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A solution to a long-standing open problem is given by extending Aumann’s
Walrasian equilibrium existence result for a pure exchange economy with a
continuum of consumers [2] to the situation where preferences are allowed to
depend upon the consumption profile (as well as the price vector). Our ex-
tension includes Schmeidler’s existence results for a game with a continuum
of players [38]. We study the existence of competitive equilibria and asymp-
totic competitive equilibria. The latter kind of equilibrium, which is introduced
here as a natural extension of Aumann’s notion, turns out to exist for a larger,
more interesting class of consumption externalities. Specializations of our main
results yield the original existence results of Aumann and Schmeidler.
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1 Introduction

Aumann’s model of a pure exchange economy with a continuum of agents [1, 2] has
played an important role in economic theory. Being an idealization, it was created
to perfectly capture the notion of perfect competition. In [1] Aumann proved a very
elegant core equivalence theorem and in [2] he gave a Walrasian equilibrium existence
result for this model (see also [26, 29, 37]). The present paper presents a solution
to the long-standing open problem of extending Aumann’s existence result to the
situation where preferences are allowed to depend on the consumption profile and
the price vector. In such a situation the exchange economy forms a complicated
continuum game, so it is not surprising that our existence results should apply to
Nash equilibria as well. Thus, next to generalizing [2], our existence results also turn
out to generalize the two Nash equilibrium existence results for continuum games
that were established by Schmeidler in his influential paper [38]. Hence, in the style
of chapter 7 of [26], which is entitled “Walras meets Nash”, an appropriate subtitle
of this paper would be “Aumann meets Schmeidler”. For what chapter 7 in [26]
explores for economies/games with finitely many agents (this development goes back
to Arrow and Debreu), the present paper does for economies/games with a continuum
of agents.

To illustrate the kind of extensions studied in this paper, consider the following
model of a pure exchange economy with a measure space of agents and d commodities.
Let [0, 1] be the space of all agents (i.e. consumers); it is equipped with the Borel or
Lebesgue σ-algebra and the Lebesgue measure λ. Let ω : [0, 1] → Rd

+ be an integrable
function; each agent t ∈ [0, 1] has initial endowment ω(t) ∈ Rd

+. We suppose that

in aggregate no commodity is absent from the market:
∫ 1

0
ω(t)dt ∈ Rd

++. This is a
very mild, standard assumption. A consumption profile (alias consumption plan) is
a (Borel) measurable function f : [0, 1] → Rd

+ with the usual meaning: if f is the
profile realized in the market, then f(t) is the commodity bundle chosen by agent t,
t ∈ [0, 1]. Let M denote the set of all consumption profiles.1 We shall now describe
the consumption externality of this example: let g̃1, . . . , g̃N : [0, 1]2 × Rd

+ → R be N
functions such that for j = 1, . . . , N the following holds:

(i) g̃j is measurable with respect to the Borel σ-algebra on [0, 1]2 × Rd
+,

(ii) g̃j(t, τ, ·) is continuous on Rd
+ for every (t, τ) ∈ [0, 1]2,

(iii) g̃j(t, ·, ·) is integrably bounded on [0, 1] for every t ∈ [0, 1].

As usual, (iii) means that there exists a Lebesgue-integrable function φj : [0, 1] → R
such that supx∈Rd

+
|g̃j(t, τ, x)| ≤ φj(τ) for every τ and t ∈ [0, 1]. By (ii) and (iii) the

integral

Jj,t(f) :=

∫ 1

0

g̃j(t, τ, f(τ))dτ

1No explicit integrability restrictions are imposed on the profiles, for the integrals of their com-
ponent functions are subject to the integration convention in appendix A.
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is well-defined for every f ∈ M. We denote Jt(f) := (J1,t(f), . . . , JN,t(f)). Each
agent t ∈ [0, 1] is supposed to have a utility function of the form

Ut(x, f) = Vt(x, Jt(f)).

Here Vt : Rd
+×RN → R is a continuous function such that Vt(·, y) is strongly increasing

on Rd
+ for every y ∈ RN . We also suppose that the function V : (t, x, y) 7→ Vt(x, y) on

[0, 1]×Rd
+×RN is jointly measurable. Somewhat more concretely, suppose that every

agent t ∈ [0, 1] considers the aggregated utility of two particular target groups E1,t

and E2,t, being Borel subsets of [0, 1], as vital for her/his own consumption utility.
Then N = 2 and agent t could employ an integral like

∫
Ej,t

gj(t, τ, f(τ))dτ as her/his

own utility evaluation of some aggregate utility enjoyed by her/his target group Ej,t

under the profile f . This means that she/he is using

g̃j(t, τ, x) :=

{
gj(t, τ, x) if τ ∈ Ej,t,
0 if τ 6∈ Ej,t

The above conditions for g̃j are then met by self-evident, similar looking conditions for
the functions gj, plus a measurability condition for the graphs of the correspondences

t 7→ Ej,t. Let P := {p ∈ Rd
+ :

∑d
i=1 p

i = 1} be the simplex of price vectors; in this
exchange economy the budget set Bt,p of agent t, given the price vector p, is the set
{x ∈ Rd

+ : p ·x ≤ p ·ω(t)}. One of the main results in this paper implies the following
for this special example: there exist a price vector p∗ ∈ P and a sequence {fk}k in M
such that every consumption profile fk is feasible for pure exchange in that it clears
the market: ∫ 1

0

fk(t)dt =

∫ 1

0

ω(t)dt.

