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Abstract

The strength of a nonlocality proof is examined in terms of the amount of evidence that the corre-
sponding experiment provides for the nonlocality of Nature. An experimental implementation of such a
proof gives data whose statistics will differ from the statistics that are possible under a local description
of Nature. The strength of the experiment is quantified by the expected deviation between the observed
frequencies, which are given by the laws of quantum mechanics, and the closest possible local theory.
Varying the frequencies of the measurement settings gives different experimental implementations of a
nonlocality proof, giving each implementation its own strength. The statistical strength of a nonlocality
proof is thus determined by the experimental implementation that maximizes its statistical deviation
from all possible local theories.

It is shown that the deviation between quantum mechanics and a local theory is best expressed by
the Kullback-Leibler distance between the probability distributions over the measurement outcomes that
the respective theories predict. Specifically, it is proven that the Kullback-Leibler distance is optimal for
three methods of hypothesis testing: frequentist, Bayesian, and information theoretic hypothesis testing.

The nonlocality proofs that are analyzed in this article are: Bell’s original proof, an improved version
of Bell’s proof, the CHSH inequality, Hardy’s proof, a proof by Mermin, and the 3-party GHZ inequality.
The outcome is that the GHZ proof is an order of magnitude stronger than all other proofs, while of the
two party proofs, the CHSH inequality is the strongest.
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1 Introduction

A plethora of proofs exist of Bell’s theorem (“quantum mechanics violates local realism”) encapsulated in
inequalities and equalities of which the most celebrated are those of Bell [4], Clauser, Horne, Shimony and
Holt (CHSH) [7], Greenberger, Horne and Zeilinger (GHZ) [13], Hardy [18], and Mermin [23]. Competing
claims exist that one proof is stronger than another, for instance, a proof in which quantum predictions
having probabilities 0 or 1 only are involved, is often said to be more strong than a proof which involves
quantum predictions of probabilities between 0 and 1. Now one has to distinguish between a mathematical
proof that the predicted probabilities of quantum theory are incompatible with local realism, and an
experimental proof that physical reality conforms to those predictions and hence too is incompatible with
local realism. That some outcomes should have zero probability, also needs experimental confirmation.
If the event occurs just once, one can rule out that theory. However even if the outcome is never observed
in millions of replications of the experiment in question, we never know for sure that it is impossible.

To put it another way, the strength of a mathematical proof is measured in terms of the weakness of
its assumptions. The strength of an experimental proof is measured in statistical terms: how sure do we
become that a certain theory is false, after observing a certain violation from that theory, in a certain
number of experiments.

Our Game In fact, when comparing different potential experiments, various other aspects also come
into play, such as: how easy is it to prepare certain types of particles in certain states? Can we arrange
to have the time and spatial separations which are necessary to make the results convincing? Can we
implement the necessary random changes in settings per trial, quickly enough? We shall neglect all these
practical aspects and just analyze the statistical aspect of how much statistical information is provided
per independent trial, in a given design corresponding to a given proof of Bell’s theorem, independently
of the costs and time necessary per trial. We propose to further analyze this from a game theoretic
point of view. The two players involved are the pro-quantum theory experimenter QM, and a pro-local
realism theoretician LR. The experimenter QM is armed with a specific proof of Bell’s theorem. A
given proof—Bell, CHSH, Hardy, Mermin, GHZ—involves a collection of equalities and inequalities
between various experimentally accessible probabilities. The proof specifies a given quantum state (of a
collection of entangled qubits, for instance) and experimental settings (orientations of polarization filters
or Stern-Gerlach devices), such that the equalities hold under QM but are impossible under LR, or such
that the inequalities hold under LR but are violated under QM. The QM experimenter still has a choice
of the relative frequency, with which the different combinations of settings will be applied, in a long
sequence of independent trials. In other words, he must still decide how to allocate his resources over
the different combinations of settings. At the same time, the local realist can come up with all kinds
of different local realistic theories, predicting different probabilities for the outcomes given the settings.
She might put forward different theories in response to different specific experiments. Thus the quantum
experimenter will choose that probability distribution over his settings, for which the best local realistic
model explains the data worst, when compared with the true (quantum mechanical) description.

In the past this feature has been quantified by simply saying: the largest deviation in the Bell
inequality is attained with such and such filter settings, and hence the experiment which is done with
these settings gives (potentially) the strongest proof of nonlocality. The argument is however not very
convincing. One should take account of the statistical variability in finite statistics (physicists’ jargon
for finite sample sizes). The experiment which might confirm the largest absolute deviation from local
realistic theories, might be subject to the largest standard errors, and therefore be less convincing than
an experiment where a much smaller deviation can be proportionally much more accurately determined.

Alternatively, the argument has just been that with a large enough sample size, even the smallest
deviation between two theories can be made firm enough. For instance, [23] has said in the context of a
particular example

“. . . to produce the conundrum it is necessary to run the experiment sufficiently many times
to establish with overwhelming probability that the observed frequencies (which will be close
to 25% and 75%) are not chance fluctuations away from expected frequencies of 33% and 66%.
(A million runs is more than enough for this purpose). . . ”

We want to replace the words “sufficiently”, “overwhelming”, “more than enough” with something more
scientific. And as experiments are carried out which are harder and harder to prepare, it becomes
important to design them so that they give conclusive results with the smallest possible sample sizes.
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Two Paradigms of Statistics Matters are complicated by the fact that there are several statistical
paradigms around, each prescribing different methods for designing experiments. The two prevailing
paradigms are the ‘frequentist’ or ‘orthodox’ approach and the ‘Bayesian’ approach. Initial work in our
direction has been done by [26] who adopts a Bayesian type of approach. In contrast1, we provide a
method which is neutral towards whatever kind of statistical paradigm one chooses, but which can be
harnessed to provide useful information for designers of experiments, whether they will be frequentist or
Bayesian. We choose an information–theoretic quantification, namely the Kullback–Leibler divergence
(also known as information deficiency or relative entropy [8]). It turns out that, within our context, this
notion captures the idea of ‘statistical strength’ both in the Bayesian and in the frequentist analysis.
For a given type of experiment, we consider the game in which the experimenter wants to maximize
the divergence, while the local theorist looks for theories, which minimize it. The experimenter’s game
space is the collection of probability distributions over joint settings, the local realist’s game space is
the space of local realistic theories. This game defines an experiment, such that each trial (assuming
quantum mechanics is true) provides on average, the maximal support (both under the Bayesian and
under the frequentist definition of ‘support’) for quantum theory against the best which local realism can
provide, at those settings and for the corresponding true (quantum mechanical) probabilities. As will
be explained, the amount of support provided on average by each trial, can be converted into numbers
which a frequentist or a Bayesian can understand.

Statistical Strength of Nonlocality Proofs Since we can compare the statistical strength of
each type of experiment, we can conclude by determining whether the Bell, CHSH, Hardy, GHZ, or
Mermin proof, can yield most strong experimental evidence against local realism. Moreover, we can
search more widely, for the best ‘CHSH style proof’, for instance, whereby we now also vary the settings
or the quantum state, to produce the best game for QM. Similarly one could search more widely among
‘GHZ style proofs’. It turns out that the original CHSH proof is much stronger than the original Hardy
proof. Which CHSH-style proof is strongest, remains to be determined.

The GHZ proof was the first of a new class of proofs of Bell’s theorem, “without inequalities”. It
specifies a state and collection of settings, such that certain QM probabilities are all zero or one, while
this is impossible under LR. Now we would argue that this proof contains a hidden inequality, which is
actually much more important. Suppose one could approximate the QM probabilities of zero and one,
arbitrarily well, by appropriate LR theories, even if no LR theory would exactly reproduce the zero’s
and ones. Then no amount of experimentation could ever strictly rule out LR. However it is a fact, that
there exists a positive ε such that any local realist theory which comes within ε of all the equalities but
one, is forced to deviate by more than ε in the last. Thus, accompanying the GHZ style proof without
inequalities, is an implied inequality, and it is this latter inequality that can be tested experimentally.

It should be noted that our approach is nonsymmetric between quantum mechanics and local realism.
There is only one quantum theory, and we believe in it, but we must arm ourselves against any and all
local realists. We leave the corresponding analysis for a local realist who believes in her theory, to that
person to develop.

Related Work by Peres Earlier work by Peres [26] describes the same viewpoint on the strength
of nonlocality proofs. Our work differs in that we allow the experimentalist to optimize her experimental
settings, whereas [26] assumes that the frequencies over the measurement settings is uniform.

2 Formal Setup

A basic nonlocality proof (“quantum mechanics violates local realism”) has the following ingredients.
There are two parties A and B, who can each dispose over one of two entangled qubits. They may each
choose out of two different measurement settings; let us denote these by “m0” and “m1”. In each trial
of the experiment, one randomly samples from the four different joint settings. In each trial, A and B
each observe one of two different binary outcomes, say “F” (false) and “T” (true). Quantum mechanics
enables us to compute the joint probability distribution of the outcomes, as function of the measurement
settings and of the joint state of the two qubits. Thus possible design choices are: the state of the
qubits, the values of the settings; and the probability distribution over the settings. More complicated
experiments may involve more parties, more settings, and more outcomes. Such a generalized setting is
formalized in Appendix A. In the main text, we focus on the basic 2× 2× 2 case.

1Our work also differs from and extends [26] in a number of other ways; see the introduction of this article.
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Now under local realism it is possible to talk about “the outcome which A would have observed, if
she had used setting 1”, independently of which setting was used by B and indeed of whether or not A
actually did use setting 1 or 2. Thus we have four binary variables, which we will call X1, X2, Y1 and Y2.
Here, as in the remainder of this paper, variables named X correspond to A’s observations, and variables
named Y correspond to B’s observations. Thus, “Y1 = F” denotes that “if B had chosen measurement
setting 1, he would have observed outcome F”.

Below we introduce notation for all ingredients involved in nonlocality proofs.

2.1 Frequency of Measurement Settings

Random variable A denotes the measurement setting at party A. Random variable B denotes the
measurement setting at party B. Both A and B take values in {1, 2}. QM and LR must agree on the
distribution σ on (A, B), giving the probabilities (and, after many repetitions of the experiment, the
frequencies) witch which each measurement setting is sampled. The distribution σ is identified with its
probability vector σ = (σ11, σ12, σ21, σ22) ∈ Σ, and Σ is the unit simplex in R4 defined by

Σ :=

8<:(σ11, σ12, σ21, σ22) |
X

a,b∈{1,2}

σab = 1, for all a, b : σab ≥ 0

9=; . (1)

We use Σuc to denote the set of vectors representing uncorrelated distributions in Σ. Formally, σ ∈ Σuc

if and only if σab = (σa1 + σa2)(σ1b + σ2b) for all a, b ∈ {1, 2}.

2.2 Measurement Outcomes

Random variable X denotes the set of possible experimental outcomes at party A; random variable Y
denotes this set at party B. X and Y take values in {F,T}, F standing for ‘false’ and T standing for
‘true’. Thus, the statement ‘X = F, Y = T’ and denotes the event that party A observed F and party
B observed T.

The distribution of (X, Y ) depends on the chosen setting (a, b) ∈ {1, 2}2. Hence, the state of the
entangled qubits determines four conditional distributions Q11, Q12, Q21, Q22 for (X, Y ), one for each
joint measurement setting. Qab is the distribution of (X, Y ) given that measurement setting (a, b) has
been chosen. For example, Qab(X = F, Y = T) abbreviated to Qab(F,T), denotes the probability that
party A observes F and party B observes T, given that the device of A is in setting a and the device of
b is in setting b. According to QM, the outcome (X, Y ) of a single experiment is then distributed as Qσ

defined by Qσ(X = x, Y = y, A = a, B = b) := σabQab(X = x, Y = y).

2.3 Definition of Nonlocality Proof

A non-locality proof for 2 parties, 2 measurement settings per party, and 2 outcomes, is identified with
an entangled quantum state of two qubits (realized, by, e.g., two photons) and two measurement devices
(e.g., polarization filters with some fixed orientation angles). Everything about the quantum state and
the measurement devices that is relevant for the probability distribution on outcomes of experiments
can be summarized by the four distributions Qab on (X, Y ), (a, b) ∈ {1, 2}2. Henceforth, we will simply
identify a 2× 2× 2 non-locality proof with the vector of distributions Q = (Q11, Q12, Q21, Q22).

This definition can be extended in an entirely straightforward manner to settings with more than two
outcomes, parties and measurement settings per party. A formal definition can be found in Appendix A

We call a non-locality proof Q = (Q11, Q12, Q21, Q22) proper if and only if it violates local realism,
i.e. if there exists no local realist distribution π such that Pab;π(·) = Qab(·) for all (a, b) ∈ {1, 2}2.

2.4 Local Realist Theories

The local realist (LR) may provide any ‘local’ theory she likes to explain the results of the experiments.
According to LR, each experiment determines values for the four random variables (X1, X2, Y1, Y2). For
a ∈ {1, 2}, Xa ∈ {F,T} denotes the outcome that party A would have observed if the measurement
setting at A had been a. Similarly, for b ∈ {1, 2}, Yb ∈ {F,T} denotes the outcome that party B would
have observed if the measurement setting at B had been b.

A local theory π may be viewed as a probability distribution for (X1, X2, Y1, Y2). Formally, we
define π as a 16-dimensional probability vector with indices (x1, x2, y1, y2) ∈ {F,T}4. By definition,
Pπ(X1 = x1, X2 = x2, Y1 = y1, Y2 = y2) := πx1x2y1y2 . For example, πFFFF denotes LR’s probability
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that, in all possible measurement settings, A and B would both have observed F. The set of local theories
can thus be identified with the unit simplex in R16, which we will denote by Π.

Recall that the quantum state of the entangled qubits determines four distributions over measurement
outcomes Qab(X = ·, Y = ·), one for each joint setting (a, b) ∈ {1, 2}2. Similarly, each LR theory π ∈ Π
determines four distributions Pab;π(X = ·, Y = ·). These are the marginal distributions, according to the
local realist theory π, of random variables (X, Y ) given that setting (a, b) has been chosen. The value
Pab;π(X = ·, Y = ·) is defined as:

Pab;π(X = x, Y = y) :=
X

x1,x2,y1,y2∈{F,T}
xa=x;yb=y

πx1x2y1y2 . (2)

According to LR, the outcome of a single experiment is then distributed as Pσ;π defined by Pσ;π(X =
x, Y = y, A = a, B = b) := σabPab;π(X = x, Y = y).

3 The Nonlocality Proofs

In this section we briefly describe the five celebrated nonlocality proofs for which we will compute the
statistical strength. In Appendix C, we provide further details about the entangled quantum states that
give rise to the violations of the various inequalities.

Let us interpret the measurement outcomes F and T in terms of Boolean logic, i.e. F is “false” and
T is “true”. We can then use Boolean expressions such as X2&Y2, which evaluates to true whenever
both X2 and Y2 evaluate to ‘true’, i.e. when both X2 = T and Y2 = T. We derive the proofs by
applying the rule that if the event X = T implies the event Y = T (in short “X =⇒ Y ”), then
Pr(X) ≤ Pr(Y ). In similar vein, we will use rules like 1

2
[Pr(X) + Pr(Y )] ≤ Pr(X ∨ Y ) ≤ Pr(X) + Pr(Y )

and 1− Pr(¬X)− Pr(¬Y ) ≤ 1− Pr(¬X ∨ ¬Y ) = Pr(X&Y ) ≤ 1
2
[Pr(X) + Pr(Y )].

