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Abstract

In this paper we describe an adaptive moving mesh technique and
its application to convection-diffusion models from magnetohydrody-
namics (MHD). The method is based on a coordinate transformation
between physical and computational coordinates. The transforma-
tion can be viewed as a solution of adaptive mesh partial differential
equations (PDEs) which are derived from the minimization of a mesh-
energy integral. For an efficient implementation we have used an ap-
proach in which the numerical solution of the physical PDE model
and the adaptive PDEs are decoupled. Further, to avoid solving large
nonlinear systems, an implicit-explicit method is applied for the time
integration in combination with the iterative method Bi-CGSTAB.
The adaptive mesh can be viewed as a 2D variant of the equidistri-
bution principle, and it has the ability to track individual features of
the physical solutions in the developing plasma flows. The results of
a series of numerical experiments are presented which cover several
aspects typifying resistive magnetofluid-dynamics.

Keywords: magnetohydrodynamics; coordinate transformation; equidis-
tribution principle; monitor functions; adaptive moving mesh method; implicit-
explicit time integration.
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1 Introduction

Many interesting phenomena in plasma fluid dynamics can be described
within the framework of magnetohydrodynamics (MHD). Numerical studies
in plasma flows frequently involve simulations with highly varying spatial and
temporal scales. As a consequence, numerical methods on uniform meshes
are inefficient to use, since a very large number of mesh points is needed to
resolve the spatial structures, such as shocks, contact discontinuities, shear
layers, or current sheets. For the efficient study of these phenomena, we re-
quire adaptive mesh methods which automatically track and spatially resolve
one or more of these structures.

Over the years a large number of adaptive mesh methods have been pro-
posed for time-dependent PDE models. Two main strategies of adaptive
mesh methods can be distinguished, namely, static-remeshing methods and
moving-mesh or dynamic-remeshing methods. In static-remeshing methods
(denoted by h-refinement) the location of nodes is fixed. A method of this
type adapts the mesh by adding nodes where they are necessary and remov-
ing them when they are no longer needed. The refinement or de-refinement
is controlled by error estimates or error monitor values (which have no re-
semblance with the true numerical error). Recent examples of these methods
are described in [17], [24], [12]. In dynamic-remeshing methods (denoted by
r-refinement) nodes are moving continuously in the space-time domain, like
in classical Lagrangian methods, and the discretization of the PDE is coupled
with the motion of the mesh. Examples can be found in [9], [16], [14], [23].

In this paper we follow the second approach. We describe an adaptive
moving mesh technique that is based on a minimization of a so-called mesh-
energy integral. The corresponding Euler-Lagrange equations then define
a set of adaptive mesh PDEs. In one space dimension this reduces to the
widely-used equidistribution principle; in two space dimensions it is related
to (but not equivalent with) harmonic mapping theory supplemented with a
monitor matrix to detect the steep transitions in the solution. For the inte-
gration in time of the physical PDE the first-order implicit-explicit method
1-SBDF [1] is applied. The implicit part of this method deals with the (lin-
ear) diffusion, whereas the explicit part takes care of the convection terms
in the model. Additionally, the discretization of the PDE model and the
moving mesh is decoupled. For solving the linear (non-symmetric) system
behind the discretized equations, the iterative method Bi-CGSTAB (see [18])
is used. Since the physical domain in our application is rectangular, we have
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simplified, similar to [16], the adaptive mesh PDEs as used in [3] and in
[9]. Further, we have borrowed ideas from [3] in which the difficult choice of
a user-defined adaptivity constant in the monitor function is replaced by a
procedure where the parameter is time-dependent and automatically chosen.
This simplified and robust formulation is then applied to convection-diffusion
models from MHD.

The layout of the paper is as follows. In the next section we present
the full set of MHD equations, their physical meaning and the restriction
to a two-dimensional situation. The adaptive moving mesh is defined as
the solution of a system of nonlinear diffusion PDEs in section 3. Section 4
describes the numerical algorithm for solving the physical and mesh PDEs. In
section 5 numerical experiments are shown for several characteristic models
from resistive MHD, viz., a model with a four-cell convection pattern, a single
eddy model and a model with a band of eddies in a horizontal magnetic field.
Finally, section 6 lists the conclusions and presents an outlook how to extend
and further improve the method.