At the same time, for every ε > 0

lim
k→∞

λ({t ∈ [0, 1] : Ut(fk(t), fk) < sup
x∈Bt,p∗

Ut(x, fk)− ε}) = 0.

That is to say, {fk}k gives rise to arbitrarily large sets2, all whose agents are “ε-almost
saturated” in their desires, given the budget constraint that is imposed by p∗. This
is what we call an asymptotic competitive equilibrium for Aumann-type models. Such
an existence result would seem to be new. Compare this to Aumann’s notion of a
competitive equilibrium in terms of the present model: it consists of a price vector
p∗ ∈ P and a market-clearing consumption profile f∗ ∈M such that

λ({t ∈ [0, 1] : Ut(f∗(t), f∗) < sup
x∈Bt,p∗

Ut(x, f∗)}) = 0.

That is to say, almost every agent is completely saturated in her/his desires, given
the price vector p∗. As examples in this paper show, under the previous conditions of
our example a competitive equilibrium need not exist, but an asymptotic competitive

2I.e., sets with measure arbitrarily close to 1.
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equilibrium does exist. Under a much more restrictive condition for the N functions
g̃j : [0, 1]2 ×Rd

+ → R (however, still considerably more general than in the papers by
Aumann or Schmeidler [2, 38] or related references), our results actually imply the
existence of a competitive equilibrium. This generalizes the original existence results
in [2, 38].

The novelty of the above example is the inclusion of consumption as an exter-
nality. In this paper we shall also include price as an externality, but this is not
new; an equilibrium existence result for an economy with a measure space of agents,
featuring price as an externality, was obtained by Greenberg et al. [27]. They imple-
mented Debreu’s well-known idea to reformulate the market model as a game with
a price-setting auctioneer. Their main result was generalized by the present author
[12] for an economy with both consumption and price externalities. This economy
is an abstract precursor of the relaxed economy discussed below, but with compact
feasible consumption sets. However, to obtain an existence result with consumption
externalities in an Aumann-type model with noncompact feasible consumption sets
is a problem that is both economically more interesting and technically much more
challenging. Its solution seems to have deluded several workers in this area. This can
be attributed to the well-known absence of a suitable topology for the set of consump-
tion profiles in a continuum economy, such as M above (topological considerations, in
one form or another, are essential, because a fixed point theorem must be applied to
obtain the desired existence of an equilibrium). These force the use of instruments of
last resort, such as Fatou’s lemma in several dimensions, that cannot do full justice
to best response. This problem does not occur when there are only finitely many
agents or when all feasible consumption sets are compact; the latter is the standard
situation in games with a continuum of players, as introduced by Schmeidler [38].

To handle continuum economies E with consumption and price externalities, the
present paper circumvents the above problem by adopting the relaxation approach to
existence in continuum games from [9, 13, 17]. As shown in that work, the relaxation
approach brings together a number of existence results for continuum games, such as
those found in [8, 30, 31, 32, 33, 36, 38]. Relaxation has a respectable history in the
calculus of varations and control theory [39], but actually, in the form of mixing, it was
already known for games with finitely many players as early as 1713 (see [19, pp. 7-9])!
Nevertheless, the rather complicated topology that is needed to deal with mixing in
continuum games (i.e., the narrow topology, surveyed in appendix A), largely escaped
the attention of game theorists and economists. In fact, most of the results stated
in appendix A were not available before 1984. The relaxation approach to existence,
which uses this topology as its principal technical tool, consists of studying a suitable –
and in a certain sense easier – extension of the original existence problem, the relaxed
existence problem. This problem, posed for a so-called relaxed exchange economy
RE , is formulated in terms of mixed consumption profiles (see Definition 3.1). To
solve the relaxed existence problem, we use the above-mentioned narrow topology for
transition probabilities (in this connection we note that mixed consumption profiles in
a continuum economy are precisely transition probabilities). In contrast to virtually
all other references on equilibrium existence in continuum economies, this means
that one directly topologizes the mixed consumption profiles to apply the desired
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fixed point theorem. From the viewpoint of economics, the relaxed economy RE is
an artifact. However, our use of mixing, in a situation where economies have become
complicated games, would seem hardly surprising, given its historical background
recalled above. After proving the existence of an equilibrium pair for RE , we use this
pair to solve the original existence problem for E . We do this by means of purification.
Because of the need for truncation, the application of relaxation in this paper is more
complicated than in [9, 13, 17]. More precisely, it consists of the following four steps:

(i) Formulation of the auxiliary relaxed economy RE .