As an aside we want to mention that the proofs of Bell, CHSH and Hardy all contain the following
argument, which can be traced back to the nineteenth century logician Boole (1854). Consider four
events such that ¬B ∩ ¬C ∩ ¬D =⇒ ¬A. Then it follows that A =⇒ B ∪ C ∪ D. And from this,
it follows that Pr(A) ≤ Pr(B) + Pr(C) + Pr(D). In the CHSH argument and the Bell argument, the
events concern the equality or inequality of one of the Xi with one of the Yj . In the Hardy argument,
the events concern the joint equality or inequality of one of the Xi, one of the Yj , and a specific value F
or T. We provide some extracts from Boole (1854) in Appendix B.

3.1 CHSH and Bell’s Argument

For the CHSH argument one notes that the implication

[(X1 = Y1)&(X1 = Y2)&(X2 = Y1)] =⇒ (X2 = Y2) (3)

is logically true, and hence (X2 6= Y2) =⇒ [(X1 6= Y1)∨ (X1 6= Y2)∨ (X2 6= Y1)] holds. As a result, local
realism implies the following CHSH inequality

Pr(X2 6= Y2) ≤ Pr(X1 6= Y1) + Pr(X1 6= Y2) + Pr(X2 6= Y1), (4)

which can be violated by many choices of settings and states under quantum theory. In the example that
CHSH gave, the first probability equals 0.85 . . . and the latter three equal to 0.15 . . . . The probability
distribution that corresponds with CHSH’s proof is as follows

Pr X1 = T X1 = F X2 = T X2 = F

Y1 = T 0.4267766953 0.0732233047 0.4267766953 0.0732233047
Y1 = F 0.0732233047 0.4267766953 0.0732233047 0.4267766953

Y2 = T 0.4267766953 0.0732233047 0.0732233047 0.4267766953
Y2 = F 0.0732233047 0.4267766953 0.4267766953 0.0732233047

. (5)

By the same line of reasoning as above, one obtains Bell’s inequality

Pr(X1 = Y1) ≤ Pr(X2 6= Y2) + Pr(X2 6= Y1) + Pr(X1 + Y2). (6)

See Sections C.1 and C.2 in the appendix for how this inequality can be violated.
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3.2 Hardy’s Argument

Hardy noted the following: if (X2&Y2) is true, and (X2 =⇒ Y1) is true, and (Y2 =⇒ X1) is true, then
(X1&Y1) is true. Thus (X2&Y2) implies: ¬(X2 =⇒ Y1) or ¬(Y2 =⇒ X1) or (X1&Y1). Therefore

Pr(X2&Y2) ≤ Pr(X2&¬Y1) + Pr(¬X1&Y2) + Pr(X1&Y1). (7)

On the other hand, according to quantum mechanics it is possible that the first probability is positive,
in particular, equals 0.09, while the three other probabilities here are all zero. See Section C.4 in the
appendix for the precise probabilities.

3.3 Mermin’s Argument

Mermin’s argument uses three settings on both sides of the two parties, thus giving the set of six events
{X1, Y1, X2, Y2, X3, Y3}. First, observe that the three equalities in (X1 = Y1)&(X2 = Y2)&(X3 = Y3)
implies at least one of the three statements in ((X1 = Y2)&(X2 = Y1))∨((X1 = Y3)&(X3 = Y1))∨((X2 =
Y3)&(X3 = Y2)). By the standard arguments that we used before, we see that

1− Pr(X1 6= Y1)− Pr(X2 6= Y2)− Pr(X3 6= Y3) ≤ Pr((X1 = Y1)&(X2 = Y2)&(X3 = Y3)),

and that

Pr

0BBBB@
((X1 = Y2)&(X2 = Y1))

∨
((X1 = Y3)&(X3 = Y1))

∨
((X2 = Y3)&(X3 = Y2))

1CCCCA ≤

0BBBB@
Pr((X1 = Y2)&(X2 = Y1))

+
Pr((X1 = Y3)&(X3 = Y1))

+
Pr((X2 = Y3)&(X3 = Y2))

1CCCCA

≤ 1

2

0BBBB@
Pr(X1 = Y2) + Pr(X2 = Y1)

+
Pr(X1 = Y3) + Pr(X3 = Y1)

+
Pr(X2 = Y3) + Pr(X3 = Y2)

1CCCCA .

As a result we have the ‘Mermin inequality’

1 ≤
3X

i=1

Pr(Xi 6= Yi) +
1

2

3X
i,j=1
i6=j

Pr(Xi = Yj),

which gets violated by a state and measurement setting that has probabilities Pr(Xi 6= Yi) = 0 and
Pr(Xi = Yj) = 1

4
for i 6= j.

3.4 GHZ’s Argument

In our initial CHSH story we restricted attention to situations where four probabilities concerned were
equal. However, there is no reason to restrict ourselves to quantum states where this equality will be
true, if the aim is to obtain maximal experimental support of the failure of local realism. Similarly there
is no reason to restrict oneself, in a Hardy type story, to quantum states making specific outcomes have
probability zero. Obviously, by widening our resources we will be able to find stronger proofs.

Starting with [13], GHZ, proofs against local realism have been based on systems of three or more
qubits, on systems of higher-dimensional quantum systems, and on larger sets of measurements (settings)
per particle. We will investigate what payoff results from expanding our resources in these ways. Each
time we are allowed to search over a wider space we may be able to do better, though each time the
actual experiment may become harder to set up in the laboratory.

Let ⊕ denote the exclusive or operation such that X ⊕ Y is true if and only if X 6= Y . Then the
following implication must hold

((X1 ⊕ Y2 = Z2)&(X2 ⊕ Y1 = Z2)&(X2 ⊕ Y2 = Z1)) =⇒ (X1 ⊕ Y1 = Z1). (8)

Now, by considering the contrapositive, we get

Pr(X1 ⊕ Y1 6= Z1) ≤ Pr((X1 ⊕ Y2 6= Z2) ∨ (X2 ⊕ Y1 6= Z2) ∨ (X2 ⊕ Y2 6= Z1)). (9)
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And because Pr(X⊕Y 6= Z) = Pr(X⊕Y ⊕Z) and the convexity of the ∨-operation, this gives us GHZ’s
inequality:

Pr(X1 ⊕ Y1 ⊕ Z1) ≤ Pr(X1 ⊕ Y2 ⊕ Z2) + Pr(X2 ⊕ Y1 ⊕ Z2) + Pr(X2 ⊕ Y2 ⊕ Z1). (10)

This inequality can be violated by a three way entangled state and measurement settings that give
Pr(X1 ⊕ Y1 ⊕ Z1) = 1 and Pr(X1 ⊕ Y2 ⊕ Z2) = Pr(X2 ⊕ Y1 ⊕ Z2) = Pr(X2 ⊕ Y2 ⊕ Z1) = 0.

4 Kullback-Leibler Divergence and Statistical Strength

4.1 Kullback-Leibler Divergence

In this section we formally define our notion of ‘statistical strength of a non-locality proof’. The notion
will be based on the KL divergence, an information theoretic quantity which we now introduce. Let Z
be an arbitrary finite set. For a distribution Q over Z, Q(z) denotes the probability of event {z}. For
two (arbitrary) distributions Q and P defined over Z, the Kullback-Leibler (KL) divergence between Q
and P is defined as

D(Q‖P ) :=
X
z∈Z

Q(z) log
Q(z)

P (z)
(11)

where the logarithm is taken here, as in the rest of the paper, to base 2. We use the conventions that,
for y > 0, y log 0 = ∞, and 0 log 0 = limy↓0 y log y = 0.

The KL divergence is also known as relative entropy, cross-entropy, information deficiency or I-
divergence. Introduced in [20], KL divergence has become a central notion in information theory, statistics
and large deviation theory. A good reference is [8]. It is straightforward to show (using concavity of the
logarithm and Jensen’s inequality) that D(Q‖P ) ≥ 0 with equality if and only if P = Q; in this sense,
KL divergence behaves like a distance. However, in general D(P‖Q) 6= D(Q‖P ), so formally D(·‖·) is
not a distance.

KL divergence expresses the average disbelief in P , when observing random outcomes Z from Q.
Thus occasionally (with respect to Q) one observes an outcome Z which is much more likely under P
than Q, but on average (with respect to Q), the outcomes are more likely under Q than P , as illustrated
by the fact that D(Q‖P ) ≥ 0. In Appendix D.1 we provide several properties and examples of the KL
divergence.

KL divergence has several different interpretations and applications. Below we focus on the interpre-
tation we are concerned with in this paper: KL divergence as a measure of ‘statistical closeness’ in the
context of statistical hypothesis testing.

KL Divergence and Statistical Strength in Simple Hypothesis Testing Let Z1, Z2, . . .
be a sequence of random variables independently generated either by some distribution P or by some
distribution Q with Q 6= P . Suppose we are given a sample (sequence of outcomes) z1, . . . , zn. We want
to perform a statistical test in order to find out whether the sample is from P or Q. Suppose that the
sample is, in fact, generated by Q (‘Q is true’). Then, given enough data, the data will with very high
(Q-) probability be overwhelmingly more likely according to Q than according to P . That is, the data
strongly suggest that they were sampled from Q rather than P . The ‘statistical distance’ between P and
Q indicates how strongly or, equivalently, how convincingly data that are generated by Q will suggest
that they are from Q rather than P . It turns out that this notion of ‘statistical distance’ between two
distributions is precisely captured by the Kullback Leibler divergence D(Q‖P ), which can be interpreted
as the average amount of support in favor of Q and against P per trial. The larger the KL divergence,
the larger the amount of support per trial. It turns out that

1. For a fixed sample size n, the larger D(Q‖P ), the more support there will be in the sample z1, . . . , zn

for Q versus P (with high probability under Q) .

2. For a pre-determined fixed level of support in favor of Q against P (equivalently, level of ‘confidence’
in Q, level of ‘convincingness’ of Q), we have that the larger D(Q‖P ), the smaller the sample size
before this level of support is achieved (with high probability under Q).

3. If, based on observed data z1, . . . , zn, an experimenter decides that Q rather than P must have
generated the data, then, the larger D(Q‖P ), the larger the confidence the experimenter should
have in this decision (with high probability under Q).
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Below we state some formal results relating KL divergence to standard formal definitions of ‘convinc-
ingness’, ‘support’ and ‘confidence’ taken from mathematical statistics. A more intuitive and informal
explanation of how KL divergence is related to these notions is found in Appendix D.3. In Appendix D.2
we explain why, contrary to what has sometimes been implicitly assumed, absolute deviations between
probabilities can be quite bad indicators of statistical closeness.

KL Divergence and Statistical Strength in Composite Hypothesis Testing Observing
a sample generated by Q or P and trying to infer whether it was generated by Q or P is called hypothesis
testing in the statistical literature. A hypothesis is simple if it consists of a single probability distribution.
A hypothesis is called composite if it consists of a set of distributions. The composite hypothesis ‘P’
should be interpreted as ‘there exists a P ∈ P that generated the data’. Above, we related the KL
divergence to statistical strength when testing two simple hypotheses against each other. Yet in most
practical applications (and in this paper) the aim is to test two hypotheses, at least one of which is
composite. For concreteness, suppose we want to test the distribution Q against the set of distributions
P. In this case, under some regularity conditions on P and Z, the element P ∈ P that is closest in
statistical divergence to Q determines the statistical strength of the test of Q against P. Formally, for a
set of distributions P on Z we define (as is customary, [8])

D(Q‖P) := inf
P∈P

D(Q‖P ). (12)

Analogously to D(Q‖P ), D(Q‖P) may be interpreted as the average amount of support in favor of Q
and against P per trial, if data are generated according to Q.

In our case, QM claims that data are generated by some distribution Qσ. LR claims that data are
generated by some P ∈ Pσ, where Pσ := {Pσ;π : π ∈ Π}. QM and LR agree to test the hypothesis
Qσ against Pσ. QM, who knows that data are really generated according to Qσ, wants to select σ in
such a way that the average amount of support in favor of Q and against P is maximized. The previous
discussion suggests that he should pick the σ ∈ Σuc that maximizes statistical strength D(Qσ‖Pσ). Below
we show that this is (in some sense) also the optimal choice according to statistical theory. Indeed, in
Section 4.3 we will define the statistical strength of Q as supσ∈Σuc D(Qσ‖Pσ).

4.2 Formal Connection between KL Divergence and Statistical Strength

We consider three methods for statistical hypothesis testing: frequentist hypothesis testing [28], Bayesian
hypothesis [21] testing and information-theoretic hypothesis testing [22, 29]. Nearly all state-of-the-art,
theoretically motivated statistical methodology falls in either the Bayesian or the frequentist categories.
Frequentist hypothesis testing is the most common, the most taught in statistics classes and is the
standard method in, for example, the medical sciences. Bayesian hypothesis testing is becoming more and
more popular in, for example, econometrics and biological applications. While theoretically important,
the information-theoretic methods are less used in practice and are added mainly because they lead to a
very concrete interpretation of statistical strength in terms of bits of information.

We illustrate below that in all three approaches the KL divergence indeed captures the notion of ‘sta-
tistical strength’. We consider the general situation with a sample Z1, Z2, . . . , with the Zi independently
and identically distributed according to some Qσ, Qσ being some distribution over some finite set Z. For
each n, the first n outcomes are distributed according to the n-fold product distribution of Qσ, which
we shall also refer to as Qσ. Hence Qσ(z1, . . . , zn) =

Qn
i=1 Qσ(zi). The independence assumption also

induces a distribution over the set Z∞ of all infinite sequences2 which we shall also refer as Qσ.
We test Qσ against a set of distributions Pσ. Thus, Qσ and Pσ may, but do not necessarily refer to

quantum and local realist theories – the statements below hold more generally.

4.2.1 Frequentist Justification

In frequentist hypothesis testing, Pσ is called the null-hypothesis and Qσ the alternative hypothesis.
Frequentist hypothesis testing can be implemented in a number of different ways, depending on what
statistical test one adopts. A statistical test is a procedure that, when input an arbitrary sample of
arbitrary length, outputs a decision. The decision is either ‘Qσ generated the data’ or ‘Pσ generated the

2Readers familiar with measure theory should note that throughout this paper, we tacitly assume that Z∞ is endowed with
a suitable σ-algebra such that all sets mentioned in this paper become measurable.
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data’. The confidence in a given decision is determined by a quantity known as the p-value. This is a
function of the actually observed outcomes z1, . . . , zn. It is defined as

p-value := sup
P∈Pσ

P (“The test outputs: Qσ generated the data”). (13)

Large p-values mean small confidence: if, for the actual data, the test says “Qσ” but the p-value is large,
then this is not very convincing to someone who considers the possibility that some P ∈ Pσ has generated
the data: the large p-value indicates that the test may very well have given the wrong answer.