2 The equations of magnetohydrodynamics

The MHD equations govern the dynamics of a charge-neutral ‘plasma’. Just
like the conservative Euler equations provide a continuum description for a
compressible gas, the MHD equations express the basic physical conservation
laws to which a plasma must obey. Because plasma dynamics is influenced
by magnetic fields through the Lorentz-force, the needed additions in going
from hydrodynamic to magnetohydrodynamic behaviour is a vector equation
for the magnetic field evolution and extra terms in the Euler system that
quantify the magnetic force and energy density.

Using the conservative variables density ρ, momentum density m ≡ ρv
(with velocity v), magnetic field B, and total energy density e, the ideal
MHD equations can be written as follows (cfr. [7], [22]):

Conservation of mass:
∂ρ

∂t
+∇ · (ρv) = 0. (1)

Conservation of momentum:

∂(ρv)

∂t
+∇ · (ρvv −BBT ) +∇ptot = 0. (2)
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Conservation of energy:

∂e

∂t
+∇ · (ev + vptot −BBT · v) = 0

[

+ εm(∇×B)2
]

. (3)

Magnetic field induction equation:

∂B

∂t
+∇ · (vBT −BvT ) = 0 [+ εm∆B]. (4)

In (2) and (3) the total pressure ptot consists of both a thermal and a magnetic
contribution as given by

ptot = p +
B2

2
, where p = (γ − 1)(e− ρ

v2

2
− B2

2
) (5)

is the thermal pressure (notation: v2 = vTv and B2 = BTB). This set
of equations must be solved in conjunction with an important condition
on the magnetic field B, namely the non-existence of magnetic ‘charge’ or
monopoles. Mathematically, it is easily demonstrated that this property can
be imposed as an initial condition alone, since

∇ ·B|t=0 = 0 =⇒∇ ·B|t≥0 = 0. (6)

In multi-dimensional numerical MHD, the combined spatio-temporal dis-
cretization may not always ensure this conservation of the solenoidal charac-
ter of the vector magnetic field.

The terms between brackets in equations (3) and (4) extend the ideal
MHD model with the effects of Ohmic heating due to the presence of currents.
With the resistivity εm 6= 0, we then solve the resistive MHD equations.

2.1 2D magnetic field evolution

The core problem is represented by the induction equation (4), alternatively
written as

∂B

∂t
= ∇× (v ×B) + εm∆B (7)

with εm > 0 the resistivity or magnetic diffusion coefficient. As may be antic-
ipated, the parameter εm is related to the inverse of the magnetic Reynolds
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number (also named Lundquist number). In two space dimensions, we set
B = (B1, B2, 0), to obtain the following system of PDEs,

∂B1

∂t
= εm∆B1 + v1

∂B2

∂y
− v2

∂B1

∂y
+ B2

∂v1

∂y
−B1

∂v2

∂y
, (8)

∂B2

∂t
= εm∆B2 − v1

∂B2

∂x
+ v2

∂B1

∂x
−B2

∂v1

∂x
+ B1

∂v2

∂x
, (9)

together with the property ∇ ·B = 0.
One way to ensure a divergence-free magnetic field at all times is to

make use of a vector potential formulation where B
def
= ∇ × A. From this

follows automatically that ∇ · B = ∇ · (∇ × A) = 0. In two dimensional
applications, the system (8)-(9) is then equivalent to the single PDE for the
scalar A3 component

∂A3

∂t
= −v · ∇A3 + εm∆A3, (10)

with ∂A3

∂y
= B1, −∂A3

∂x
= B2, while A = (0, 0, A3)

T . Note that magnetic field
lines are isolines of this A3 potential.

Finally, we point out (cfr. [19]) that the partial problem posed by the
system (8)-(9), or equivalently the PDE (10), can be relevant as a physical so-
lution to the special case where we consider incompressible flow ∇·v = 0, the
momentum equation (2) under the condition that the magnetic energy B2/2
is much smaller than the kinetic energy ρv2/2, and the induction equation
itself. In those circumstances, the momentum balance decouples from the
magnetic field evolution. In fact, our model then merely consists of equation
(4) re-written in the potential formulation (10), i.e., for instance, the mo-
mentum density does not appear in the final model. In the model problems
studied, we therefore prescribe an incompressible flow field v(x, y) as well.