(ii) Formation of a sequence {REm}m of truncated relaxed exchange economies.
For each m ∈ N the economy Em has an “almost free disposal” relaxed equilibrium
pair (q∗m, η

∗
m) (see Remark 4.1).

(iii) As a decisive advantage of the relaxation approach, a subsequence of the
sequence {η∗m}m converges in the narrow topology to a mixed consumption profile
δ∗ (see Lemma 4.4(ii)). Together with a suitable limit point p∗ of {q∗m}m, this δ∗
constitutes a free disposal relaxed competitive equilibrium for RE . Moreover, when
standard monotonicity conditions are added, (p∗, δ∗) becomes a relaxed competitive
equilibrium pair (Lemma 4.6). This yields the auxiliary existence Theorem 3.1 for
RE .

(iv) Conversion of the [free disposal] relaxed competitive equilibrium pair (p∗, δ∗)
for RE into a [free disposal] asymptotic equilibrium for E (see Theorem 2.1) or, under
more stringent conditions on the consumption externality, a [free disposal] ordinary
competitive equilibrium for E (see Theorems 2.2, 2.3). To achieve this, we apply
respectively denseness and purification results (see Proposition A.5).

In the usual literature on existence of competitive equilibria in continuum economies
one also truncates, but much more directly, by forming truncations of the original
economy E . In what could be seen as an analogue of step (iii), this yields a sequence
of original (non-mixed) consumption profiles. The crucial difference with step (iii)
above is that then there is not an analogue of Lemma 4.4(ii) available, but only
a result like Fatou’s lemma in several dimensions. Following [4, 6], we observe that
that lemma is an immediate consequence of the principal results for the narrow topol-
ogy. Thus, in the relaxation approach it makes place for the more fundamental and
underlying narrow topology.

After the completion of this paper the present author became aware of recent
related work by Noguchi [35] and Cornet and Topuzu [24]. They also deal with
pure exchange economies with price and consumption externalities. However, their
models do not extend Aumann’s model, as they adopt additional convexity and quasi-
concavity conditions. Our comments following Remark 2.3 below provide more de-
tails. In future work we plan to study existence when production is incorporated into
the model, along the lines of [28].
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2 Main existence results

We start by extending Aumann’s model of a pure exchange economy E with a
nonatomic measure space of agents. We refer to the extensive discussions of this
celebrated model in [26, 29]. Several relevant examples are also presented in [26,
Chapter 3]. The prominent feature of the extension presented here is that it allows
for consumption externalities. This means that we allow each agent’s utility to be
influenced by the consumption choices of the other agents; thus, utility-contributing
factors that can be observed in real-life consumption, such as envy, desires to imitate,
etc. can be incorporated.

Let (T, T , µ) be a nonatomic finite measure space of agents and let d be the
number of commodities. By adopting the integration convention that is stated at
the beginning of appendix A, we avoid some cumbersome integrability restrictions.
Every agent t ∈ T has a feasible consumption set Ct ⊂ Rd

+.3 Also, let ω : T → Rd
+

be a given function; for agent t ∈ T the commodity bundle ω(t) ∈ Rd
+ forms her/his

initial endowment. Our assumptions are as follows:

Assumption 2.1 The set C := {(t, x) ∈ T ×Rd
+ : x ∈ Ct} is T ×B(Rd)-measurable.

Assumption 2.2 The function ω is (coordinatewise) integrable.

Assumption 2.3 The set Ct is closed and convex for every t ∈ T .

As a stronger alternative to Assumption 2.3 we shall occasionally use:

Assumption 2.3’ The set Ct is compact and convex for every t ∈ T .

Next to these primary assumptions, we shall also need to consider the following ones:

Assumption 2.4 For every t ∈ T , ω(t) ∈ int Ct.

Here int Ct denotes the interior of the set Ct. The latter assumption will be frequently
be weakened, but at the cost of introducing an additional strong monotonicity as-
sumption, to be formulated below.

Assumption 2.4’
∫

T
ω dµ ∈ Rd

++.

For some fixed number N ∈ N let {g̃1, . . . , g̃N} be a finite collection of functions
g̃j : T × C → R. These functions are required to be as follows.

Assumption 2.5 For j = 1, . . . , N

(i) g̃j(t, τ, ·) is continuous on Cτ for every (t, τ) ∈ T 2,

(ii) g̃j is T ⊗ T ⊗ B(Rd)-measurable,

(iii) g̃j(t, ·, ·) is integrably bounded on T for every t ∈ T .