We call a test asymptotically optimal for identifying Qσ if, under the assumption that Qσ generated
the data, the p-value goes to 0 at the fastest possible rate. Now let us assume that Qσ generates the
data, and an optimal test is used. A well-known result due to Bahadur [1, Theorem 1] says that, under
some regularity conditions on Qσ and Pσ, with Qσ-probability 1, for all large n, the test outputs “Qσ

generated the data” and that

p-value = e−nD(Qσ‖Pσ)+o(n). (14)

where limn→∞ o(n)/n = 0. We say ‘the p-value is determined, to first order in the exponent, by
D(Qσ‖Pσ)’. It turns out that the regularity conditions, needed for Equation 14 to hold, apply when Qσ

is instantiated to a quantum theory Q with measurement setting distributions σ, and Pσ is instantiated
to the corresponding set of LR theories as defined in Section 2.

Now imagine that QM, who knows that Qσ generates the data, wonders whether to use the exper-
imental setup corresponding to σ1 or σ2. Suppose that D(Qσ1‖Pσ1) > D(Qσ1‖Pσ2). It follows from
Equation 14 that if the experiment corresponding to σ1 is performed, the p-value will go to 0 expo-
nentially faster (in the number of trials) than if the experiment corresponding to σ2 is performed. It
therefore makes sense to say that ‘the statistical strength of the experiment corresponding to σ1 is larger
than the strength of σ2’. This provides a frequentist justification of adopting D(Qσ‖Pσ) as an indicator
of statistical strength.

Remarks
1. Most hypothesis testing as it occurs in practice (in, e.g., the medical sciences) follows the Neyman-

Pearson approach, in which the p-value is used only indirectly. Before observing the outcomes, one
agrees on a significance level ε. Typically choices are ε = 0.01 or ε = 0.05. One then observes the
data Z1, . . . , Zn, and one rejects Pσ (i.e., one adopts Qσ) if the p-value for Z1, . . . , Zn turns out
to be ≤ ε. Thus, in this form of hypothesis testing, the p-value denotes the minimum significance
level at which Pσ is rejected.

2. Bahadur [1, Theorem 2] also provides a variation of Equation 14, which (roughly speaking) says the
following: suppose Qσ generates the data. For ε > 0, let Nε be the minimum number of observations
such that, for all n ≥ Nε, the test rejects Pσ (if Pσ is not rejected for infinitely many n, then Nε

is defined to be infinite). Suppose that an optimal (in the sense we used previously) test is used.
Then, for small ε, Nε is inversely proportional to D(Qσ‖Pσ): with Qσ-probability 1, the smaller
D(Qσ‖Pσ), the larger Nε. If a ‘non-optimal’ test is used, then Nε can only be larger, never smaller.

The rate at which the p-value of a test converges to 0 is known in statistics as Bahadur efficiency. For
an overview of the area, see [15]. For an easy introduction to the main ideas, focusing on ‘Stein’s lemma’
(a theorem related to Bahadur’s), see [3, Chapter 12, Section 8]. For an introduction to Stein’s lemma
with a physicist audience in mind, see [2].

4.2.2 Bayesian Justification

In the Bayesian approach to hypothesis testing [5, 21], when testing Qσ against Pσ, we must first
determine an a priori probability distribution over Qσ and Pσ. This distribution over distributions is
usually just called ‘the prior’. It can be interpreted as indicating the prior (i.e., before seeing the data)
‘degree of belief’ in Qσ vs. Pσ. It is often used to incorporate prior knowledge into the statistical
decision process. In order to set up the test as fairly as possible, QM and LR may agree to use the prior
Pr(Qσ) = Pr(Pσ) = 1/2 (this should be read as ‘the prior probability that Qσ obtains is equal to the
prior probability that some P ∈ Pσ obtains’). Yet as long as both Pr(Qσ), Pr(Pσ) > 0 the specific values
for the priors will be irrelevant for the result below.

For given prior probabilities and a given sample z1, . . . , zn, Bayesian statistics provides a method to
compute the posterior probabilities of the two hypotheses, conditioned on the observed data: Pr(Qσ)
is transformed into Pr(Qσ | z1, . . . , zn). Similarly, Pr(Pσ) is transformed to Pr(Pσ | z1, . . . , zn). One
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then adopts the hypothesis H ∈ {Qσ,Pσ} with the larger posterior probability Pr(H | z1, . . . , zn). The
confidence in this decision is given by the posterior odds of Qσ against Pσ, defined, for given sample
z1, . . . , zn, as

post-odds(Qσ,Pσ) :=
Pr(Qσ | z1, . . . , zn)

Pr(Pσ | z1, . . . , zn)
. (15)

The larger post-odds, the larger the confidence. Now suppose that data are distributed according to
Qσ. It can be shown that, under some regularity conditions on Qσ and Pσ, with Qσ-probability 1,

post-odds = enD(Qσ‖Pσ)+O(log n), (16)

In our previously introduced terminology, ‘the Bayesian confidence (posterior odds) is determined by
(Qσ‖Pσ), up to first order in the exponent’. We may now reason exactly as in the frequentist case to
conclude that it makes sense to adopt D(Qσ‖Pσ) as an indicator of statistical strength, and that it makes
sense for QM to choose the setting probabilities σ so as to maximize D(Qσ‖Pσ).

Equation 16 is a ‘folklore result’ which ‘usually’ holds. In Appendix D.4, we show that it does indeed
holds with Qσ and Pσ defined as nonlocality proofs and local realist theories, respectively.

4.2.3 Information-Theoretic Justification

There exist several approaches to information-theoretic or compression-based hypothesis testing; see, for
example, [3, 22]. The most influential of these is the so-called Minimum Description Length Principle [29].
The basic idea is always that the more one can compress a given sequence of data, the more regularity
one has extracted from the data, and thus, the better one has captured the ‘underlying regularities in the
data’. Thus, the hypothesis that allows for the maximum compression of the data should be adopted.

Let us first consider testing a simple hypothesis Q against another simple hypothesis P . Two basic
facts of coding theory say that

1. There exists a uniquely decodeable code with lengths LQ that satisfy, for all z1, . . . , zn ∈ Zn,

LQ(z1, . . . , zn) = d− log Q(z1, . . . , zn)e. (17)

The code with lengths LQ is called the Shannon-Fano code, and its existence follows from the
so-called Kraft Inequality, [8].

2. If data Z1, . . . , Zn are independently identically distributed ∼ Q, then among all uniquely decode-
able codes, the code with length function LQ has the shortest expected code-length. That is, let L
be the length function of any uniquely decodeable code over n outcomes, then

EQ[L(Z1, . . . , Zn)] ≥ EQ[− log Q(Z1, . . . , Zn)]. (18)

Thus, under the assumption that Q generated the data, the optimal (maximally compressing) code to
use will be the Shannon-Fano code with lengths − log Q(Zn) (here, as in the remainder of this section,
we ignored the integer requirement for code lengths). Similarly, under the assumption that some P with
P 6= Q generated the data the optimal code will be the code with lengths − log P (Zn). Thus, from the
information-theoretic point of view, if one wants to find out whether P or Q better explains the data, one
should check whether the optimal code under P or the optimal code under Q allows for more compression
of the data. That is, one should look at the difference

bit-diff := − log P (z1, . . . , zn)− [− log Q(z1, . . . , zn)]. (19)

If bit-diff > 0, then one decides that Q better explains the data. The confidence in this decision is
given by the magnitude of bit-diff: the larger bit-diff, the more extra bits one needs to encode the
data under P rather than Q, thus the larger the confidence in Q.

Now suppose that Q actually generates the data. The expected code length difference, measured in
bits, between coding the data using the optimal code for Q and coding using the optimal code for P , is
given by EQ[− log P (Zn) − [− log Q(Zn)]] = nD(Q‖P ). Thus, the KL divergence can be interpreted as
the expected additional number of bits needed to encode outcomes generated by Q, if outcomes are encoded
using a code that is optimal for P rather than for Q . Thus, the natural ‘unit’ of D(·‖·) is the ‘bit’, and
D(Q‖P ) may be viewed as ‘average amount of information about Z that is lost if Z is wrongfully regarded
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as being distributed by Q rather than P ’. By the law of large numbers, Equation 19 implies that, with
Q-probability 1, as n →∞,

1

n
bit-diff → D(Q‖P ). (20)

Thus, if Q generates the data, then the information-theoretic confidence bit-diff in decision “Q explains
the data better than P” is, up to first order, determined by the KL divergence between Q and P : the
larger D(Q‖P ), the larger the confidence. This gives an information-theoretic justification of the use of
the KL divergence as an indicator of statistical strength for simple hypothesis testing. We now turn to
composite hypothesis testing.

Composite Hypothesis Testing If one compares Qσ against a set of hypotheses Pσ, then one
has to associate Pσ with a code that is ‘optimal under the assumption that some P ∈ Pσ generated the
data’. It turns out that there exist codes with lengths LP satisfying, for all z1, . . . , zn ∈ Zn,

LPσ (z1, . . . , zn) ≤ inf
P∈Pσ

− log P (z1, . . . , zn) + O(log n). (21)

An example of such a code is given in Appendix D.5. The code LPσ is optimal, up to logarithmic terms,
for whatever distribution P ∈ Pσ that might actually generate data. The information theoretic approach
to hypothesis testing now tells us that, to test Qσ against Pσ, we should compute the difference in code
lengths

bit-diff = LPσ (z1, . . . , zn)− [− log Qσ(z1, . . . , zn)]. (22)

The larger this difference, the larger the confidence that Qσ rather than Pσ generated the data. In
Appendix D.5 we show that, in analogy to Equation 20, as n →∞,

1

n
bit-diff → D(Qσ‖Pσ) (23)

Thus, up to sublinear terms, the information-theoretic confidence in Qσ is given by nD(Qσ‖Pσ). This pro-
vides an information-theoretic justification of adopting D(Qσ‖Pσ) as an indicator of statistical strength.

4.3 Formal Definition of Statistical Strength

In this section, Qσ denotes a nonlocality proof equipped with setting probabilities σ, and Pσ is (as in
Section 2) defined as the set of corresponding local theories: Pσ := {Pσ;π : π ∈ Π}. The discussion of
the previous section implies that

1. For given probabilities over the settings σ, the statistical strength of Qσ against Pσ is given by
D(Qσ‖Pσ).

2. This strength is maximized if the distribution σ is picked that maximizes D(Qσ‖Pσ).

This leads to the following definition:

Definition 1 The statistical strength of non-locality proof Q is denoted by sQ and defined as

sQ := sup
Σuc

D(Qσ‖Pσ) (24)

= sup
Σuc

inf
Π

D(Qσ‖Pσ,π), (25)

where here, as in the remainder of the paper, the subscript σ ∈ Σuc is abbreviated to Σuc, and π ∈ Π is
abbreviated to Π. Note that we only maximize over uncorrelated distributions σ: if we would allow the
probability of measurement setting at party A to be dependent on the measurement setting at party B,
this would defeat the purpose of the experiment. Is Definition 1 the right characterization of statistical
strength? There are several issues here. We defer discussion of all these issues to Sections 6; for the time
being we simply assume that Definition 1 is appropriate. We proceed to list some essential properties of
sQ. We say that “nonlocality proof Q is absolutely continuous with respect to local realist theory π” if
and only if for all a, b ∈ {1, 2}, x, y ∈ {F,T}, it holds that if Qab(x, y) > 0 then Pab;π(x, y) > 0.

Theorem 1 Let Q be a given (not necessarily 2× 2× 2) nonlocality proof and Π the corresponding set
of local realist theories.

1. Let U(σ, π) := D(Qσ‖Pσ;π), then:
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(a) For a 2× 2× 2 proof, we have that

U(σ, π) =
X

a,b∈{1,2}

σabD(Qab(·)‖Pab;π(·)) (26)

Hence, the KL divergence D(Qσ‖Pσ;π) may alternatively be viewed as the average KL diver-
gence between the distributions of (X, Y ), where the average is over the settings (A, B). For a
generalized nonlocality proof, the analogous generalization of Equation 26 holds.

(b) For fixed σ, U(σ, π) is convex and lower semicontinuous on Π, and continuous and differentiable
on the interior of Π.

(c) If Q is absolutely continuous with respect to some fixed π, then U(σ, π) is linear in σ.

2. Let

U(σ) := inf
π∈Π

U(σ, π), (27)

then

(a) For all σ ∈ Σ, the infimum in Equation 27 is achieved for some π∗.

(b) The function U(σ) is nonnegative, bounded, concave and continuous on σ.

(c) If Q is not a proper nonlocality proof, then for all σ ∈ Σ, U(σ) = 0. If Q is a proper nonlocality
proof, then U(σ) > 0 for all σ in the interior of Σ.

(d) For a 2 party, 2 measurement settings per party nonlocality proof, we further have that, even
if Q is proper, then still U(σ) = 0 for all σ on the boundary of Σ.

3. Suppose that σ is in the interior of Σ, then:

(a) Let Q be a 2×2×2 nonlocality proof. Suppose that Q is non-trivial in the sense that, for some
a, b, Qab is not a point mass (i.e. 0 < Qab(x, y) < 1 for some x, y). Then π∗ ∈ Π achieves the
infimum in Equation 27 if and only if the following 16 (in)equalities hold:X

a,b∈{1,2}

σab
Qab(xa, yb)

Pab;π∗(xa, yb)
= 1 (28)

for all (x1, x2, y1, y2) ∈ {F,T}4 such that π∗x1,x2,y1,y2 > 0, andX
a,b∈{1,2}

σab
Qab(xa, yb)

Pab;π∗(xa, yb)
≤ 1 (29)

for all (x1, x2, y1, y2) ∈ {F,T}4 such that π∗x1,x2,y1,y2 = 0.
For generalized nonlocality proofs, π∗ ∈ Π achieves Equation 27 if and only if the corresponding
analogues of Equations 28 and 29 both hold.

(b) Suppose that π∗ and π◦ both achieve the infimum in Equation 27. Then for all x, y ∈ {F,T},
a, b ∈ {1, 2} with Qab(x, y) > 0, we have Pab;π∗(x, y) = Pab;π◦(x, y) > 0. In words, π∗ and
π◦ coincide in every measurement setting for every measurement outcome that has positive
probability according to Qσ, and Q is absolutely continuous with respect to π∗ and π◦.

The proof is in Appendix E.
In general, infΠ U(σ, π) may be achieved for several, different π. By part 2 of the theorem, these must

induce the same four marginal distributions Pab;π. It also follows directly from part 2 of the theorem
that, for 2 × 2 × 2 proofs, sQ = supσ∈Σuc U(σ) is achieved for some σ∗ ∈ Σuc, where σ∗ab > 0 for all
a, b ∈ {1, 2}.