2.2 Kinematic flux expulsion

This model problem dates back to 1966 [19], as one of the first studies to
address the role of the magnetic field in a convecting plasma. Starting from
a uniform magnetic field, its distortion by cellular convection patterns was
simulated numerically for various values of the resistivity εm.

One possible situation of 2D kinematic flux expulsion uses an imposed
four-cell convection pattern with its incompressible velocity field given by

v = (− sin(2πx) cos(2πy), cos(2πx) sin(2πy))T . (11)
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We then want to solve for the scalar vector potential A3 from (10) on the
domain (x, y) ∈ [0, 1] × [0, 1] and for times t ∈ [0, 5]. In terms of A3, the
initial uniform vertical field is obtained through A3|t=0 = 1 − x, while the
boundary conditions are A3|x=0 = 1, A3|x=1 = 0, ∂A3

∂n
|y=0 = ∂A3

∂n
|y=1 = 0,

which corresponds with a constant initial magnetic field.

2.3 Asymptotic analysis of the model

Since εm is assumed to be small, we write the formal asymptotic expansion
A3(x, y, t) =

∑∞

j=0 a3,j(x, y, t) εj
m. First, only considering the first-order term

in the expansion, gives the hyperbolic equation

∂a3,0

∂t
= −v · ∇a3,0. (12)

It follows that the initial solution remains constant on the sub-characteristics
of (10) defined by (12): (ẋ, ẏ)T = v. As ∇ · v = 0, the only critical points of
this ODE system are centers or saddle points. The situation is sketched in
Figure 6 (left panel) and in MHD terms this phase is called field amplification.
At some point of time this situation is changed dramatically, because the
solution a3,0 can not satisfy the boundary conditions of the original PDE
model. Thus, the approximation (12) can not hold anymore and this means
that boundary (and internal) layers are introduced (see Figure 6, right panel):
the magnetic flux concentrates at edges of convective cells. It can be shown
(see [15]) that the layers, i.e. where the term εm∆A3 comes into play, have
width O(

√
εm). For t → ∞ the solution reaches a non-trivial steady-state,

in which the diffusion and convection terms settle down to an equilibrium.
The described situation is typical for the cases in resistive MHD as discussed
in this paper.

3 The adaptive moving mesh method

3.1 A coordinate transformation

Consider the scalar convection-diffusion model (10). It is common and useful
in structured adaptive mesh methods to first apply a coordinate transforma-
tion. The adaptive mesh can then be seen as a uniform discretization of this
mapping in the new variables. Applying the transformation

ξ = ξ(x, y, t), η = η(x, y, t), θ = t, (13)
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to equation (10) gives [13] (a similar derivation can be made for the (B1, B2)
system)

JA3,θ + A3,ξ(xηyθ − xθyη) + A3,η(xθyξ − xξyθ) (14)

= A3,ξ(−v1yη + v2xη) + A3,η(v1yξ − v2xξ)

+εm

[

(
x2

η + y2
η

J A3,ξ)ξ − (
xξxη + yξyη

J A3,η)ξ − (
xξxη + yξyη

J A3,ξ)η + (
x2

ξ + y2
ξ

J A3,η)η

]

.

To show how to obtain equation (14), we work out a few terms. For example,
using the chain rule of differentiation,

A3,t = A3,θθt + A3,ξξt + A3,ηηt.

We can also find that

ξt = −xθξx − yθξy = − 1

J (xθyη − yθxη).

Using a similar relation for ηt gives us

A3,t = A3,θ +
A3,ξ

J (xηyθ − xθyη) +
A3,η

J (xθyξ − xξyθ).

Since ξx = yη

J
, ξy = −xη

J
, ηy =

xξ

J
and ηx = −yξ

J
, we find for the first-order

spatial derivative terms in (10):

A3,x =
1

J (A3,ξyη − A3,ηyξ)

and

A3,y =
1

J (A3,ηxξ − A3,ξxη).

