Task 2 for Case 1. So there is a continuum of possible values
of a and b. Note that the joint law of X, Y depends on the parameters a, b
continuously, and the parameters vary in compact sets. So one can partition
each of their ranges into a finite number of cells in such a way that the joint
law of X, Y does not change much while each parameter varies within one cell
of their respective partitions. Moreover, one can get less and less variation
at the expense of more and more cells. Pick one representative parameter
value in each cell.

Now, fix one of these pairs of partitions, and just play the obvious gener-
alization of our guessing game, using the representative parameter values for
the guessed cells. If each partition has k cells and the guesses are uniform
and independent, our success probability is 1/k2, uniformly in a and b. We
can achieve arbitrarily high accuracy, uniformly in a and b, at the cost of
arbitrarily low success probability.

However, Gisin and Gisin (1999) show we can do much better in the case
of the singlet correlations:

Theorem 1 (Perfect conditional simulation of the singlet correla-
tions). For Case 1 and Task 2, there exists a perfect simulation with success
probability uniformly equal to 1/2.

See Gisin and Gisin (1999) for the very pretty details. Can we do better
still? What is the maximum uniformly achievable success probability?

It would be interesting to study these problems in a wider context. Con-
sider arbitrary biparameterized joint laws p; extend from pairs to triples,
. . .

The joint laws coming from quantum mechanics always satisfy no action
at a distance (“no Bell telephone”), i.e., the marginal of X does not depend
on b nor that of Y on a. This should obviously be favourable to finding
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solutions to our tasks. Does it indeed play a role in making these simulations
spectacularly more easy for quantum mechanics, than in general? Does “no
action at a distance” ensure that we can find a perfect solution to Task
2 with success probability uniformly bounded away from 0? Am I indeed
correct in thinking that one find probability distributions p with action at
a distance, depending smoothly on parameters a, b, for which one can only
achieve perfection in the limit of zero success probability?

4 Variant 1: Coincidences

Instead of demanding that δ and ε in Task 2 are binary, one might allow
them to take on arbitrary real values, and correspondingly allow a more rich
acceptance rule. Suggestively changing the notation to suggest times, define
now S = δ(Z; a) and T = ε(Z; b). Instead of conditioning on the separate
events D = 1 and E = 1 condition on the event |S − T | < c where c is
some constant. Obviously the new variant contains the original, so Variant
Task 2 has become easier. Accardi, Imafuku and Regoli (2002) tackle this
variant task, claiming that it has nothing to do with detector efficiency, but
on the contrary is intrinsic to quantum optics, that one will have to post-
select on coincidences in arrival times of entangled photons. By Heisenberg
uncertainty, photons will always have a chance to arrive (or to be measured)
at different times. But then their joint state is not the singlet state, and if
we collect data on all pairs (supposing 100% detector efficiency) we would
not recover the singlet correlations.

Conjecture 1 (No improvement from coincidences). There is no gain
from Variant Task 2 over the original.

There seems to be a connection with the work of Massar, Bacon, Cerf and
Cleve (2001) on classical simulation of quantum entanglement using classical
communication. After all, checking the inequality |S−T | < c is a task which
requires communication between the two observers.

5 Variant 2: Demanding More

Instead of making Task 2 easier, as in the previous section, we can try to
make it harder by demanding further attractive properties of the simulated
joint probability distribution of D, X,E, Y . For instance, Gisin and Gisin
(1999) show how one can achieve nice symmetry and stochastic independence
properties at the cost of an only slightly smaller success probability 4/9 =
(2/3)2. In fact, this solution has even more nice properties, as follows.
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One might like the simulated X to behave well, when D = 1, whether or
not E = 1, and similarly for Y .

Suppose we start with a joint law of X, Y depending on a, b as before.
Let η be a fixed probability. Modify Task 2 as follows: we require not only
that given D = 1 = E, the simulated X, Y have the prespecified joint dis-
tribution, but also that conditional on D = 1 and E = 0, the simulated
X has the prespecified marginal distribution, and also that, conditional on
D = 0 and E = 1, the simulated Y has the prespecified marginal distribu-
tion, and also that D and E are independent Bernoulli(η). Another way to
describe this is by saying that under the simulated joint probability distri-
bution of X, D, Y, E, we have statistical independence between D, E, and
(X, Y ), with (X, Y ) distributed according to our target distribution and D
and E Bernoulli(η), except that we don’t care about X on {D = 0} nor
about Y on {E = 0}

Gisin and Gisin (1999) show that this Variant Task 2 can be achieved for
our main example Case 1, with η = 2/3. It is known from considerations
of the Clauser and Horne (1974) inequality that it cannot be done with
η > 2/(1 +

√
2) ≈ 0.828. It seems that the precise boundary is unknown.

In fact, for some practical applications, achieving this task is more than
necessary. A slightly more modest task is to simulate the joint probability
distribution just described, conditionally on the complement of the event
{D = 0 = E}, i.e. conditional on D = 1 or E = 1. This means to say
that we also don’t care what is the simulated probability of {D = 0 = E}.
Gisin and Gisin (1999) show that this can be achieved with a variant of the
same model, and with success probability 100% (i.e., the simulation never
generates an event {D = 0 = E}), and η = 2/3.
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