Computing Statistical Strength sQ The question remains how to compute sQ for given nonlocal-
ity proofs. In some special cases, we can make an educated guess of the σ∗ achieving supσ∈Σuc D(Qσ‖Pσ),
and then verify it using Theorem 1, part 3(a) and the game-theoretic tools which we will develop in Sec-
tion 6. Whenever this is not possible, we have to resort to numerical optimization. By convexity of
U(σ, π) in π, and concavity of U(σ) as defined in Theorem 1, this is computationally feasible3

3Interestingly, it turns out that computing infπ∈Π U(σ, Π) is formally equivalent to computing the maximum likelihood in a
well-known statistical missing data problem.
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4.4 Asymptopia

A possible objection to our definition is that it is asymptotic in nature. KL divergence only gives a reliable
indication of statistical strength (defined in terms of, e.g. p-values or posterior odds) if experiments are
repeated more than n0 times, for some n0. This problem cannot be solved by saying that ‘our results
are only valid if the experiment is repeated at least n0 times’. The reason is that the value n0 at which
the asymptotic regime is reached depends on σ in Qσ. Nevertheless, we argue that the KL divergence is
the only reasonable indicator of statistical strength, for the following two reasons:

1. Even though both the frequentist and the Bayesian results are asymptotic, they can be used to
obtain bounds on frequentist p-values and Bayesian posterior odds in the non-asymptotic case. We
have not developed this possibility any further here.

2. The KL divergence is the only way to obtain a clean definition of strength, independent of the
statistical method (Bayesian, frequentist, information-theoretic) that one adopts: every reasonable
method leads asymptotically to KL divergence. But non-asymptotically, different methods and
different definitions of confidence (p-values, posterior odds) may lead to quite different results.

5 The Results

In this section we give the statistical strength of the various nonlocality proofs. We considered three
scenarios for the sampling frequencies of the measurement settings:

Uniform settings: Each measurement setting is sampled with equal probability

Uncorrelated settings: The parties sample their individual measurement settings according to distri-
bution that is uncorrelated with the sample distributions of the other parties (σ ∈ Σuc)

Correlated settings: The parties sample the joint measurement settings in a way that allows correlated
sample distributions (σ ∈ Σ).

Following the explanation and tables of Appendix C we get the following values.

Strength Uniform Uncorrelated Correlated

Original Bell 0.0141597409 0.0158003672 0.0169800305
Optimized Bell 0.0177632822 0.0191506613 0.0211293952

CHSH 0.0462738469 0.0462738469 0.0462738469
Hardy 0.0278585182 0.0279816333 0.0280347655

Mermin 0.0157895843 0.0191506613 0.0211293952

GHZ 0.2075187496 0.2075187496 0.4150374993

(30)

We thus see that in two-party setting, the nonlocality proof of CHSH is much stronger than that of
Bell, Hardy or Mermin, and that this optimal strength is obtained for uniform measurement settings.
Furthermore it is clear that the three-party proof of GHZ is an order of magnitude stronger than the
two-party case.

We also note that the nonlocality proof of Mermin—in the case of non-uniform settings—is equally
strong as the optimized version of Bell’s proof. The measurement frequencies tables in Appendix C.5
shows why this is the case: the optimal measurement settings for Mermin exclude one setting on A’s
side, and one setting on B’s side, thus reducing Mermin’s proof to that of Bell. One can view this is as
an example of how a proof that is easier to understand (Mermin) is not necessarily stronger than one
that has more subtle arguments (Bell).

6 Game-Theoretic Considerations

Let us consider the following variation of our basic scenario. Suppose that, before the experiments are
actually conducted, LR has to decide on a single local theory π0 (rather than the set Π) as an explanation
of the outcomes that will be observed. QM then gets to see this π, and can choose σ depending on the
π0 that has been chosen. Since QM wants to maximize the strength of the experiment, he will pick
the σ achieving supσ∈Σuc D(Qσ‖Pσ;π0). In such a scenario, the ‘best’ LR theory, minimizing statistical
strength, is the LR theory π0 that minimizes, over π ∈ Π, supσ∈Σuc D(Qσ‖Pσ;π). Thus, in this slightly
different setup, the statistical strength is determined by

s′Q = inf
π∈Π

sup
σ∈Σuc

D(Qσ‖Pσ;π) (31)
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rather than sQ = supσ∈Σuc infπ∈Π D(Qσ‖Pσ;π). Below we show that s′Q ≥ sQ. We consider the definition
sQ to be preferable over s′Q. The reason is that, as quantum experimenters, we should try to convince
LR that QM is true in a setting about which QM cannot complain. Thus, if LR wants to entertain several
local theories at the same time (use Π rather than π0), or wants to have a look at the probabilities σab

before the experiment is conducted, we (QM) should allow him to do so—we will still be able to convince
LR, even though we may need to repeat the experiment a few more times.

Nevertheless, it is quite useful to investigate under what conditions sQ = s′Q. As we will see, the
answer will sometimes allow us to compute sQ directly, without resorting to numerical optimization. Von
Neumann’s famous minimax theorem of game theory [24] suggests that

sup
σ∈Σ∗

inf
π∈Π

D(Qσ‖Pσ;π) = inf
π∈Π

sup
σ∈Σ∗

D(Qσ‖Pσ;π), (32)

if Σ∗ is a convex subset of Σ. Indeed, Theorem 2 below shows that Equation 32 holds if we take Σ∗ = Σ.
Unfortunately, Σuc is not convex, and Equation 32 does not hold in general for Σ∗ = Σuc, whence in
general sQ 6= s′Q. Nevertheless, Theorem 3 provides some conditions under which Equation 32 does hold
with Σ∗ = Σuc. In Section 6.3 we put this fact to use in computing sQ for the CHSH nonlocality proof.
But before presenting Theorems 2 and 3, we first need to introduce some game-theoretic terminology.

6.1 Game-Theoretic Definitions

A statistical game ([11]) is a triplet (A, B, L) where A and B are arbitrary sets and L : A × B →
R ∪ {−∞,∞} is a loss function. We say that the game has value V if

V = sup
α∈A

inf
β∈B

L(α, β) (33)

= inf
β∈B

sup
α∈A

L(α, β). (34)

If for some (α∗, β∗) ∈ A×B we have

For all α ∈ A: L(α, β∗) ≤ L(α∗, β∗)

For all β ∈ B: L(α∗, β) ≥ L(α∗, β∗)

then we call (α∗, β∗) a saddle point of the game. It is easily seen (Proposition 1, Appendix E) that, if α◦

achieves supα∈A infβ∈B L(α, β) and β◦ achieves infβ∈B L(α, β) and the game has value V , then (α◦, β◦)
is a saddle point and L(α◦, β◦) = V .

The Correlated Game With each non-locality proof we associate a corresponding correlated game
which is just the statistical game defined by the triple (Σ, Π, U), where U : Σ×Π → R ∪ {∞} is defined
by

U(σ, π) := D(Qσ‖Pσ;π). (35)

By the definition above, this game has a value V defined by

V := inf
Π

sup
Σ

U(σ, π) (36)

= sup
Σ

inf
Π

U(σ, π). (37)

We call the game correlated because we allow distributions σ over measurement settings to be such that
the probability that party A is in setting a is correlated with (is dependent of) the probability that party
B is in setting b.

The Uncorrelated Game Recall that we use Σuc to denote the set of vectors representing uncor-
related distributions in Σ. With each non-locality proof we can associate the game (Σuc, Π, U) which we
call the corresponding uncorrelated game.

6.2 Game-Theoretic, Saddle Point Theorems

Theorem 2 (Saddle point for Potentially Correlated Settings) For every (generalized) non-locality
proof, the correlated game (Π, Σ, U) corresponding to it has a finite value, i.e. there exist a 0 ≤ V < ∞
with infΠ supΣ U(σ, π) = V = supΣ infΠ U(σ, π). The infimum on the left is achieved for some π∗ ∈ Π;
the supremum on the right is achieved for some σ∗ in Σ, so that (π∗, σ∗) is a saddle point.

The proof is in Appendix E.
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Remark In the information-theoretic literature, several well-known minimax and saddle point theo-
rems involving the Kullback-Leibler divergence exist; we mention [19, 31]. However, all these deal with
settings that are substantially different from ours.

In the case where there are two parties and two measurement settings per party, we can say a lot
more.

Theorem 3 Fix any proper non-locality proof based on 2 parties with 2 measurement settings per party
and let (Σ, Π, U) and (Σuc, Π, U) be the corresponding correlated and uncorrelated games, then:

1. The correlated game has a saddle point with value V > 0. Moreover,

sup
Σuc

inf
Π

U(σ, π) ≤ sup
Σ

inf
Π

U(σ, π) = V, (38)

inf
Π

sup
Σuc

U(σ, π) = inf
Π

sup
Σ

U(σ, π) = V. (39)

2. Let

Π∗ := {π : π achieves inf
Π

sup
Σ

U(σ, π)}, (40)

Πuc∗ := {π : π achieves inf
Π

sup
Σuc

U(σ, π)}, (41)

then

(a) Π∗ is non-empty.

(b) Π∗ = Πuc∗.

(c) All π∗ ∈ Π∗ are ‘equalizer strategies’, i.e. for all σ ∈ Σ, U(σ, π∗) = V .

3. The uncorrelated game has a saddle point if and only if there exists (π∗, σ∗), with σ∗ ∈ Σuc, such
that

(a) π∗ achieves infπ U(σ∗, π).

(b) π∗ is an equalizer strategy.

If such (σ∗, π∗) exists, it is a saddle point.

The proof is in Appendix E.

6.3 Example Application of Game-Theoretic Arguments

Consider the CHSH nonlocality argument. The quantum distributions Q, given in the table in Section 3
have traditionally been compared with the local theory π̃ defined by

π̃FFFF = π̃TTTT = π̃FFFT = π̃TTTF = π̃FFTF = π̃TTFT = π̃TFFT = π̃FTTF = 1
8

(42)

and π̃x1x2y1y2 = 0 otherwise. This gives rise to the following probability table:

Pab;π̃ X1 = T X1 = F X2 = T X2 = F

Y1 = T 0.375 0.125 0.375 0.125
Y1 = F 0.125 0.375 0.125 0.375

Y2 = T 0.375 0.125 0.125 0.375
Y2 = F 0.125 0.375 0.375 0.125

. (43)

There exists no local theory which has uniformly smaller absolute deviations from the quantum probabil-
ities in all four tables. Even though, in general, absolute deviations are not a good indicator of statistical
strength, based on the fact that all four tables ‘look the same’, we may still guess that, for uniform
measurement settings σ̃ab = 1/4, a, b ∈ {1, 2}, the optimal local realist theory is given by the π̃ defined
above. We can now use Theorem 1, part 3(a) to check our guess. Checking the 16 equations 28 and 29
shows that our guess was correct: π̃ achieves inf U(σ, π) for the uniform measurement settings σ̃. It is
clear that π̃ is an equalizer strategy and that σ̃ is uncorrelated. But now Theorem 3, part (3) tells us that
(σ̃, π̃) is a saddle point in the uncorrelated game. This shows that σ̃ achieves supσ∈Σuc infπ∈Π D(Qσ‖Pσ).
Therefore, the statistical strength of the CHSH nonlocality proof must be given by

sQ = sup
σ∈Σuc

inf
π∈Π

D(Qσ‖Pσ) = D(Qσ̃‖Pσ̃;π̃) (44)

which is straightforward to evaluate.
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A Beyond 2× 2× 2: General Case of Non-Locality Proofs

Here we extend the 2 × 2 × 2 setting to more than two parties, settings and outcomes. A general
non-locality proof is defined as a tuple (k,S,X , Q) where

1. k is the number of parties,

2. S = S1 × · · · × Sk is the set of possible measurement settings.

(a) Sj = {1, 2, . . . , Ns
j } is the set of measurement settings for party j.

(b) Ns
j is the number of settings at party j.

3. X = X1 × · · · × Xk is the set of possible measurement outcomes.

(a) Xj = X(j,1) × · · · × X(j,Ns
j ) is the set of measurement outcomes for party j.

(b) X(j,s) = {1, 2, . . . , Nx
(j,s)} is the set of measurement outcomes for party j when party j is in

setting s.

(c) Nx
(j,s) is the number of measurement outcomes for party j when party j is in setting s.

(d) (X1, . . . , Xk) are the random variables indicating the outcome at parties 1, 2, . . . , k.

4. Q = (Qs1...sk
: (s1, . . . , sk) ∈ S) is a list of all the distributions Qs1...sk (X1 = ·, . . . , Xk = ·), one for

each joint measurement setting (s1, . . . , sk) ∈ S. These are the distributions on outcomes induced
by the state that the quantum experimenter’s entangled qubits are in.

To each non-locality proof (k,S,X , Q) there corresponds a set of local realist distributions Π. Each
such distribution is identified with its probability vector π. Formally, π is a distribution for the tuple of
random variables

X(1,1) · · · X(1,Ns
1 )

...
. . .

...
X(k,1) · · · X(1,Ns

k
)

(45)

Here X(j,s) denotes LR’s distribution of Zj when party j’s measurement device is in setting s.
Once again, we call a non-locality proof proper if and only if it violates local realism, i.e. if there

exists no local realist distribution π such that Ps1...sk;π(·) = Qs1...sk (·) for all (s1, . . . , sk) ∈ S.
The definition of statistical strength remains unchanged.
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B George Boole’s Contribution

One of the contributions of [6] is “a fairly general approach, given the respective numbers of individuals
comprised in any classes s, t, &c, being logically defined, to deduce a system of numerical limits of any
other class, being logically defined”. Interesting is also a footnote “The author regrets the loss of a
manuscript written about four years ago in which this method he believes was developed at considerable
length. His recollection of the contents is almost entirely confined to the impression that the principle
of the method was the same as above described, and that its sufficiency was proved. The prior methods
of this chapter are, it is almost needless to say, easier, though certainly less general”.

Thus Boole does not claim that the methods he presents here, are absolutely general, though they
are supposed to provide the least upper bound and greatest lower bound, when they can be applied.
The method is good enough to reproduce the original “three variables” Bell inequality, for instance as
an application of the last example of Boole’s Chapter 18. Here, it is given that: Pr(x + (1− x)yz) = p,
Pr(y +(1− y)xz) = q, and Pr(z +(1− z)xy) = r, where x, y and z are (binary) logical variables. Boole’s
method results in the inequalities 1+p ≥ q+r, 1+q ≥ p+r, and 1+r ≥ p+q. Now, take x, y and z to be
the events X1 = Y1, Y1 = X2, X2 = X1. Note that (1−x)yz is impossible and so are the two other similar
terms. We therefore may conclude 1 + Pr(X2 = X1) ≤ Pr(X1 = Y1) + Pr(Y1 = X2). The probability on
the left hand side does not correspond to an empirically accessible event, but if we have two spin half
particles in the singlet or Bell state, we know from quantum mechanics that Pr(X1 6= Y1) = 1. Hence we
conclude

2− Pr(X2 = Y1) ≤ Pr(X1 = Y1) + Pr(Y1 = X2). (46)

C The Nonlocality Proofs and Their Optimal Settings

In this appendix we list the nonlocality proofs of Bell, an optimized version of Bell, CHSH, Hardy,
Mermin and GHZ and their solutions. The proofs themselves are described by a multipartite quantum
state and the measurement bases |m·

·〉 of the parties. Because all bases are two dimensional in the proofs
below, it is sufficient to only describe the vector |m·

·〉, where it is understood that the other basis vector
(| ⊥ m·

·〉) is the orthogonal one. Because of its frequent use, we define for the whole appendix the rotated
vector |R(φ)〉 := cos(φ)|0〉+ sin(φ)|1〉. A measurement setting refers to the bases that parties use during
a trial of the experiment. All proofs, except Mermin’s, have two different settings per party (in Mermin
they have three).