3 By means of an obvious translation argument the situation where there exists an integrable
φ : T → Rd such that Ct ⊂ φ(t)+Rd

+ for every t ∈ T can be reduced to the situation discussed here.
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A consumption profile in this model is a function f : T → Rd
+ that is measurable with

respect to T and B(Rd). A consumption profile f is said to be feasible if f(t) ∈ Ct

for a.e. t in T (here “a.e.” is short for “almost everywhere”). The set of all feasible
consumption profiles will be denoted by MC . By (i) and (iii) in Assumption 2.5 the
integral

Jj,t(f) :=

∫
T

g̃j(t, τ, f(τ))µ(dτ) (2.1)

is well-defined for j = 1, . . . , N and for every t ∈ T and f ∈ MC . We define
Jt(f) ∈ RN by Jt(f) := (J1,t(f), . . . , JN,t(f)). The mapping f 7→ Jt(f) from MC into
RN is called the externality mapping of agent t.

As already introduced in the introductory example, the set of all normalized price
vectors is P := {p ∈ Rd

+ :
∑d

i=1 p
i = 1}. For a given price vector p ∈ P , the budget

set of agent t ∈ T is
Bt,p := {x ∈ Ct : p · x ≤ p · ω(t)}.

Obviously, Bt,p constitutes all the possible consumption choices, based on the market
value of her/his initial endowment, that agent t can make under the price vector p.
Let V : C × P × RN → R be a given function that meets the following assumption:

Assumption 2.6 V is T ⊗B(Rd×P ×RN)-measurable and V (t, ·, ·, ·) is continuous
on Ct × P × RN for every t ∈ T .

In conjunction with Assumption 2.4’ we shall also need:

Assumption 2.7 C = T ×Rd
+ and V (t, ·, p, y) is strongly increasing on Rd

+ for every
(t, p, y) ∈ T × P × RN .

The utility function Ut : Ct × P ×MC → R of agent t ∈ T is defined by

Ut(x, p, f) := V (t, x, p, Jt(f));

thus, dependence of the utility upon the profile f manifests itself (only) by way of
Jt(f). We shall now consider both new and classical equilibrium notions for the
economy E := 〈T,MC , ω, U〉.

Definition 2.1 An asymptotic competitive equilibrium for E is a pair (p∗, {fk}k),
consisting of a price vector p∗ ∈ P and a sequence {fk}k of consumption profiles in
MC , such that

(i)
∫

T
fk dµ =

∫
T
ω dµ for every k ∈ N,

(ii) limk→∞ µ({t ∈ T : Ut(fk(t), p∗, fk) < supx∈Bt,p∗
Ut(x, p∗, fk) − ε}) = 0 for every

ε > 0.

If in (i) the equality sign = is replaced by the coordinatewise inequality ≤ (for all k),
then we speak of an asymptotic free disposal competitive equilibrium.
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Our basic assumptions guarantee that the expressions in (i)-(ii) above make sense
mathematically. Economically speaking, (i) ensures that each consumption profile fk

clears the market (i.e., is exchange-feasible). Also, (ii) ensures that, by implementa-
tion of fk for large enough k, arbitrarily large sets of agents (i.e., large in terms of
their µ-measure) can be made ε-almost-saturated in their desires, given the budget
constraint imposed by the price vector p∗. This equilibrium notion is a weak form of
the following one, which goes back to Aumann and Walras:

Definition 2.2 A competitive equilibrium (alias Walrasian equilibrium) is a pair
(p∗, f∗) ∈ P ×MC such that

(i)
∫

T
f∗ dµ =

∫
T
ω dµ,

(ii) f∗(t) ∈ argmaxx∈Bt,p∗
Ut(x, p∗, f∗) for a.e. t in T .

If in (i) the equality sign = is replaced by the coordinatewise inequality ≤, then we
speak of a free disposal competitive equilibrium.

The precise connection with Definition 2.1 is as follows: (p∗, f∗) ∈ P ×MC is a com-
petitive equilibrium if and only if p∗, together with the constant sequence f∗, f∗, . . .
constitutes an asymptotic competitive equilibrium; this affirms that the new equilib-
rium notion is very close in spirit to Aumann’s original ideas in [1]. Clearly, (ii) in
the above definition states that under the pair (p∗, f∗) almost every agent t in T is
completely saturated in her/his desires, given the budget constraint imposed by p∗.
As above, the economic meaning of (i) is still exchange-feasibility in the case of a
competitive equilibrium, and in the case of a free disposal competitive equilibrium
only the inequality sign is required in (i) to reflect exchange-feasibility. The first
existence result of this paper is of a new kind:

Theorem 2.1 (i) Under Assumptions 2.1, 2.2, 2.3’, 2.4, 2.5 and 2.6 there exists an
asymptotic free disposal competitive equilibrium.
(ii) Under Assumptions 2.1, 2.2, 2.3, 2.4’, 2.5, 2.6 and 2.7 there exists an asymptotic
competitive equilibrium.