With these results the Laplacian term in (10) can also be transformed
in a rather straightforward manner to the form in equation (10). Note that,
J = xξyη − xηyξ denotes the determinant of the Jacobian of the inverse
transformation.
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3.2 The adaptive mesh PDEs

The transformation, in other words, the adaptive mesh, is prescribed by so-
called adaptive moving mesh PDEs.
For simplicity, let us suppress the time-dependence of the transformation:
we will use the physical coordinates (x, y)T ∈ Ωp and the computational
coordinates (ξ, η)T ∈ Ωc := [0, 1]×[0, 1], respectively. In a variational setting,
a ‘mesh-energy’ functional is defined by

Ẽ(ξ, η) =
1

2

∫ ∫

Ωp

(

∇̃ξT N−1
1 ∇̃ξ + ∇̃ηT N−1

2 ∇̃η
)

dx dy, (15)

where ∇̃ def
= ( ∂

∂x
, ∂

∂y
)T and N1, N2 are given monitor matrices. The mesh, i.e.

the transformation, is determined by minimizing the energy functional via
the Euler-Lagrange equations: ∇̃ · (N−1

1 ∇̃ξ) = 0, ∇̃ · (N−1
2 ∇̃η) = 0.

A simple choice for the monitor matrices is N1 = N2 = ωI, where I is
the identity matrix and ω a positive weight function. With this choice we
obtain Winslow’s variable diffusion method [20]:

∇̃ ·
(

1

ω
∇̃ξ

)

= 0, ∇̃ ·
(

1

ω
∇̃η

)

= 0. (16)

In one space dimension on Ωp = [xl, xr], equations (16) reduce to (ω−1ξx)x =
0, which gives the equidistribution principle: ω−1ξx = c(onstant) ⇔ ωxξ =
c̃(onstant), or equivalently the boundary-value problem: (ωxξ)ξ = 0, with
boundary conditions x(0) = xl, x(1) = xr. For this case, an explicit formula
for the transformation ξ(x) can be derived. Note that

1 = ξ(xr)− ξ(xl) =

∫ xr

xl

ξx dx = c

∫ xr

xl

ω dx̄⇒ ξx =
ω(x)

∫ xr

xl
ω dx̄

,

and integrating once more gives ξ(x) =

∫ x

xl
ω(x̄) dx̄

∫ xr
xl

ω(x̄) dx̄
.

The ‘energy’ in (15) can be taken to represent the energy of a system of
springs with spring constants ωi,j spanning the 2D mesh. Mesh points
(xi,j, yi,j) can then be seen as the mass points of the spring system, that
will be ‘optimally’ positioned by minimizing the energy (see also Figure 6).
For more general choices of N1 and N2 in equation (15), however, it is not
obvious how to link this formulation in terms of springs and masses to mesh
points and monitor values.
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In practice, the physical domain may have very complex geometry and
as a result directly solving the elliptic system (16) on structured meshes is
unrealistic. Therefore, usually the corresponding mesh generation equations
on the computational domain are solved by interchanging the dependent and
independent variables. However, the resulting system is much more compli-
cated than the original equations (16), which requires additional computa-
tional effort in obtaining numerical approximations. If the physical domain
is convex, an alternative approach (see also [16]) is to consider the energy
functional in the computational domain. Unlike the re-written classical equa-
tions (16) a very simple structure is maintained. In 2-D the functional now
reads:

E(x, y) =
1

2

∫ ∫

Ωc

(

∇T xM1∇x +∇T yM2∇y
)

dξdη,

where ∇ def
= ( ∂

∂ξ
, ∂

∂η
)T . The corresponding Euler-Lagrange equations with the

special choice M1 = M2 = ωI (à la Winslow) are then of the form

(ωxξ)ξ + (ωxη)η = 0,

(ωyξ)ξ + (ωyη)η = 0. (17)

These elliptic equations form the basis of the adaptive mesh algorithm. Note
that other choices for M1 and M2, or even extended versions of the energy
functional are well possible. We choose for the simplest and most effective
one that is suitable for our application. For the interested reader, we refer
to [8] or [9] for more details on other types of monitors and functionals.