Given the state and the measurement bases, the proof is summarized in a table of probabilities
of the possible measurement outcomes. Here we list these probabilities conditionally on the specific
measurement settings. For example, for Bell’s original nonlocality proof, which uses the state |Ψ〉 :=
1√
2
(|0A0B〉 + |1A1B〉) and the measurement vectors |X = T〉a=1 := |R(0)〉 and |Y = T〉b=1 := |R(π

8
)〉,

we list the probability Q11(X = T, Y = T) = |〈Ψ|X = T, Y = T〉a=1,b=1|2 ≈ 0.4268 in the table.
As discussed in the article (Sections 2.1 and 4.3), the strength of a nonlocality proof will depend on

the probabilities σ with which the parties use the different measurement settings. With respect to this
we distinguish three different scenarios:

Uniform settings: Each measurement setting is sampled with equal probability

Uncorrelated settings: The parties sample their individual measurement settings according to distri-
bution that is uncorrelated with the sample distributions of the other parties (σ ∈ Σuc)

Correlated settings: The parties sample the joint measurement settings in a way that allows correlated
sample distributions (σ ∈ Σ).

For both the correlated and the uncorrelated settings, the parties can optimize their measurement fre-
quencies to get the strongest possible statistics to prove the nonlocality of their measurement outcomes.
We list these optimal frequencies below where, for example, Pr(a = 1) stands for the probability that
party A uses the measurement basis {|(X = T|a = 1)〉, |(X = F|a = 1)〉} and Pr(a = 1, b = 2) is
the probability that A uses the basis {|(X = T|a = 1)〉, |(X = F|a = 1)〉} while B uses the basis
{|(Y = T|b = 2)〉, |(Y = F|b = 2)〉}, etc.

Associated with these optimal frequencies there is an optimal local theorist theory π ∈ Π (see Sec-
tion 4.3). The probabilities for such optimal classical theories are listed below as well and should be
compared with the tables of the nonlocality proofs. Combining these data tables for each proof and each
scenario we obtain the strengths that were listed in Section 5.
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C.1 Original Bell

For Bell’s proof of nonlocality we have to make a distinction between the original version, which Bell
described [4], and the optimized version, which is described by Peres in [25].

First we discuss Bell’s original proof. Take the bipartite state 1√
2
|0A0B〉 + 1√

2
|1A1B〉, and the mea-

surement settings

|X = T〉a=1 := |R(0)〉 and |X = T〉a=2 := |R(π
8
)〉

|Y = T〉b=1 := |R(π
8
)〉 and |Y = T〉b=2 := |R(π

4
)〉

With these settings, quantum mechanics predicts the following conditional probabilities.
a = 1 a = 2

Qab(X = x, Y = y) x = T x = F x = T x = F

b = 1
y = T
y = F

0.4267766953 0.0732233047
0.0732233047 0.4267766953

0.5 0
0 0.5

b = 2
y = T
y = F

0.25 0.25
0.25 0.25

0.4267766953 0.0732233047
0.0732233047 0.4267766953

with 1
4

+ 1
8

√
2 ≈ 0.4267766953 and 1

4
− 1

8

√
2 ≈ 0.0732233047.

C.1.1 Uniform Settings, Original Bell

When the two parties use uniform frequencies for their measurement settings, the optimal classical theory
is as follows.

a = 1 a = 2
Pab(X = x, Y = x) x = T x = F x = T x = F

b = 1
y = T
y = F

0.3970311357 0.1029688643
0.1029688643 0.3970311357

0.5000000000 0.0000000000
0.0000000000 0.5000000000

b = 2
y = T
y = F

0.2940622714 0.2059377286
0.2059377286 0.2940622714

0.3970311357 0.1029688643
0.1029688643 0.3970311357

The corresponding KL distance is 0.0141597409.

C.1.2 Uncorrelated Settings, Original Bell

The optimized, uncorrelated measurement frequencies are
Pr(A = a, B = b) = σab ∈ Σuc a = 1 a = 2 Pr(B = b)

b = 1 0.23161104190.1327830656 0.3643941076

b = 2 0.40399485050.2316110419 0.6356058924

Pr(A = a) 0.63560589240.3643941076

The probabilities of the best classical theory for these frequencies are:
a = 1 a = 2

Pab(X = x, Y = x) x = T x = F x = T x = F

b = 1
y = T
y = F

0.3901023259 0.1098976741
0.1098976741 0.3901023259

0.5000000000 0.0000000000
0.0000000000 0.5000000000

b = 2
y = T
y = F

0.2802046519 0.2197953481
0.2197953481 0.2802046519

0.3901023259 0.1098976741
0.1098976741 0.3901023259

As a result, the KL distance for Bell’s original proof, with uncorrelated measurement settings is
0.0158003672.

C.1.3 Correlated Settings, Original Bell

The optimized, correlated measurement frequencies are
Pr(A = a, B = b) = σab ∈ Σ a = 1 a = 2

b = 1 0.28360848410.1020773549

b = 2 0.33070567680.2836084841
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The probabilities of the best classical theory for these frequencies are:
a = 1 a = 2

Pab(X = x, Y = x) x = T x = F x = T x = F

b = 1
y = T
y = F

0.3969913979 0.1030086021
0.1030086021 0.3969913979

0.4941498806 0.0058501194
0.0058501194 0.4941498806

b = 2
y = T
y = F

0.2881326764 0.2118673236
0.2118673236 0.2881326764

0.3969913979 0.1030086021
0.1030086021 0.3969913979

The corresponding KL distance is 0.0169800305.

C.2 Optimized Bell

Take the bipartite state 1√
2
|0A0B〉+ 1√

2
|1A1B〉, and the measurement settings

|X = T〉a=1 := |R(0)〉 and |X = T〉a=2 := |R(π
6
)〉

|Y = T〉b=1 := |R(0)〉 and |Y = T〉b=2 := |R(π
3
)〉.

With these settings, quantum mechanics predicts the following conditional probabilities.
a = 1 a = 2

Qab(X = x, Y = y) x = T x = F x = T x = F

b = 1
y = T
y = F

0.5 0
0 0.5

0.375 0.125
0.125 0.375

b = 2
y = T
y = F

0.125 0.375
0.375 0.125

0.375 0.125
0.125 0.375

C.2.1 Uniform Settings, Optimized Bell

For uniform measurement settings frequencies, the best classical approximation is
a = 1 a = 2

Pab(X = x, Y = x) x = T x = F x = T x = F

b = 1
y = T
y = F

0.5000000000 0.0000000000
0.0000000000 0.5000000000

0.3333333333 0.1666666667
0.1666666667 0.3333333333

b = 2
y = T
y = F

0.1666666667 0.3333333333
0.3333333333 0.1666666667

0.3333333333 0.1666666667
0.1666666667 0.3333333333

KL-divergence: 0.0177632822.

C.2.2 Uncorrelated Settings, Optimized Bell

For uncorrelated measurements, the optimal frequencies are
Pr(A = a, B = b) = σab ∈ Σuc a = 1 a = 2 Pr(B = b)

b = 1 0.14970777880.2372131160 0.3869208948

b = 2 0.23721311600.3758659893 0.6130791052

Pr(A = a) 0.38692089480.6130791052

The probabilities of the best classical theory for these frequencies are:
a = 1 a = 2

Pab(X = x, Y = x) x = T x = F x = T x = F

b = 1
y = T
y = F

0.5000000000 0.0000000000
0.0000000000 0.5000000000

0.3267978563 0.1732021436
0.1732021436 0.3267978563

b = 2
y = T
y = F

0.1732021436 0.3267978563
0.3267978563 0.1732021436

0.3464042873 0.1535957127
0.1535957127 0.3464042873

The corresponding KL distance is 0.0191506613.

C.2.3 Correlated Settings, Optimized Bell

Here are the optimized, correlated measurement frequencies
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Pr(A = a, B = b) = σab ∈ Σ a = 1 a = 2

b = 1 0.10464931460.2984502285

b = 2 0.29845022850.2984502285

The probabilities of the best classical theory for these frequencies are:
a = 1 a = 2

Pab(X = x, Y = x) x = T x = F x = T x = F

b = 1
y = T
y = F

0.4927305107 0.0072694892
0.0072694892 0.4927305107

0.3357564964 0.1642435036
0.1642435036 0.3357564964

b = 2
y = T
y = F

0.1642435036 0.3357564964
0.3357564964 0.1642435036

0.3357564964 0.1642435036
0.1642435036 0.3357564964

The corresponding KL distance is 0.0211293952.

C.3 CHSH

The bipartite state 1√
2
|0A0B〉+ 1√

2
|1A1B〉. A’s and B’s measurement settings are:

|X = T〉a=1 := |R(0)〉 and |X = T〉a=2 := |R(π
4
)〉, (47)

|Y = T〉b=1 := |R(π
8
)〉 and |Y = T〉b=2 := |R(−π

8
)〉. (48)

With these settings, quantum mechanics predicts the following conditional probabilities.
a = 1 a = 2

Qab(X = x, Y = y) x = T x = F x = T x = F

b = 1
y = T
y = F

0.4267766953 0.0732233047
0.0732233047 0.4267766953

0.4267766953 0.0732233047
0.0732233047 0.4267766953

b = 2
y = T
y = F

0.4267766953 0.0732233047
0.0732233047 0.4267766953

0.0732233047 0.4267766953
0.4267766953 0.0732233047

with 1
4

+ 1
8

√
2 ≈ 0.4267766953 and 1

4
− 1

8

√
2 ≈ 0.0732233047.

C.3.1 Uniform, Uncorrelated and Correlated Settings, CHSH

The optimal measurement settings is the uniform settings, where both A and B perform uses one of the
two measurements with probability 0.5 (that is σab = 0.25)

The optimal classical theory in this scenario has the following probabilities.
a = 1 a = 2

Pab(X = x, Y = x) x = T x = F x = T x = F

b = 1
y = T
y = F

0.375 0.125
0.125 0.375

0.375 0.125
0.125 0.375

b = 2
y = T
y = F

0.375 0.125
0.125 0.375

0.125 0.375
0.375 0.125

KL-divergence: 0.0462738469.

C.4 Hardy

The bipartite state α|0A0B〉 − β|1A1B〉, with α := 1
2

q
2 + 2

p
−13 + 6

√
5 ≈ 0.907 and β :=

√
1− α2 ≈

0.421 (such that indeed α2 + β2 = 1). A’s and B’s measurement settings are now identical and given by:

|X = T〉a=1 = |Y = T〉b=1 :=

s
β

α + β
|0〉+

r
α

α + β
|1〉, (49)

|X = T〉a=2 = |Y = T〉b=2 := −

s
β3

α3 + β3
|0〉+

s
α3

α3 + β3
|1〉. (50)

With these settings, quantum mechanics predicts the following conditional probabilities.
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a = 1 a = 2
Qab(X = x, Y = y) x = T x = F x = T x = F

b = 1
y = T
y = F

0 0.38196601125
0.38196601125 0.23606797750

0.23606797750 0.14589803375
0 0.61803398875

b = 2
y = T
y = F

0.23606797750 0
0.14589803375 0.61803398875

0.09016994375 0.14589803375
0.14589803375 0.61803398875

C.4.1 Uniform Settings, Hardy

For uniform measurement settings, this is the best classical theory to describe the statistics.
a = 1 a = 2

Pab(X = x, Y = x) x = T x = F x = T x = F

b = 1
y = T
y = F

0.0338829434 0.3543640363
0.3543640363 0.2573889840

0.2190090188 0.1692379609
0.0075052045 0.6042478158

b = 2
y = T
y = F

0.2190090188 0.0075052045
0.1692379609 0.6042478158

0.0488933524 0.1776208709
0.1776208709 0.5958649058

KL-divergence: 0.0278585182.

C.4.2 Uncorrelated Settings, Hardy

Here are the optimized, uncorrelated measurement frequencies
Pr(A = a, B = b) = σab ∈ Σuc a = 1 a = 2 Pr(B = b)

b = 1 0.26030926990.2498958554 0.5102051253

b = 2 0.24989585540.2398990193 0.4897948747

Pr(A = a) 0.51020512530.4897948747

The probabilities of the best classical theory for these frequencies are:
a = 1 a = 2

Pab(X = x, Y = x) x = T x = F x = T x = F

b = 1
y = T
y = F

0.0198831449 0.3612213769
0.3612213769 0.2576741013

0.2143180373 0.1667864844
0.0141212511 0.6047742271

b = 2
y = T
y = F

0.2143180373 0.0141212511
0.1667864844 0.6047742271

0.0481256471 0.1803136414
0.1803136414 0.5912470702

The corresponding KL distance is 0.0279816333.

C.4.3 Correlated Settings, Hardy

Here are the optimized, correlated measurement frequencies
Pr(A = a, B = b) = σab ∈ Σ a = 1 a = 2

b = 1 0.25622882940.2431695652

b = 2 0.24316956520.2574320402

The probabilities of the best classical theory for these frequencies are:
a = 1 a = 2

Pab(X = x, Y = x) x = T x = F x = T x = F

b = 1
y = T
y = F

0.0173443545 0.3620376608
0.3620376608 0.2585803238

0.2123471649 0.1670348504
0.0165954828 0.6040225019

b = 2
y = T
y = F

0.2123471649 0.0165954828
0.1670348504 0.6040225019

0.0505353201 0.1784073276
0.1784073276 0.5926500247

The corresponding KL distance is 0.0280347655.
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C.5 Mermin

In [23], we find the following nonlocality proof with two parties, three measurement settings, and two
possible outcomes. Let the entangled state be 1√

2
(|0A0B〉+ |1A1B〉), and the measurement settings:

|X = T〉a=1 = |Y = T〉b=1 := |0〉,
|X = T〉a=2 = |Y = T〉b=2 := |R( 2

3
π)〉,

|X = T〉a=3 = |Y = T〉b=3 := |R( 4
3
π)〉.

With these settings, quantum mechanics predicts the following conditional probabilities.
a = 1 a = 2 a = 3

Qab(X = x, Y = y) x = T x = F x = T x = F x = T x = F

b = 1
y = T
y = F

0.5 0
0 0.5

0.125 0.375
0.375 0.125

0.125 0.375
0.375 0.125

b = 2
y = T
y = F

0.125 0.375
0.375 0.125

0.5 0
0 0.5

0.125 0.375
0.375 0.125

b = 3
y = T
y = F

0.125 0.375
0.375 0.125

0.125 0.375
0.375 0.125

0.5 0
0 0.5

C.5.1 Uniform Settings, Mermin

Here are the probabilities of the best classical theory for the uniform measurement settings:
a = 1 a = 2 a = 3

Pab(X = x, Y = y) x = T x = F x = T x = F x = T x = F

b = 1
y = T
y = F

0.50000 0.00000
0.00000 0.50000

0.16667 0.33333
0.33333 0.16667

0.16667 0.33333
0.33333 0.16667

b = 2
y = T
y = F

0.16667 0.33333
0.33333 0.16667

0.50000 0.00000
0.00000 0.50000

0.16667 0.33333
0.33333 0.16667

b = 3
y = T
y = F

0.16667 0.33333
0.33333 0.16667

0.16667 0.33333
0.33333 0.16667

0.50000 0.00000
0.00000 0.50000

The corresponding KL distance is 0.0157895843.