This result will be proven in section 4. We illustrate its parts (i) and (ii) respectively
by the following two examples:

Example 2.1 Consider T := [0, 1] with the Lebesgue σ-algebra and measure. Let
C := T × [0, 2] and let ω(t) := 2 for all t. In this case P = {1}, so Bt,p = [0, 2]

is the budget set for each agent t. Consider Ut(x, 1, f) := |x − 1 + t −
∫ t

0
f |. Then

J1,t(f) =
∫ t

0
f(τ)dτ . This corresponds to g̃t,1(t, τ, x) := x if τ ≤ t and := 0 if τ > t.

We shall demonstrate that in this case there does not exist a free disposal competitive
equilibrium, but that there does exist an asymptotic free disposal equilibrium, as is
predicted by Theorem 2.1(i), all whose assumptions are fulfilled. First, we show that
the supposition that there exists a free disposal competitive equilibrium (p∗, f∗) ∈ P ×
MC leads to a contradiction. For then, by Definition 2.2(ii) we would have the
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following for a.e. t in [0, 1]: f∗(t) = 0 if
∫ t

0
f∗ > t and f∗(t) = 2 if

∫ t

0
f∗ < t. Define

ψ := f∗− 1 and let Ψ(t) :=
∫ t

0
ψ. Then the previous lines imply that Ψ(t)ψ(t) ≤ 0 for

a.e. t in [0, 1] (note that if
∫ t

0
f∗ = t, then Ψ(t) = 0). So the absolutely continuous

function Ψ2 has a nonpositive derivative. Hence, by Ψ(0) = 0 this implies (Ψ(t))2 = 0
for every t ∈ [0, 1]. But then Ψ(t) = 0 for all t, which implies ψ(t) = 0 for a.e. t. So
it follows that f∗(t) = 1 for a.e. t in [0, 1], which is clearly nonsensical.

Second, to demonstrate existence of an asymptotic free disposal equilibrium, let us
consider for every k ∈ N the set Rk ⊂ [0, 1] defined by

Rk := (2−k, 2 · 2−k] ∪ (3 · 2−k, 4 · 2−k] ∪ · · · ∪ ((2k − 1) · 2−k, 1].

Let fk : [0, 1] → {0, 2} be given by fk(t) := 0 if t ∈ Rk and fk(t) := 2 if t ∈ [0, 1]\Rk.
Then

∫ t

0
fk ∈ [t, t+2−k] is easily seen to hold for all t ∈ [0, 1]. This immediately implies

that Definition 2.1(ii) holds, and for obvious reasons part (i) of that definition holds
as well.

Example 2.2 Let T := [0, 1] be equipped with the Lebesgue σ-algebra and measure.
Let C := T×R2

+ and let ω(t) := (1
2
, 1

2
) for al t. Define a(t, f) := (cos θ(t, f), sin θ(t, f)),

with θ(t, f) := 5π
4

+ π
4
(
∫ t

0
(min(f 1, 1) − min(f 2, 1))). Recall here that we write f =

(f 1, f2). Consider Ut(x, p, f) := |x − a(t, f)|, where the ordinary Euclidean norm is
used. Of course, this corresponds to V (t, x, p, y) := |x − a′(t, y)|, where a′(t, y) :=
(cos θ′(t, y), sin θ′(t, y)), with θ′(t, y) := 5π

4
+ π

4
(y1 − y2). Similar to the previous ex-

ample, but now with N = 2, we set g̃t,i(t, τ, x
i) := min(xi, 1) if τ ≤ t and := 0 if

τ > t, i = 1, 2. Observe that θ′(t, y) ∈ [π, 3
2
π] for all t ∈ T and all y ∈ R2, so the

point a′(t, y) can only belong to the nonpositive orthant R2
− (in fact, a′(t, y) belongs

to the quarter circle D that is the intersection of R2
− and the unit circle). Therefore,

V satisfies the strong monotonicity Assumption 2.7, and all other assumptions of
Theorem 2.1(ii) are easily seen to hold as well. While this ensures the existence of
an asymptotic competitive equilibrium (and we shall explicitly find one shortly), no
ordinary competitive equilibrium exists in this situation. Again we demonstrate such
nonexistence by a reductio ad absurdum. If (p∗, f∗) ∈ P ×MC were a competitive
equilibrium, we first of all conclude that neither p1

∗ nor p2
∗ can be zero by the strong

monotonicity of Ut(·, p∗, f∗). Now consider the bisecting perpendicular of the line seg-
ment between the corner points ((2p1

∗)
−1, 0) and (0, (2p2

∗)
−1) of the budget set Bt,p∗. If

this perpendicular line intersects the quarter circle D, defined above, in some point,
then let (1, β) be the polar coordinates of this intersection point, which has β ∈ [π, 3

2
π].