3.3 Theoretical results

In this section a few theoretical results are presented concerning the regularity
of the elliptic system (17). It must first be noted that the current method
is strongly related to the harmonic mapping method as mentioned, e.g., in
[4]. However, there is a slight subtle difference in the energy functional
from harmonic mapping theory compared to our situation, so that we cannot
simply apply the theoretical results on the regularity and unicity for harmonic
maps. Fortunately, two other results in this respect can be stated, as follows:

The relation of the method with equidistribution:

Under an extra assumption on the transformation, the relation between the
elliptic system (17) and the equidistribution principle becomes clear. How-
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ever, it is not obvious how this condition translates to situations from prac-
tice or how to interpret it physically. In some sense, it is, strangely enough,
weakly linked with a kind of derivative type of constraint on the Jacobian
J = xξyη − xηyξ.

Lemma 3.1 If ∇(xξ) · ∇(yη)−∇(xη) · ∇(yξ) = 0, then the adaptive trans-
formation which solves (17) satisfies Jω = constant.

Proof: First, expand and re-arrange equations (17), to get

1

ω
∇ω · ∇x = −∆x,

1

ω
∇ω · ∇y = −∆y.

It is useful to work out ∆J . For this purpose, set d̄
def
= − ln(ω). Then

after some calculus it follows that ∆J = J∆d̄ + ∇d̄ · ∇J + R, with R =

2[∇(xξ) ·∇(yη)−∇(xη) ·∇(yξ]. With J̄ def
= ln(J ) we get ∇J = J∇J̄ . From

the assumption follows R = 0. Combining these results gives ∆(J̄ −d̄)+∇J̄ ·
∇(J̄ − d̄) = 0. A solution to this equation is ∇(J̄ − d̄) = 0. Integrating once,
we obtain J̄ −d̄ = constant. This is equivalent with ln(J )+ln(ω) = constant.
Thus Jω = constant, which relates (17) to the equidistribution principle.

A result from differential geometry:

Without a proof we give the important theoretical result by Clément et al
[6] on the non-singularity of the transformation satisfying (17). Their anal-
ysis confirms the result from harmonic mapping theory mentioned earlier.
The proof consists of three main ingredients: application of the Carleman-
Hartman-Winter theorem, the Jordan curve theorem and the maximum prin-
ciple for elliptic PDEs. Note that in three space dimensions the application
of the first two theorems is not clear. The 2D result reads:

Lemma 3.2 Let ω ≥ c > 0, ω ∈ C0,1(Ωc) and ωξ, ωη ∈ Cγ(Ω̄c), γ ∈
(0, 1). With the boundary conditions x|ξ=0 = y|η=0 = 0, x|ξ=1 = y|η=1 =
1, ∂x

∂n
|ξ=0 = ∂x

∂n
|ξ=1 = ∂y

∂n
|η=0 = ∂y

∂n
|η=1 = 0, there exists a unique solution

(x, y) ∈ C2(Ω̄c),which is a bijection from Ω̄c into itself. Moreover, the Jaco-
bian J > 0.
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3.4 Choice of the monitor function ω

A traditional choice for the monitor function to detect regions with high
spatial activity is an arclength-type monitor

ω =
√

1 + β ∇A3 · ∇A3. (18)

Instead of (18), many other choices for the monitor function are possible, for
example using the curvature of the solution. Of course, this type of function
would generally perform better in regions of high curvature, but would also
be more difficult to implement for practical applications. The choice of the
monitor function ω is an important topic in adaptive meshes. Recently,
in [8] an interesting study was done on more sophisticated monitors and
their relation with error estimates. We have chosen for a simple alternative
approach, yet related to equation (18).

The parameter β in (18) is an ‘adaptivity’-parameter which controls the
amount of adaptivity. For β = 0, we get ω = 1. Equations (17) then
yield a system of two Laplace equations for the mesh with trivial boundary
conditions on the unit square. The solution of this system, obviously, is the
identity transformation ξ(x, y) = x, η(x, y) = y, representing a uniform
mesh in both directions. Higher values of β > 0 allow for more adaptivity.
However, β is problem-dependent: in general, there is no straightforward rule
how to choose this parameter. The situation is even worse: from literature it
is known that several experiments have to be done to arrive at an ‘optimal’
choice w.r.t. accuracy and efficiency.