C.5.2 Uncorrelated Settings, Mermin

Here are the optimized, uncorrelated measurement frequencies Pr(A = a, B = b):
σab ∈ Σuc a = 1 a = 2 a = 3 Pr(B = b)

b = 1 0.1497077711 0 0.2372131137 0.3869208848

b = 2 0.2372131137 0 0.3758660015 0.6130791152

b = 3 0 0 0 0

Pr(A = a) 0.3869208848 0 0.6130791152

The probabilities of the best classical theory for these frequencies are:
a = 1 a = 2 a = 3

Pab(X = x, Y = y) x = T x = F x = T x = F x = T x = F

b = 1
y = T
y = F

0.50000 0.00000
0.00000 0.50000

0.50000 0.00000
0.50000 0.00000

0.17320 0.32680
0.32680 0.17320

b = 2
y = T
y = F

0.17320 0.32680
0.32680 0.17320

0.50000 0.00000
0.50000 0.00000

0.15360 0.34640
0.34640 0.15360

b = 3
y = T
y = F

0.50000 0.50000
0.00000 0.00000

1.00000 0.00000
0.00000 0.00000

0.50000 0.50000
0.00000 0.00000

The corresponding KL distance is 0.0191506613.

C.5.3 Correlated Settings, Mermin

Here are the optimized, correlated measurement frequencies (note that there are also other optimal
frequencies):
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Pr(A = a, B = b) = σab ∈ Σ a = 1 a = 2 a = 3

b = 1 0.1046493071 0 0.2984502310

b = 2 0.2984502310 0 0.2984502310

b = 3 0 0 0

The probabilities of the best classical theory for these frequencies are:
a = 1 a = 2 a = 3

Pab(X = x, Y = y) x = T x = F x = T x = F x = T x = F

b = 1
y = T
y = F

0.49273 0.00727
0.00727 0.49273

0.50000 0.00000
0.50000 0.00000

0.16424 0.33576
0.33576 0.16424

b = 2
y = T
y = F

0.16424 0.33576
0.33576 0.16424

0.50000 0.00000
0.50000 0.00000

0.16424 0.33576
0.33576 0.16424

b = 3
y = T
y = F

0.50000 0.50000
0.00000 0.00000

1.00000 0.00000
0.00000 0.00000

0.50000 0.50000
0.00000 0.00000

The corresponding KL distance is 0.0211293952.

C.6 GHZ

The tripartite state 1√
2
|0A0B0C〉+ 1√

2
|1A1B1C〉. The settings for all three parties are identical:

|X = T〉a=1 = |Y = T〉b=1 = |Z = T〉c=1 := 1√
2
|0〉+ 1√

2
|1〉, (51)

|X = T〉a=2 = |Y = T〉b=2 = |Z = T〉c=2 := 1√
2
|0〉+ i√

2
|1〉. (52)

With these settings, quantum mechanics predicts the following conditional probabilities.
a = 1 a = 2

Qabc(X = x, Y = y, Z = z) x = T x = F x = T x = F

c = 1

b = 1
z = T

y = T
y = F

z = F
y = T
y = F

b = 2
z = T

y = T
y = F

z = F
y = T
y = F

0.25 0
0 0.25
0 0.25

0.25 0

0.125 0.125
0.125 0.125
0.125 0.125
0.125 0.125

0.125 0.125
0.125 0.125
0.125 0.125
0.125 0.125

0 0.25
0.25 0
0.25 0
0 0.25

c = 2

b = 1
z = T

y = T
y = F

z = F
y = T
y = F

b = 2
z = T

y = T
y = F

z = F
y = T
y = F

0.125 0.125
0.125 0.125
0.125 0.125
0.125 0.125

0 0.25
0.25 0
0.25 0
0 0.25

0 0.25
0.25 0
0.25 0
0 0.25

0.125 0.125
0.125 0.125
0.125 0.125
0.125 0.125

C.6.1 Uniform and Uncorrelated Settings, GHZ

For all three settings, the best possible classical statistics that approximate the GHZ experiment is:

25



a = 1 a = 2
Pabc(X = x, Y = y, Z = z) x = T x = F x = T x = F

c = 1

b = 1
z = T

y = T
y = F

z = F
y = T
y = F

b = 2
z = T

y = T
y = F

z = F
y = T
y = F

0.1875 0.0625
0.0625 0.1875
0.0625 0.1875
0.1875 0.0625

0.125 0.125
0.125 0.125
0.125 0.125
0.125 0.125

0.125 0.125
0.125 0.125
0.125 0.125
0.125 0.125

0.0625 0.1875
0.1875 0.0625
0.1875 0.0625
0.0625 0.1875

c = 2

b = 1
z = T

y = T
y = F

z = F
y = T
y = F

b = 2
z = T

y = T
y = F

z = F
y = T
y = F

0.125 0.125
0.125 0.125
0.125 0.125
0.125 0.125

0.0625 0.1875
0.1875 0.0625
0.1875 0.0625
0.0625 0.1875

0.0625 0.1875
0.1875 0.0625
0.1875 0.0625
0.0625 0.1875

0.125 0.125
0.125 0.125
0.125 0.125
0.125 0.125

The optimal uncorrelated setting is the uniform settings that samples all eight measurement settings
with equal probability. The corresponding KL divergence is: 0.2075187496.

C.6.2 Correlated Settings, GHZ

The optimal correlated setting samples with equal probability those four settings that yield the (0.125, 0)
outcome probabilities (those are the settings were an even number of the measurements are measuring
along the m1 axis). The KL divergence in this setting is twice that of the previous uniform setting:
0.4150374993.

D The Kullback-Leibler Divergence

This appendix provides in-depth information about the Kullback-Leiber divergence and its relation to
statistical strength. Appendix D.1 discusses some general properties of KL divergence. Appendix D.2
compares it to variation distance. Appendix D.3 informally explains why KL divergence is related to
statistical strength.

D.1 Properties of KL Divergence

General Properties Let P be the set of distributions on Z. We equip P with the Euclidean topology
by identifying each P ∈ P with its probability vector. Then D(P‖Q) is jointly continuous in P and Q on
the interior of P. It is jointly lower semicontinuous (for a definition see, e.g., [30]), but not continuous,
on P. It is also jointly strictly convex on P.

Because Q(z) log Q(z) = 0 as z ↓ 0 we can ignore the Q(z) = 0 parts in the summation, and hence

D(Q‖P ) =
X
z∈Z

Q(z)>0

Q(z)[− log P (z) + log Q(z)]. (53)

The Additivity Property The KL divergence has the following additivity property. Let X and
Y be finite sample spaces, and let P and Q be distributions over the product space X × Y. Let PX

(QX) denote the marginal distribution of P (Q) over X , and for each x ∈ X , let PY |x (QY |x) denote the
conditional distribution over Y conditioned on X = x, i.e. for all y ∈ Y, PY |x(y) := P (y|x). Then

D(Q‖P ) =
X
x∈X

Q(x)D(QY |x‖PY |x) + D(QX‖PX) (54)

= EQX [D(QY |X‖PY |X)] + D(QX‖PX). (55)

An important consequence of this property is that the divergence between the joint distribution of n
independent drawings from Q to that of n independent drawings from P , is n times the divergence for
one drawing. It also implies Equation 26 in Section 4.
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D.2 Kullback-Leibler vs. Total Variation Distance

In discussions about the strengths of nonlocality proofs, it has sometimes been claimed that QM should
use the filter settings that give the largest deviation in the Bell inequality. This would mean that QM
should try to set up the experiment such that the distribution of outcomes Q is as distant as possible to
LR’s distribution over outcomes P where distance is measured by the so-called total variation distance,
[10] between Q and P , defined as

P
z∈Z |P (z)−Q(z)|. While it is true that this defines a distance between

probability distributions, it is only one of large number of possible distances or divergences that can be
defined for probability distributions. But if one is interested in measuring ‘statistical distance’, total
variation is not the appropriate distance measure to use. Instead, one should use the KL divergence. To
get some feel for how different KL and total variation can be, let Z = {1, 2} and consider the following
possibilities for P and Q:

1. P (1) = 0.99 and Q(1) = 1. Then the absolute difference in probabilities between P and Q is very
small (0.02); however, if data are sampled from P , then, with high probability, after a few hundred
trials we will have observed at least one 0. From that point on, we are 100% certain that P , and
not Q, has generated the data. This is reflected by the fact that D(P‖Q) = ∞.

2. Let P and Q be as above but consider D(Q‖P ). We have D(Q‖P ) = −1 · log 0.99 = 0.015. This
illustrates that, if Q rather than P generates the data, we typically need an enormous amount of
data before we can be reasonably sure that Q indeed generated the data.

3. P (1) = 0.49, Q(1) = 0.5. In this case, D(P‖Q) = 0.49 log 0.98 + 0.51 log 1.02 ≈ 0.000289 and
D(Q‖P ) = 0.5(− log 0.98 − log 1.02) ≈ 0.000289. Now the average support per trial in favor of Q
under distribution Q is about equal to the average support per trial in favor of P under P .

4. Note that the KL divergences for the ‘near uniform’ distributions with P (1), Q(1) ≈ 0.5 is much
smaller than the divergences for the skewed distributions with P (1), Q(1) ≈ 1, while the total
variation distance is the same for all these distributions.

The example stresses the asymmetry of KL divergence as well as its difference from the absolute deviations
between probabilities.

D.3 Intuition Behind It All

Here we give some intuition on the relation between KL divergence and statistical strength. It can be
read without any statistical background. Let Z1, Z2, . . . be a sequence of random variables independently
generated either by some distribution P or by some distribution Q with Q 6= P . Suppose we are given a
sample (sequence of outcomes) z1, . . . , zn. Perhaps simplest (though by no means only) way of finding out
whether Q or P generated this data is to compare the likelihood (in our case, ‘likelihood’ = ‘probability’)
of the data z1, . . . , zn according to the two distributions. That is, we look at the ratio

Q(z1, . . . , zn)

P (z1, . . . , zn)
=

Qn
i=1 Q(zi)Qn
i=1 P (zi)

. (56)

Intuitively, if this ratio is larger than 1, the data is more typical for Q than for P , and we might decide
that Q rather than P generated the data. Again intuitively, the magnitude of the ratio in Equation 56
might give us an idea of the confidence we should have in this decision.

Now assume that the data are actually generated according to Q, i.e. ‘Q is true’. We will study
the behavior of the logarithm of the likelihood ratio in Equation 56 under this assumption (the use of
the logarithm is only to simplify the analysis; using Equation 56 directly would have led to the same
conclusions). The Law of Large Numbers [9] tells us that, with Q-probability 1, averages of bounded
random variables will converge to their Q-expectations. In particular, if the Zi take values in a finite set
Z, and P and Q are such that for all z ∈ Z, P (z), Q(z) > 0, then with Q-probability 1,

1

n

nX
i=1

Li → EQ[L] (57)

where Li := log(Q(Zi)/P (Zi)), and EQ[L] = EQ[L1] = · · · = EQ[Ln] is given by EQ[L] = EQ log(Q/P ) =P
z Q(z) log(Q(z)/P (z)) = D(Q‖P ). Therefore, with Q-probability 1,

1

n
log

Q(Z1, . . . , Zn)

P (Z1, . . . , Zn)
→ D(Q‖P ). (58)
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Thus, with Q-probability 1, the average log-likelihood ratio between P and Q will converge to the KL
divergence between P and Q. This means that the likelihood ratio, which may be viewed as the amount
of evidence for Q vs. P , is asymptotically determined by the KL divergence, to first order in the exponent.
For example, let us test Q first against P1 with D(Q‖P1) = ε1, and then against P2 with D(Q‖P2) =
ε2 > ε1, then, with Q-probability 1,

1

n
log

Q(Z1, . . . , Zn)

P1(Z1, . . . , Zn)
→ ε1 and

1

n
log

Q(Z1, . . . , Zn)

P2(Z1, . . . , Zn)
→ ε2. (59)

This implies that with increasing n, the likelihood ratio Q/P1 becomes exponentially smaller than the
likelihood ratio Q/P2:

Q(Z1, . . . , Zn)

P1(Z1, . . . , Zn)
≤ Q(Z1, . . . , Zn)

P1(Z2, . . . , Zn)
· e−n(ε2−ε1)+o(n). (60)

Returning to the setting discussed in this paper, this preliminary analysis suggests that from QM’s point
of view (who knows that Q is true), the most convincing experimental results (highest likelihood ratio
of Qσ vs. Pσ;π) are obtained if the KL divergence between Qσ and Pσ;π is as large as possible. If Qσ is
compared against a set Pσ, then the analysis suggests that the most convincing experimental results are
obtained if the KL divergence between Qσ and Pσ is as large as possible, that is, if infP∈Pσ D(Qσ‖Pσ)
is as large as possible.

D.4 Bayesian Analysis

In this appendix we assume some basic knowledge of Bayesian statistics. We only give the derivation for
the 2× 2× 2 nonlocality proofs. Extension to generalized nonlocality proofs is straightforward.

Let us identify H1 := Qσ and H0 := Pσ, where Qσ and Pσ are defined as quantum and local
realist theories respectively, as in Section 2. We start with a prior Pr on H1 and H0, and we assume
0 < Pr(H1) < 1.

Now, conditioned on H0 being the case, the actual distribution generating the data may still be any
Pσ;π ∈ H0. To indicate the prior degree of belief in these, we further need a conditional prior distribution
Pr(·|H0) over all the distributions in H0. Since σ is fixed, H0 = Pσ is parameterized by the set π. We
can therefore define the prior Pr(·|H0) in terms of a probability density function w over π, where we
define for each (measurable) A ⊂ Π,

Pr({Pσ;π : π ∈ A} | H0) :=

Z
π∈A

w(π)dπ. (61)

We restrict attention to prior densities w(·) that are continuous and uniformly bounded away from 0.
By the latter we mean that there exists wmin > 0 such that for all π ∈ Π, w(π) > wmin. For concreteness
one may take w to be uniform (constant over π), although this will not affect the analysis.

In order to apply Bayesian inference, we further have to define Pr(z1, . . . , zn|Hi), ‘the probability of
the data given that Hi is true’. We do this in the standard Bayesian manner:

Pr(z1, . . . , zn|H1) := Qσ(z1, . . . , zn),

Pr(z1, . . . , zn|H0) :=

Z
π∈Π

Pσ;π(z1, . . . , zn)w(π)dπ. (62)

Here each outcome zi consists of a realized measurement setting and an experimental outcome in that
setting; hence we can write zi = (ai, bi, xi, yi) for ai, bi ∈ {1, 2} and xi, yi ∈ {F,T}.