By Definition 2.2(ii) we have for a.e. t in [0, 1]

f∗(t) ∈ argmaxx∈Bt,,p∗
Ut(x, p∗, f∗) =


{((2p1

∗)
−1, 0)} if θ(t, f∗) > β,

{(0, (2p2
∗)
−1)} if θ(t, f∗) < β,

{((2p1
∗)
−1, 0), (0, (2p2

∗)
−1)} if θ(t, f∗) = β.

(2.2)
This gives (F 1(t) − F 2(t) − γ)(min(f 1

∗ (t), 1) − min(f 2
∗ (t), 1)) ≤ 0 for a.e. t ∈ [0, 1],

where we set F i(t) :=
∫ t

0
min(f i

∗, 1) and γ := 4
π
β − 5. So the nonnegative absolutely

continuous function Q := (F 1 − F 2 − γ)2 has a nonpositive derivative. If γ > 0 then
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H := F 1−F 2−γ is negative at t = 0 and increases near that point. Now on T either
it reaches the level zero or not. The latter case gives f∗(t) = (0, (2p2

∗)
−1) for a.e. t

in T , which is impossible by
∫

T
ω1 > 0. The former case gives the existence of some

α ∈ (0, 1] such that H(α) = 0 and such that H < 0 on [0, α). So then Q(α) = 0 and
Q(t) = 0, whence H(t) = 0, for all t ∈ [α, 1]. If α < 1 then this implies f 1

∗ (t) = f 2
∗ (t)

a.e. on [α, 1], which is impossible in view of (2.2), and if α = 1, then we are back
in the previous case. Similarly γ < 0 leads to an impossibility, and for γ = 0 we
obtain H(0) = F 1(0) − F 2(0) = 0, i.e., in terms of the foregoing we find α = 0.
This yields f 1

∗ (t) = f 2
∗ (t) a.e. on [0, 1], which is impossible. The situation where the

bisecting perpendicular of the line segment between ((2p1
∗)
−1, 0) and (0, (2p2

∗)
−1) does

not intersect the quarter circle D leads to f∗ being a.e. equal to precisely one of the
two corner points, which is evidently not possible by

∫
T
ωi > 0. Therefore, the desired

contradiction has been reached. We conclude that a competitive equilibrium does not
exist. However, according to Theorem 2.1(ii) an asymptotic competitive equilibrium
exists. As a specific example, consider p∗ := (1

2
, 1

2
) and the sequence {fk}k in MC

given by fk(t) := (1, 0) if t ∈ Rk and fk(t) := (0, 1) if t ∈ [0, 1]\Rk, where Rk is
as in the previous Example 2.1. Then it is easy to see that

∫ t

0
min(f i

k, 1) =
∫ t

0
f i

k ∈
[t, t + 2−k] for all t ∈ [0, 1] and i = 1, 2. This yields θ(t, fk) ∈ [5π

4
− 2−k, 5π

4
+ 2−k].

Hence, the sequence {a(t, fk)}k converges to (−1
2

√
2,−1

2

√
2). So then it is evident that

Definition 2.1(ii) holds. Finally, note that
∫ 1

0
f i

k = 1
2

for i = 1, 2, so Definition 2.1(i)
also holds.

Functions that are rather similar to the ones used in the examples above, have
been used, among others, by Aumann et al. [3] in results on approximate purifi-
cation of mixed strategies. In view of well-known denseness results in the presence
of nonatomicity, this is no coincidence (cf. Proposition A.5). In Example 3.1 we
shall come back to the rapidly oscillating sequences {fk} of the above two examples
(known as “chattering functions” in control theory [39]) and re-interpret them in
terms of relaxed [free disposal] competitive equilibrium profiles.

Under a much more restrictive consumption externality, Theorem 2.1 can be
strengthened into a more classical form. For this we shall need the following stronger
version of Assumption 2.5:

Assumption 2.5’ For j = 1, . . . , N there exists ḡj : C → R such that

(i) g̃j(t, ·, ·) = ḡj for every t ∈ T ,

(ii) ḡj(t, ·) is continuous on Ct for every t ∈ T ,

(iii) ḡj is T ⊗ B(Rd)-measurable,

(iv) ḡj is integrably bounded on T .

This means that all agents have the same consumption externality. The severity of
this condition prompted our previous consideration of asymptotic competitive equi-
libria, for whose existence we can use the much more acceptable Assumption 2.5
itself.
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Theorem 2.2 Under Assumptions 2.1, 2.2, 2.3, 2.4’, 2.5’, 2.6 and 2.7 there exists
a competitive equilibrium.