A recently proposed alternative for this monitor function (see also [2],
[3]) deals with this issue and involves a time-dependent parameter that is
automatically chosen. In the MHD-application of this paper it reads

ω = β(t) +
√

∇A3 · ∇A3, with β(t) =

∫ 1

0

∫ 1

0

√

∇A3 · ∇A3 dξdη. (19)

Since ∂A3

∂y
= B1 and ∂A3

∂x
= −B2, we have β(t) =

∫ 1

0

∫ 1

0

√

B2
1 + B2

2 dξdη =
∫ 1

0

∫ 1

0
B dξdη, which is related to the total magnetic energy in the model.

A justification for this choice can be given following a 1D-argument (see
also [2], but note that we use computational derivatives instead of physi-
cal derivatives in this paper). In that case, we get ω = β(t) +

√

(Ax)2 =
β(t)+ |Ax|, β(t) =

∫ xr

xl
|Ax(s, t)| ds, where A(x, t) denotes the PDE solution

in 1D. The monitor serves to concentrate mesh points near high first-order
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derivatives of the solution. However, we do not want too many mesh points
in the steep layer, because this negatively influences the numerical approxi-
mations of derivatives, as can be analyzed by investigation of the truncation
errors [21]. It can be derived that, outside the layer, the monitor satisfies
approximately (assuming |ux| ≈ 0): ξx ≈ 1/2. The quantity ξx represents the
meshpoint concentration. Thus, approximately 50% of the mesh points will
be located outside layer and we have, therefore, a smoother distribution of
the mesh. But the main message is that the adaptivity parameter is chosen
automatically, i.e., without tuning. It must be noted that in the paper [10]
a mathematically more elegant derivation of β(t) is given.

4 Numerical solution of the PDE system

One approach, which is efficient in 1D, would be to couple the discretized
systems for the adaptive mesh PDEs and the physical PDE. However, there
are a number of disadvantages to this approach. First, the size of the resulting
system in higher space dimensions would be large and even for moderate grid
densities may be prohibitive. Second, this approach does not easily admit
different convergence criteria for the mesh and physical solution. Further, it
is not necessary to compute the mesh with the same level of accuracy as the
physical solution. Finally, a user may wish to control over the discretization
of the physical problem and such flexibility is severely restricted by coupling
the unknowns together into one large nonlinear system of equations. We have
therefore decoupled the numerical solution procedure for the physical and
adaptive mesh PDEs, and integrate in time in an iterative manner, solving
for the mesh and the physical solution alternately. Furthermore, instead of
solving (17) we integrate in time the parabolic PDE system

xτ = (ωxξ)ξ + (ωxη)η,

yτ = (ωyξ)ξ + (ωyη)η, (20)

where τ is an artificial time variable within the time integration process. In
the theoretical limit, τ → ∞, the mesh reaches the steady-state situation
(17). Numerically this means that after a number of time steps ∆τ the mesh
will adjust to the physical PDE solution. The decoupled procedure, which is
related to the alternate solution procedure in [9], is outlined in Algorithm 1.
Within the decoupled procedure we freeze the coefficients in system (20) and
replace the spatial derivatives by second-order central difference operators.
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Algorithm 1 The decoupled numerical PDE procedure

Given the physical solution A
(n)
3 , the mesh x(n) and the time stepsize ∆t

at time t = tn.

1: Calculate the new monitor function ω(n) = ω(n)(x(n), A
(n)
3 ).

2: Calculate the new mesh x(n+1) by integrating (20) from t = tn to t =
tn + ∆t, using x(n) as initial mesh and keeping the monitor function
ω constant in time during the integration. In this time step ∆t the
adaptive mesh PDEs are numerically integrated with a number of internal
time steps ∆τ until the difference in the computed values is below some
tolerance value.

3: Calculate the physical solution A
(n+1)
3 by integrating the physical PDE

from t = tn to t = tn + ∆t, using the mesh x(n+1) and mesh speed

(xθ, yθ)
T def

= ẋ(t) = (x(n+1) − x(n))/∆t.