Together with the prior over {H1, H0}, Equation 62 defines a probability distribution over the product
space {H1, H0} × Zn where Z := {1, 2} × {1, 2} × {F,T} × {F,T}. Given experimental data z1, . . . , zn

and prior distribution Pr, we can now use Bayes’ rule [9, 21] to compute the posterior distribution of Hi:

Pr(Hi|z1, . . . , zn) =
Pr(z1, . . . , zn|Hi) Pr(Hi)P
i Pr(z1, . . . , zn|Hi) Pr(Hi)

(63)

According to Bayesian hypothesis testing, we should select the Hi maximizing the posterior probability
of Equation 63. The confidence in the decision, which we denote by post-odds, is given by the posterior
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odds against H0:

post-odds =
Pr(H1|z1, . . . , zn)

Pr(H0|z1, . . . , zn)
(64)

=
Pr(z1, . . . , zn|H1) Pr(H1)

Pr(z1, . . . , zn|H0) Pr(H0)
(65)

=
Qσ(z1, . . . , zn)R

π∈Π
Pσ;π(z1, . . . , zn)w(π)dπ

· Pr(H1)

Pr(H0)
(66)

Note that post-odds depends on H0, H1 and the data z1, . . . , zn. The factor on the left of Equation 64
is called the Bayes factor, and the factor on the right is called the prior odds. Since the Bayes factor
typically increases exponentially with n, the influence of the prior odds on the posterior odds is negligible
for all but the smallest n. Below we show that, if H1 is true (‘QM is right’), then with probability 1,

1

n
log post-odds → inf

π∈Π
D(Qσ‖Pσ;π). (67)

Therefore Equation 16 holds: the confidence post-odds will be determined, to first order in the exponent,
by infπ∈Π D(Qσ‖Pσ;π). This gives a Bayesian justification of adopting D(Qσ‖Pσ) as an indicator of
statistical strength – provided that we can show that Equation 67 holds. We proceed to show this.

Proof of Equation 67 We first note that

log Pσ;π(z1, . . . , zn) = log Pσ;π((a1, b1, x1, y1), . . . , (an, bn, xn, yn)) (68)

= n ·
X

a,b∈{1,2}

P(a, b)σab log P(a, b) + (69)

n ·
X

a,b∈{1,2}
x,y∈{F,T}

P(a, b, x, y) log

0B@ X
x1,x2,y1,y2
xa=x,yb=y

πx1x2y1y2

1CA. (70)

Here P(a, b) is the frequency (number of occurrences in the sample divided by n) of experimental out-
comes with measurement setting (a, b) and P(a, b, x, y) is the frequency of experimental outcomes with
measurement setting (a, b) and outcome X = x, Y = y.

Let π̃ be any π achieving infπ∈π D(Qσ‖Pσ;π). By Theorem 1, such a π̃ must exist, and Qσ must be
absolutely continuous with respect to Pσ;π̃(a, b, x, y). It follows that

Pσ;π̃(a, b, x, y) = σab

X
x1,x2,y1,y2
xa=x,yb=y

πx1x2y1y2 (71)

may be equal to 0 only if σabQσ(x, y, a, b) = 0. From this it follows (with some calculus) that there must
be a constant c and an open (L1-distance) ball Bε := {π ∈ Π | |π − π̃| < ε} around π̃ such that for all
π ∈ Bε, for all n, all sequences z1, . . . , zn. with Qσ(z1, . . . , zn) > 0,

| 1
n

log Pσ;π(z1, . . . , zn)− 1
n

log Pσ;π̃(z1, . . . , zn)|
|π − π̃| ≤ c (72)

whence | log Pσ;π(z1, . . . , zn)− log Pσ;π̃(z1, . . . , zn)| ≤ nc|π− π̃| ≤ ncε. By choosing ε = n−2 we find that
for sufficiently large n,

Pr(z1, . . . , zn|H0) =

Z
π∈Π

Pσ;π(z1, . . . , zn)w(π)dπ (73)

≥
Z

π∈Bε

Pσ;π(z1, . . . , zn)w(π)dπ (74)

≥ wminc
` 1

n2

´k
e−c/nPσ;π̃(z1, . . . , zn). (75)

Hence, − log Pr(z1, . . . , zn|H0) ≤ log Pσ;π̃(z1, . . . , zn) + −O(log n). By applying the strong law of large
numbers to n−1P log Pσ;π̃(Zi), we find that, with Qσ-probability 1,

− 1

n
log Pr(Z1, . . . , Zn|H0) ≤ EQσ [− log Pσ;π̃(Z)] + O(

log n

n
) (76)

= inf
π∈Π

EQσ [− log Pπ,σ(Z)] + O(
log n

n
). (77)
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This bounds − 1
n

log Pr(Zn|H0) from above. We proceed to bound it from below. Note that for all n,
z1, . . . , zn,

− 1

n
log

Z
π∈Π

Pσ;π(z1, . . . , zn)w(π)dπ ≥ inf
π∈Π

− 1

n
log Pσ;π(z1, . . . , zn). (78)

To complete the proof, we need to relate

inf
π∈Π

− 1

n
log Pσ;π(z1, . . . , zn) = inf

π∈Π
− 1

n

nX
i=1

log Pσ;π(zi) (79)

(which depends on the data) to its ‘expectation version’ infπ∈Π EQσ [− log Pσ;π(Z)]. This can be done
using a version of the uniform law of large numbers [32]. Based on such a uniform law of large numbers,
(for example, [16, Chapter 5, Lemma 5.14]) one can show that for all distributions Q over Z, with
Q-probability 1, as n →∞,

inf
π∈Π

− 1

n
log Pσ;π(Z1, . . . , Zn) → inf

π∈Π
EQ[− log Pσ;π(Z)]. (80)

Together, Equations 76, 78 and 80 show that, with Qσ-probability 1, as n →∞,

− 1

n
log Pr(Z1, . . . , Zn|H0) → inf

π∈Π
EQσ [− log Pσ;π(Z)] (81)

Together with the law of large numbers applied to n−1P log Pr(Zi|H1), we find that

1

n
log

Pr(Z1, . . . , Zn|H1)

Pr(Z1, . . . , Zn|H0)
→ inf

π∈π
EQσ [log

Qσ(Z)

Pσ;π(Z)
]. (82)

Noting that the right hand side is equal to infπ∈Π D(Qσ‖Pσ;π) and plugging this in into Equation 64,
we see that with H1-probability 1, Equation 67 holds. This is what we had to prove.

D.5 Information Theoretic Analysis

In this appendix we assume that the reader is familiar with the basics of information theory.
The code with lengths LPσ is simply the Shannon-Fano code for the Bayesian marginal likelihood

Pr(z1, . . . , zn | Pσ) = Pr(z1, . . . , zn | H0) as defined in Equation 62. For each n, each z1, . . . , zn ∈
Zn, this code achieves lengths (up to 1 bit) − log Pr(z1, . . . , zn | Pσ). The code corrsponding to Qσ

achieves lengths − log Q(z1, . . . , zn). We have already shown in Appendix D.4, Equation 82, that, with
Q-probability 1, as n →∞,

1

n

ˆ
− log Pr(z1, . . . , zn | Pσ)− [− log Q(z1, . . . , zn)]

˜
→ D(Qσ‖Pσ). (83)

Noting that the left hand side is equal to n−1bit-diff, Equation 23 follows.

E Proofs

E.1 Preparation

The proof of Theorem 1 uses the following lemma, which is of some independent interest.

Lemma 1 Let (Σ, Π, U) be the game corresponding to an arbitrary 2 party, 2 measurement settings
per party non-locality proof. For any a0, b0 ∈ {1, 2}, there exists a π ∈ Π such that for all a, b ∈
{1, 2}, (a, b) 6= (a0, b0) we have Qab = Pab;π. Thus, for any three of the four measurement settings, the
probability distribution on outcomes can be perfectly explained by a local realist theory.

Proof We will give a detailed proof for the case that the measurement outcomes are two values {R, G};
the general case can be proved in a similar way.

Without loss of generality let (a0, b0) = (2, 2). Now we must prove that the equation Qab = Pab;π

holds for the three settings (a, b) ∈ {(1, 1), (1, 2), (2, 1)}. Every triple of distributions Pab;π for these three
settings may be represented by a table of the form

Pr X1 = F X1 = T X2 = F X2 = T

Y1 = F p1 p2 p3 p4

Y1 = T p5 p6 p7 p8

Y2 = F p9 p10

Y2 = T p11 p12

(84)
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with p1, p2, . . . , p12 ≥ 0. Given any table of this form, we say that the LR distribution Pπ corresponds
to the table if P00;π(F,F) = p0/(p0 + p1 + p5 + p6), P10;π(F,F) = p3/(p3 + p4 + p7 + p8) etc. Note that
by this implicit normalization, we do not require the four entries within each sub-table to sum to one; in
this way, each p1, p2, . . . , p12 ≥ 0 with at least one non-zero element per sub-table corresponds to a set
of three conditional distributions.

Our experimental setup implies that the realized measurement setting on A’s side should not influence
the probability that B observes Y1 = y1. This is expressed by the equality p1 + p2 = p3 + p4. In total
there are four of such no-signaling restrictions:8>><>>:

p1 + p2 = p3 + p4

p5 + p6 = p7 + p8

p1 + p5 = p9 + p11

p2 + p6 = p10 + p12.

(85)

We call a table with p1, . . . , p12 ≥ 0 and satisfying Equation 85 and with at least one element per sub-
table strictly > 0, a Γ-table. We already showed that each triple of conditional LR distributions may
be represented as a Γ-table. In exactly the same way one shows that each triple of conditional quantum
experimentalist distributions Qab, (a, b) 6= (2, 2) can be represented as a Γ-table. It therefore suffices if
we can show that every Γ-table corresponds to some LR theory Pπ. We show this by considering the 16
possible deterministic theories Tx1x2y1y2 . Here Tx1x2y1y2 is defined as the theory with Pπ(X1 = x1, X2 =
x2, Y1 = y1, Y2 = y2) = πx1x2y1y2 = 1. Each deterministic theory πx1x2y1y2 corresponds to a specific
Γ-table denoted by Γx1x2y1y2 . For example, the theory TFFTF gives the ΓFFTF :

Pr X1 = F X1 = T X2 = F X2 = T

Y1 = F 0 0 0 0
Y1 = T 1 0 1 0

Y2 = F 1 0
Y2 = T 0 0

. (86)

We will prove that the set of Γ-tables is in fact the affine hull of the 16 tables Γx1x2y1y2 corresponding
to deterministic theories. This shows that any Γ-table can be reproduced by a mixture of deterministic
theories. Since every LR theory π ∈ Π can be written as such a mixture, this proves the lemma.

Given a Γ-table, we focus on its smallest nonzero entry Γab = ε > 0. By the restrictions of Equation 85
there exists a deterministic theory Tk such that Γ − εΓk has no negative entries. For example, suppose
that the smallest element in Γ corresponds to Pπ(X1 = F, Y1 = T) (denoted as p5 in the first table
above). By the restrictions of Equation 85, either the table Γ− p5ΓFFTF (where ΓFFTF is shown above)
or one of the three tables Γ− p5ΓFFTT, Γ− p5ΓFTTF, Γ− p5ΓFTTT only has nonnegative entries.

Let Γ′ := Γ− εΓk where k is chosen such that Γ′ has no negative entries. Clearly, either Γ′ only has
0-entries or Γ′ is a Γ-table with number of nonzero entries one less than that of Γ. Hence by applying the
above procedure at most 16 times, we obtain a decomposition Γ = ε1Γk1 + · · · + ε16Γk16 , which shows
that Γ lies in the affine hull of the Γ-tables corresponding to deterministic theories. �

E.2 Proof of Theorem 1

Theorem 1: Let Q be a given (not necessarily 2× 2× 2) nonlocality proof and Π the corresponding set
of local realist theories.

1. Let U(σ, π) := D(Qσ‖Pσ;π), then:

(a) For a 2× 2× 2 proof, we have that

U(σ, π) =
X

a,b∈{1,2}

σabD(Qab(·)‖Pab;π(·)) (87)

Hence, the KL divergence D(Qσ‖Pσ;π) may alternatively be viewed as the average KL diver-
gence between the distributions of (X, Y ), where the average is over the settings (A, B). For a
generalized nonlocality proof, the analogous generalization of Equation 87 holds.

(b) For fixed σ, U(σ, π) is convex and lower semicontinuous on Π, and continuous and differentiable
on the interior of Π.

(c) If Q is absolutely continuous with respect to some fixed π, then U(σ, π) is linear in σ.
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2. Let

U(σ) := inf
π∈Π

U(σ, π), (88)

then

(a) For all σ ∈ Σ, the infimum in Equation 88 is achieved for some π∗.

(b) The function U(σ) is nonnegative, bounded, concave and continuous on σ.

(c) If Q is not a proper nonlocality proof, then for all σ ∈ Σ, U(σ) = 0. If Q is a proper nonlocality
proof, then U(σ) > 0 for all σ in the interior of Σ.

(d) For a 2 party, 2 measurement settings per party nonlocality proof, we further have that, even
if Q is proper, then still U(σ) = 0 for all σ on the boundary of Σ.

3. Suppose that σ is in the interior of Σ, then:

(a) Let Q be a 2×2×2 nonlocality proof. Suppose that Q is non-trivial in the sense that, for some
a, b, Qab is not a point mass (i.e. 0 < Qab(x, y) < 1 for some x, y). Then π∗ ∈ Π achieves the
infimum in Equation 88 if and only if the following 16 (in)equalities hold:X

a,b∈{1,2}

σab
Qab(xa, yb)

Pab;π∗(xa, yb)
= 1 (89)

for all (x1, x2, y1, y2) ∈ {F,T}4 such that π∗x1,x2,y1,y2 > 0, andX
a,b∈{1,2}

σab
Qab(xa, yb)

Pab;π∗(xa, yb)
≤ 1 (90)

for all (x1, x2, y1, y2) ∈ {F,T}4 such that π∗x1,x2,y1,y2 = 0.
For generalized nonlocality proofs, π∗ ∈ Π achieves Equation 88 if and only if the corresponding
analogues of Equations 89 and 90 both hold.

(b) Suppose that π∗ and π◦ both achieve the infimum in Equation 88. Then, for all x, y ∈ {F,T},
a, b ∈ {1, 2} with Qab(x, y) > 0, we have Pab;π∗(x, y) = Pab;π◦(x, y) > 0. In words, π∗ and
π◦ coincide in every measurement setting for every measurement outcome that has positive
probability according to Qσ, and Q is absolutely continuous with respect to π∗ and π◦.

Proof We only give proofs for the 2×2×2 case; extension to the general case is entirely straightforward.
We define

U((a, b), π) := D(Qab(·)‖Pab;π(·)) (91)

=
X

x,y∈{F,T}
Qab(x,y)>0

Qab(x, y)[log Qab(x, y)− log Pab;π(x, y)]. (92)

Note that U(σ, π) can be written as U(σ, π) =
P

a,b∈{1,2} σabU((a, b), π).