Evidently, Theorem 2.2 generalizes Aumann’s existence result in [2] (see also [25,
pp. 725-730] and Theorem 2 on p. 151 of [29]) to a situation with price and consump-
tion externalities; together with Theorem 2.3 below, this also generalizes the main
results in [27, p. 33,37]. Also, a version of these existence results for non-ordered pref-
erences, generalizing [37], can easily be obtained by the introduction of an artificial
utility function of Shafer-Sonnenschein-type (e.g., see [27, Remark 5]). We also have
an existence result for a competitive equilibrium with free disposal:

Theorem 2.3 Under Assumptions 2.1, 2.2, 2.3, 2.4, 2.5’ and 2.6 there exists a free
disposal competitive equilibrium.

The proofs of these results can be found in section 4; in connection with the proof of
Theorem 2.3, the following can be distilled from Remark 3.2(i):

Remark 2.1 If in Theorem 2.3 all sets Bt,p, p ∈ P , are identical for a particular
t ∈ T , then for that t the convexity condition for the set Ct in Assumption 2.3 can be
omitted and in Assumption 2.4 only ω(t) ∈ Ct is needed.

In connection with the recent work in [24, 35], the following extensions are of interest:

Remark 2.2 Some extensions of the externality mapping can be made with ease, but
at the cost of complicating the model. For instance, it would have been possible to
allow the functions g̃j to depend upon the price vector as well, similar to the way this
has been done for the utility functions Ut. By Remark 3.2(iv), Theorem 2.1 remains
valid if an externality of the form

J ′j,t(p, f) :=

∫
At,p

g̃j(t, τ, f(τ))µ(dτ)

is used on P × MC, instead of (2.1). One should then demand in addition that
(t, p) 7→ At,p maps from T × P into T in such a way that the following hold:

(1) {(t, τ, p) ∈ T × T × P : τ ∈ At,p} is T ⊗ T ⊗ B(Rd)-measurable,

(2) limn

∫
T
|1At,pn

− 1At,p0
|dµ = 0 for every t ∈ T and every sequence {pn}n in P with

pn → p0.

Similarly, Theorems 2.2 and 2.3 continue to hold if an externality of the form

J ′j(p, f) :=

∫
Āp

ḡj(τ, f(τ))µ(dτ)

is used, with ḡj as in Assumption 2.5’ and with p 7→ Āp such that
(1) {(τ, p) ∈ T × P : τ ∈ Āp} is T ⊗ B(Rd)-measurable,

(2) limn

∫
T
|1Āpn

− 1Āp0
|dµ = 0 for every sequence {pn}n in P with pn → p0.

12



Remark 2.3 A different extension of the externality mapping that can be made is
as follows. Clearly, Assumption 2.5(iii) means that for every t ∈ T there exists an
integrable function φj,t : T → R+ such that

|g̃j(t, τ, x)| ≤ φj,t(τ) for all (τ, x) ∈ C.

It is possible to replace this by the following, more general condition: for every t ∈ T
and ε > 0 there exists an integrable function φj,t,ε : T → R+ such that

|g̃j(t, τ, x)| ≤ ε
d∑

i=1

xi + φj,t,ε(τ) for all (τ, x) ∈ C.

This is thanks to the fundamental role of inequalities such as
∫

T
f i dµ ≤

∫
T
ωi dµ and

their relaxations such as
∫

T
[
∫

Rd
+
xiδ(t)(dx)]µ(dt) ≤

∫
T
ωidµ in our proof; in particular,

Remark 4.14 of [15] then plays a very important role. Details are left to the reader
(but see [18]).

Noguchi [35] and Cornet and Topuzu [24] have recently studied competitive equi-
librium existence in models of pure exchange economies that have externality map-
pings that look like the ones considered in Remarks 2.2 and 2.3. Namely, they
introduce J ′′t (p, f) :=

∫
At,p

f(τ)µ(dτ); this corresponds to using a linear function

g̃j(t, τ, x) := xj. Although this externality mapping is of the form considered in
Remark 2.2, it does not satisfy Assumption 2.5(iii) or its extension considered in
Remark 2.3 above. Another difference is that in [24] the existence of ordinary – as
opposed to asymptotic – competitive equilibria is established. In this connection it is
very important to note that [24, 35] place additional convexity and quasi-concavity
conditions on the consumption sets and utility functions. Together with the special
linear form of their externality mappings, this makes it possible for them to work
with the classical weak topology on the space of all integrable consumption profiles.
In forthcoming work [18] we shall demonstrate how, by expanding the above two
remarks, the relaxation approach of this paper can still be pursued to obtain exis-
tence results of the kind studied in [24, 35]. These are obtained via a purification
method by which one takes expectations (i.e., barycenters) instead of the present use
of nonatomicity. Thus, the situation is quite similar to what is already known for
the existence of Nash equilibria in continuum games. For instance, both purification
methods were employed in [9, 13, 17].