The resulting ODE system is solved by the implicit Euler method, and for the
linearized system of equations the iterative method Bi-CGSTAB (see [18]) is
applied with implicit diagonal preconditioning.
For the convection-diffusion equation (10) it is appropriate to make use of
an implicit-explicit time-integration method (see [1] for more details). The
main advantage is that solving a nonlinear system, with for instance Newton’s
method, can be avoided, while still having reasonable stability properties, at
least for mildly stiff equations. We will use within this class of integrators the
first-order method 1-SBDF. Applied to (10), the discretization then reads:

(I − εm∆t ∆̄)A
(n+1)
3 = (I −∆t v(n) · ∇̄)A

(n)
3 , (21)

where ∆̄A
(n+1)
3 and ∇̄A

(n)
3 are the semi-discretized approximations of the

second-order derivative and the first-order derivative terms, respectively, in
equation (10). A similar derivation can be done for the transformed PDE
(14), in which the mesh velocities xθ and yθ play a role and are evaluated in
the algorithm using values from the previous time level tn as well. The non-
symmetric linear system A(n)A

(n+1)
3 = b(n) behind (21) is again solved with

the iterative method Bi-CGSTAB with implicit diagonal preconditioning. It
is common practice to smooth the monitor function in moving mesh methods.
This is because the computed monitor function is often very un-smooth. At
the same time, a smoother monitor leads to a smoother mesh (a smoother
transformation) and also makes the adaptive mesh PDEs easier to integrate
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in time. Moreover, smoother meshes are also important when we investigate
the local truncation errors on non-uniform meshes (see, e.g., [21]). In order to
obtain smoother transitions in the mesh, rather than merely using equations
(20), an additional filter (see also [16]) is applied to the weight functions.
Instead of working with ωij, the smoothed values

ω̄ij ←↩
1

4
ωij +

1

8
(ωi+1,j + ωi−1,j + ωi,j+1 + ωi,j−1)+

1

16
(ωi−1,j−1 + ωi−1,j+1 + ωi+1,j−1 + ωi+1,j+1)

are being used in the mesh equations. This weighted sum corresponds with
averaging the influence of the monitor values at neighbouring mesh points.

5 Numerical results

5.1 An implosion model

The first testmodel does not stem from MHD, but serves to show the capa-
bility of the proposed adaptive mesh approach to deal with extremely thin
layers or peaks. The hyperbolic PDE

∂A3

∂t
− x

∂A3

∂x
− y

∂A3

∂y
= 0 (22)

describes an ‘implosion’ of the initial solution A3|t=0 = e−x2−y2

due to the
velocity field v = (−x,−y)T . Starting with a Gaussian hump, the exact
solution shrinks to a very sharp needle for increasing time, thereby keeping
the maximum of the solution equal to 1 for all time. We solve the equation
numerically on Ωp = [−3, 3] × [−3, 3] for t ∈ [0, 8] on a 60 × 60 mesh with
timestep ∆t = 10−3. Numerical results at t = 8 are shown in Figure 6.
It should be obvious, when we observe the mesh (zoomed in several times
around (0, 0)) and the needle-type solution, that only a uniform mesh with
many more mesh points might be able to resolve such small spatial scales.
Surprisingly, the adaptive non-uniform mesh produces stable numerical so-
lutions, although central differences in space and forward differences in time
are being used. It seems that the adaptive moving mesh system in the de-
coupled numerical PDE procedure adds a small amount of diffusion to the
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transformed hyperbolic PDE (22). But this is merely an experimental obser-
vation at this stage. This unexpected and interesting phenomenon deserves
further theoretical analysis.

In the following three numerical experiments we follow different scenario’s
as proposed by Weiss [19]. In all the MHD testcases we use a 70×70, initially
uniformly distributed, mesh and a timestep ∆t = 10−3.

5.2 Four-cell convection

The first MHD testcase is equation (10) with velocity field (11). The re-
sistivity is chosen εm = 5 × 10−4. In Figure 6 (top) the velocity field and
the evolution of the parameter β as a function of time are displayed. Three
phases can be recognized from the right plot: for small times the initially
uniform magnetic field is distorted by the four convective cells to amplify
the field. The magnetic field is dragged round by the motion and the field
energy consequently rises. As the field grows, its scale of variation decreases
until resistive effects become important. The flux is concentrated outside the
eddies and so-called reconnection of the field lines takes place (second phase).
In the final phase, the central field decays and a steady-state is reached. In
Figure 6 we clearly see these phases from a different point of view as well.
At times, t = 1/2, 1, 3 and 5 the solution, the adaptive mesh and the mag-
netic field lines are depicted, respectively. The mesh is nicely concentrated
in areas of high spatial activity, viz., the boundary and internal layers. Re-
connection has taken place between t = 1 and t = 3: the magnetic fieldlines
have reconnected in regions of strong currents.