Part 1 Equation 87 follows directly from the additivity property of KL divergence, Equation 54.
Convexity is immediate by Jensen’s inequality applied to the logarithm in Equation 91 and the fact
that Pab;π(x, y) is linear in πx1x2y1y2 for each (x1, x2, y1, y2) ∈ {F,T}4. If π lies in the interior of Π,
then Pab;π(x, y) > 0 for a, b ∈ {1, 2} so that U(σ, π) is finite. Continuity and differentiability are then
immediate by continuity and differentiability of log x for x > 0. Lower semicontinuity of U(σ, π) on Π is
implied by the fact that, on general spaces, D(Q‖P ) is jointly lower semi-continuous in Q and P in the
weak topology, as proved by Posner [27, Theorem 2]. Part 1(c) is immediate.

Part 2 We have already shown that for fixed σ, U(σ, π) is lower semicontinuous on Π. Lower semicon-
tinuous functions achieve their infimum on a compact domain (see for example [11, page 84]), so that for
each σ, Equation 88 is achieved for some π∗. This proves (a). To prove (b), note that nonnegativity of
U(σ) is immediate by nonnegativity of the KL divergence. Boundedness of U(σ) follows by considering
the uniform distribution π◦, with, for all x1, x2, y1, y2, π◦x1x2y1y2 = 1/16. π◦ is in Π, so that

U(σ) ≤ U(σ, π◦) (93)

=
X

a,b∈{1,2}

σab

» X
x,y ∈{F,T}
Qab(x,y)>0

Qab(x, y)[log Qab(x, y) + 2]

–
(94)

≤ −
X

a,b{1,2}

σabH(Qab) + 8, (95)
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where H(Qab) is the Shannon-entropy of the distribution Qab. Boundedness of U(σ) now follows from
the fact that H(Q) ≥ 0 for every distribution Q, which is a standard result (see, e.g. [8]).

Let σ be in the interior of Σ and let π∗ ∈ Π achieve infπ∈Π U(σ, π). Since U(σ) is bounded, π∗ is
absolutely continuous with respect to σ (otherwise U(σ) = ∞, a contradiction). Thus, U(σ) satisfies

U(σ) = inf
π∈Π is absolutely continuous with respect to Q

U(σ, π). (96)

We already proved that if Qσ is absolutely continuous with respect to π∗, then U(σ, π∗) is linear in σ.
Thus, by Equation 96, U(σ) is an infimum of linear functions, which (by a standard result of convex
analysis, see e.g. [30]) is concave. A concave and bounded function with a convex domain must be
continuous on the interior of this domain (see, e.g., [30]). It remains to show that U(σ) is continuous
at boundary points of Σ. Showing this is straightforward by taking limits (but tedious). We omit the
details.

Now for part (c). If Q is not a proper nonlocality proof, then by definition there exists a π0 ∈ Π such
that, for a, b ∈ {1, 2}, we have Qab = Pab;π0 and hence U(σ, π0) = 0 for all σ ∈ Σ.

Now suppose Q is a proper nonlocality proof. Let σ be in the interior of Σ. infπ U(σ, π) is achieved
for some π∗. Suppose, by means of contradiction, that U(σ, π∗) = 0. Since σab > 0 for a, b ∈ {1, 2}, we
must have Qab = Pab;π∗ for a, b ∈ {1, 2}. But then Q is not a proper nonlocality proof; contradiction.
For part (d), if σ is on the boundary of Σ, then for some a, b, σab = 0. It then follows from Lemma 1
and the fact that, for all P , D(P‖P ) = 0 that U(σ, π∗) = 0.

Part 3 Part (a) The condition that Qab is not a point mass for some a, b, implies that all π∗ that
achieve the infimum must have π∗x1x2y1y2 < 1 for all x1, x2, y1, y2, (otherwise U(σ, π∗) = ∞, which is a
contradiction). Thus, we assume that π∗ ∈ Π0, with Π0 the set of πs that satisfy this “< 1” restriction.

For ρ ∈ [0,∞)16, let

ρx1x2y1y2
(ρ) :=

ρx1x2y1y2P
x′1,x′2,y′1,y′2∈{F,T} ρx′1x′2y′1y′2

. (97)

In this way, each vector ρ with at least one non-zero component uniquely defines a local theory ρ ∈ Π,
and 8<:ρ : ρ ∈ [0,∞)16 and

X
x1,x2,y1,y2∈{F,T}

ρx1x2y1y2 > 0

9=; = Π0. (98)

Let ρ∗ be such that ρ∗ achieves the infimum in Equation 88. Then Q is absolutely continuous with respect
to ρ∗. One can now show that for each (x1, x2, y1, y2) ∈ {F,T}4, the partial derivative ∂ U(σ, ρ)/∂ρx1,x2,y1,y2

evaluated at ρ = ρ∗ exists (even if ρ∗x1,x2,y1,y2 = 0). Since ρ∗ achieves the infimum, it follows that, for
each (x1, x2, y1, y2) ∈ {F,T}4, we must have that (∂/∂ρx1,x2,y1,y2)U(σ, ρ) evaluated at ρ∗ is not less than
0, or, equivalently, 

∂U(σ, ρ)

∂ρx1,x2,y1,y2

ff
ρ=ρ∗

·

 X
x1,x2,y1,y2

ρx1,x2,y1,y2

!
≥ 0 (99)

with equality if ρ∗x1,x2,y1,y2 > 0. Straightforward evaluation of Equation 99 gives Equations 89 and 90.
This shows that each π∗ achieving Equation 88 satisfies Equations 89 and 90. On the other hand, each
π∗ corresponding to a ρ∗ with ρ∗ = π∗ such that Equation 99 holds for each (x1, x2, y1, y2) ∈ {F,T}4
must achieve a local minimum of U(σ, π) (viewed as a function of π), Since U(σ, π) is convex, π∗ must
achieve the infimum of Equation 88.

For part (b), suppose, by way of contradiction, that for at least one (x1, y1) ∈ {F,T}2, a0, b0 ∈ {1, 2}
with Qa0b0(x1, y1) > 0, we have Pa0b0;π∗(x1, y1) 6= Pa0b0;π◦(x1, y1). For each x, y ∈ {F,T}, a, b ∈ {1, 2},
we can write

Pab;π∗(x, y) = π∗k1 + π∗k2 + π∗k3 + π∗k4 ,

Pab;π◦(x, y) = π◦k1 + π◦k2 + π◦k3 + π◦k4 , (100)

for some k1, . . . , k4 depending on x, y, a, b. Here each kj is of the form x1x2y1y2 with xi, yi ∈ {F,T}.
Now consider π+ := (1/2)π∗ + (1/2)π◦. Clearly π+ ∈ Π. By Jensen’s inequality applied to the log-
arithm and using Equation 100, we have for a, b ∈ {1, 2}: Qab(x, y)[log Qab(x, y) − log Pab;π+(x, y)] ≤
Qab(x, y)[log Qab(x, y)− 1

2
log Pab;π∗(x, y)− 1

2
log Pab;π◦(x, y)], where the inequality is strict if x = x1, y =
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y1, a = a0 and b = b0. But then for a, b ∈ {1, 2}: U((a, b), π+) ≤ 1
2
U((a, b), π∗) + 1

2
U((a, b), π◦), which

for (a, b) = (a0, b0) must be strict. By assumption, σa0b0 > 0 But that implies U(σ, π+) < U(σ, π∗) =
infπ∈Π U(σ, π) and we have arrived at the desired contradiction. �

E.3 Proofs of Game-Theoretic Theorems

E.3.1 Game-Theoretic Preliminaries

Proposition 1 gives a few standard game-theoretic results (partially copied from [11]). We will use these
results at several stages in later proofs.

Proposition 1 Let A and B be arbitrary sets and let L : A×B → R∪{−∞,∞} be an arbitrary function
on A×B. We have

1. infβ∈B supα∈A L(α, β) ≥ supα∈A infβ∈B L(α, β).

2. Suppose the following conditions hold:

(a) The game (A, B, L) has a value V ∈ R ∪ {−∞,∞}, that is infβ∈B supα∈A L(α, β) = V =
supα∈A infβ∈B L(α, β).

(b) There exists α∗ that achieves supα∈A infβ∈B L(α, β).

(c) There exists β∗ that achieves infβ∈B supα∈A L(α, β).

Then (α∗, β∗) is a saddle point and L(α∗, β∗) = V .

3. Suppose there exists a pair (α∗, β∗) such that

(a) β∗ achieves infβ∈B L(α∗, β) and

(b) β∗ is an equalizer strategy, that is, there exists a K ∈ R ∪ {−∞,∞} with for all α ∈ A,
L(α, β∗) = K.

Then the game (A, B, L) has value K, i.e. infβ∈B supα∈A L(α, β) = supα∈A infβ∈B L(α, β) = K,
and (α∗, β∗) is a saddle point.

Proof (1) For all α′ ∈ A,

inf
β∈B

sup
α∈A

L(α, β) ≥ inf
β∈B

L(α′, β). (101)

Therefore, infβ∈B supα∈A L(α, β) ≥ supα′∈A infβ∈B L(α′, β).
(2) Under our assumptions,

L(α∗, β∗) ≤ sup
α∈A

L(α, β∗) = inf
β∈B

sup
α∈A

L(α, β) (102)

= V (103)

= sup
α∈A

inf
β∈B

L(α, β) (104)

= inf
β∈B

L(α∗, β) ≤ L(α∗, β∗), (105)

so L(α∗, β∗) = V = infβ∈B L(α∗, β) and L(α∗, β∗) = V = supα∈A L(α, β∗).
(3) To show that the game has a value, by (1) it is sufficient to show that

inf
β∈B

sup
α∈A

L(α, β) ≤ sup
α∈A

inf
β∈B

L(α, β). (106)

But this is indeed the case: infβ∈B supα∈A L(α, β) ≤ supα∈A L(α, β∗) = L(α∗, β∗) = K = infβ∈B L(α∗, β) ≤
supα∈A infβ∈B L(α, β), where the first equalities follow because β∗ is an equalizer strategy. Thus, the
game has a value equal to K. Since supα∈A L(α, β∗) = K, β∗ achieves infβ∈B supα∈A L(α, β). Since
infβ∈B L(α∗, β) = K, α∗ achieves supα∈A infβ∈B L(α, β). Therefore, (α∗, β∗) is a saddle point. �
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E.3.2 Proof of Theorem 2, the Saddle Point Theorem for Correlated Settings and
Generalized Non-Locality Proofs

Theorem 2: For every (generalized) non-locality proof, the correlated game (Π, Σ, U) corresponding to
it has a finite value, i.e. there exists 0 ≤ V < ∞ with

V = inf
Π

sup
Σ

U(σ, π) (107)

= sup
Σ

inf
Π

U(σ, π).

The infimum on the first line is achieved for some π∗ ∈ Π; the supremum on the second line is achieved
for some σ∗ in Σ, so that (π∗, σ∗) is a saddle point.
Proof We use the following well-known minimax theorem due to Ferguson. The form in which we state
it is a straightforward combination of Ferguson’s [11] Theorem 1, page 78 and Theorem 2.1, page 85,
specialized to the Euclidean topology.

Theorem 4 (Ferguson 1967) Let (A, B, L) be a statistical game where A is a finite set, B is a convex
compact subset of Rk for some k > 0 and L is such that for all α ∈ A,

1. L(α, β) is a convex function of β ∈ B.

2. L(α, β) is lower semicontinuous in β ∈ B.

Let A be the set of distributions on A and define, for P ∈ A, L(P, β) = EP L(α, β) =
P

α∈A PαL(α, β).
Then the game (A, B, L) has a value V , i.e.

sup
P∈A

inf
β∈B

L(P, β) = inf
β∈B

sup
P∈A

L(P, β), (108)

and a minimax β∗ ∈ B achieving infβ∈B supα∈A L(α, β) exists.

By Theorem 1, part (1), for all σ ∈ Σ, U(σ, π) = D(Qσ‖Pσ;π) is lower semicontinuous in π. Let us now
focus on the case of a 2 × 2 × 2 game. We can apply Theorem 4 with A = {11, 12, 21, 22}, A = Σ and
B = Π. It follows that the game (Σ, Π, U) has a value V , and infπ supσ U(σ, π) = V is achieved for some
π∗ ∈ Π. By Theorem 1, part (2), 0 ≤ V < ∞, and, since U(σ) is continuous in σ, there exists some σ∗

achieving supσ infπ U(σ, π).
The proof for generalized nonlocality proofs is completely analogous; we omit details. �

E.3.3 Proof of Theorem 3, Saddle Points and Equalizer Strategies for 2× 2× 2
Nonlocality Proofs

Theorem 3: Fix any proper non-locality proof based on 2 parties with 2 measurement settings per party
and let (Σ, Π, U) and (Σuc, Π, U) be the corresponding correlated and uncorrelated games, then:

1. The correlated game has a saddle point with value V > 0. Moreover,

sup
Σuc

inf
Π

U(σ, π) ≤ sup
Σ

inf
Π

U(σ, π) = V (109)

inf
Π

sup
Σuc

U(σ, π) = inf
Π

sup
Σ

U(σ, π) = V. (110)

2. Let

Π∗ := {π : π achieves inf
Π

sup
Σ

U(σ, π)}, (111)

Πuc∗ := {π : π achieves inf
Π

sup
Σuc

U(σ, π)}, (112)

then

(a) Π∗ is non-empty.

(b) Π∗ = Πuc∗.

(c) All π∗ ∈ Π∗ are ‘equalizer strategies’, i.e. for all σ ∈ Σ, U(σ, π∗) = V .

3. The uncorrelated game has a saddle point if and only if there exists (π∗, σ∗), with σ∗ ∈ Σuc, such
that

(a) π∗ achieves infπ U(σ∗, π).
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(b) π∗ is an equalizer strategy.

If such (σ∗, π∗) exists, it is a saddle point.

Proof The correlated game has a value V by Theorem 2 and V > 0 by Theorem 1. Inequality 109 is
immediate.

Let U((a, b), π) be defined as in the proof of Theorem 1 (Equation 91). To prove Equation 110, note
that for every π ∈ Π,

sup
Σuc

U(σ, π) = sup
Σ

U(σ, π) (113)

= max
a,b∈{1,2}

U((a, b), π). (114)

Thus, Equation 110 and part 2(b) of the theorem follow. Part 2(a) is immediate from Theorem 2. To
prove part 2(c), suppose, by way of contradiction, that there exists a π∗ ∈ Π∗ that is not an equalizer
strategy. Then the set {(a, b) | U((a, b), π∗) = maxa,b∈{1,2} U((a, b), π∗)} has less than four elements.
By Theorem 2, there exists a σ∗ ∈ Σ such that (σ∗, π∗) is a saddle point in the correlated game. Since
σ∗ ∈ Σ achieves supΣ U(σ, π∗), it follows that for some a0, b0 ∈ {1, 2}, σ∗a0b0 = 0. But then σ∗ lies on
the boundary of σ. By Theorem 1, part 2(d), this is impossible, and we have arrived at the desired
contradiction.

It remains to prove part (3). Part (3), ‘if’ follows directly from Proposition 1. To prove part (3), ‘only
if’, suppose the uncorrelated game has saddle point (σ∗, π∗). It is clear that π∗ achieves infπ U(σ∗, π).
We have already shown above that π∗ is an equalizer strategy. �
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