5.3 A single eddy

For this example we choose εm = 10−3, v = (32y(1−4y2)3 cos(πx)/π, − (1−
4y2)4 sin(πx))T and Ωp = [−0.5, 0.5]× [−0.5, 0.5]. The velocity field and β(t)
can be found in Figure 6 (middle plot). Figure 6 shows solutions, meshes and
magnetic field lines at t = 1, 2, 3 and 10. We see the expulsion of flux from
the single eddy. The flux is rapidly concentrated at the edges of the cell.
The central field is amplified and finally decays. The process is completed at
t = 10 at which a steady-state is reached, where the adaptive mesh is located
around the steep transitions of the solution.
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5.4 Band of eddies in a horizontal field

In the third example the incompressible velocity field is taken to be
v = (8y(1− 4y2)3 sin(4πx)/π, cos(4πx)(1− 4y2)4)T and the initial solution
is rotated over 90o: A3|t=0 = 1 − y with Ωp = [−0.5, 0.5] × [−0.5, 0.5]. In
Figures 6 (bottom) and 6 we display the numerical solutions and adaptive
meshes at t = 1/4, 1/2, 1, 10 for εm = 10−3. We clearly recognize the different
phases again as in the previous two examples. The adaptive mesh method is
capable to automatically track the regions of high gradients in the solution
throughout the whole period of time. Note that steady-state has not yet
completely been reached, but all main effects are visible, though, in this run.

6 Conclusions

In this paper we have applied an adaptive moving mesh technique to resis-
tive 2D magnetic field evolution simulations. The adaptive method, based
on a transformation between physical and computational coordinates, is de-
rived from the minimization of a mesh-energy functional. Non-singularity of
this transformation can be quaranteed for one- and two- space dimensions.
Within the adaptive strategy a monitor function has been used with a time-
dependent, automatically chosen parameter, in contrast to many previous
papers in which the adaptivity parameter had to be adjusted for each new
PDE model. Further study on the monitor functions, on the skewness of the
mesh, and on the use of more sophisticated filters should be considered in
the next step in the research. The recent paper [8] could be very helpful in
this respect. Application of the current approach to full two-dimensional HD
and MHD models (such as the ones described in [11]) is in progress. Note
that the paper [16] may serve as a good starting point in this respect. In
the latter type of models, the relation (6) needs special numerical care as
well (for a set of solutions to this specific problem, see [5]). Other important
issues are the application of the method to non-convex domains, for which
we have to use the more complicated Euler-Lagrange equations coming from
(15) rather than the elliptic system (17), and the 3D case, for which a proof
of non-singularity of the transformation is not yet available (see [6] for more
details).
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Figure captions

Figure 1:

Left panel: the structure of the asymptotic solution for εm = 0 and t >∼ 0.
Right panel: the structure of the boundary and internal layers for 0 < εm � 1
and t→∞.

Figure 2:

The non-uniform mesh points seen as mass points connected by springs with
springforces F representing values which are related to the monitor function
ω.

Figure 3:

Left panel: the velocity field for the implosion model, middle panel: the
adaptive mesh at t = 8 (zoomed in around the origin), right panel: the
resolved needle with the adaptive mesh.

Figure 4:

Velocity fields and time-evolution of β(t) for each of the three MHD testcases
(top: four-cell convection, middle: a single eddy, bottom: a band of eddies
in a horizontal field).

Figure 5:

Four-cell convection results at t = 1/2, 1, 3 and 5 (left: solution, middle:
mesh, right: magnetic field lines).

Figure 6:

Single eddy results at t = 1, 2, 3 and 10 (left: solution, middle: mesh, right:
magnetic field lines).
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Figure 7:

Band of eddies results at t = 1/4, 1/2, 1 and 10 (left: solution, middle: mesh,
right: magnetic field lines).
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