The following corollary generalizes the Nash equilibrium existence result obtained
in Theorem 2 of Schmeidler’s influential paper [38], which introduced games with
a measure space of players. A small discrepancy regarding measurability will be
clarified in the proof of Corollary 3.1 below. As is typical for games, this corollary
has compact action spaces. Generalizations that reach much further can be found in
[9, 30] and especially in [13, 17].

Corollary 2.1 In addition to Assumptions 2.1, 2.2 and 2.3, suppose that there exists
an integrable function ψ : T → R+ such that

sup
x∈Ct

|x| ≤ ψ(t) for every t ∈ T . (2.3)
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Let U ′ : C × Rd → R be such that

U ′(·, ·, f) is T ⊗ B(Rd)⊗ B(Rd)-measurable for every f ∈MC ,

U ′(t, ·, ·) is continuous on Ct × Rd for every t ∈ T .

Then there exists f∗ ∈MC such that

f∗(t) ∈ argmaxx∈Ct
U ′t(x,

∫
T

f∗ dµ) = 1 for a.e. t in T .

This result remains valid if C ⊂ T × Rd is assumed instead of C ⊂ T × Rd
+.

Proof. Let ω(t) := ψ(t)e, where e := (1, . . . , 1); then evidently Bt,p = Ct for all p ∈ P ,
so Remark 2.1 applies to every t ∈ T . Also, let ḡj(t, x) := xj; then Jt(f) =

∫
T
f . The

assumptions of Theorem 2.3 are met, so there exists a pair (p∗, f∗) ∈ P ×MC such
that f∗(t) ∈ argmaxBt,p∗

U ′t(·,
∫

T
f∗) a.e. By Bt,p∗ = Ct we obtain the desired existence

result. Because of (2.3), the final line of the statement is justified by footnote 3. QED

3 A mixed competitive equilibrium existence re-

sult

We shall now formulate the relaxed economy RE and an associated equilibrium ex-
istence result. To begin with, we adopt the Assumptions 2.1, 2.2, 2.3, 2.5 and 2.6
from the previous section. As a working hypothesis we shall also assume that the
measure space (T, T , µ) is separable and complete. While this is of great use for the
proofs, fairly straightforward arguments (see [13, 17] for details) can be used to re-
move this additional hypothesis from the final results. As introduced in appendix A,
let R(T ; Rd

+) be the set of all transition probabilities with respect to (T, T ) and
(Rd

+,B(Rd
+)). Let RC be the set of all δ ∈ R(T ; Rd

+) such that δ(t)(Ct) = 1 for a.e. t
in T ; we call such transition probabilities mixed consumption profiles. We equip RC

with the relative narrow topology; cf. Definition A.3 in appendix A. Because of the
separability of (T, T , µ), just discussed, R(T ; Rd

+) and its subset RC are semimetriz-
able for the narrow topology by Proposition A.2. By Assumption 2.5, the integral

Ij,t(δ) :=

∫
T

[

∫
Rd

+

g̃j(t, τ, x)δ(τ)(dx)]µ(dτ) (3.1)

is well-defined for j = 1, . . . , N for every t ∈ T and δ ∈ RC . First, we use this to define
player t’s relaxed externality mapping, which is δ 7→ It(δ) := (I1,t(δ), . . . , IN,t(δ)).
Next, it also gives us agent t’s relaxed utility function, which is the function Wt :
Ct × P ×RC → R, given by

Wt(x, p, δ) := V (t, x, p, It(δ)), (3.2)

See Example 3.1 below for two concrete examples of the relaxed externality mapping
and relaxed utility function.
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Lemma 3.1 (i) The function (t, x) 7→ Wt(x, p, δ) is T ⊗B(Rd
+)-measurable on C for

every (p, δ) ∈ P ×RC.
(ii) The function Wt : Ct × P ×RC → R is continuous for every t ∈ T .

Actually, in part (i) one could even assert the product measurability of (t, x, p, δ) 7→
Wt(x, p, δ) (using [23, III.14], a result that continues to be applicable to our separable
and semimetrizable space RC), but we shall not need this.

Proof. (i) In view of Assumption 2.6, it is enough to prove the measurability of
t 7→ It(δ) for fixed δ ∈ RC . This follows by Assumption 2.5 from the standard
measure theory in [34], referenced in appendix A.

(ii) Fix j and t ∈ T . For every τ ∈ T the function g̃j(t, τ, ·) : Cτ → R is continuous
by Assumption 2.5(ii). Hence, by closedness of the set Cτ (Assumption 2.3) and also
Assumptions 2.5(i) and (iii), the function ĝj,t, defined by ĝj,t := g̃j(t, ·, ·) on C and
ĝj,t := +∞ on (T×Rd

+)\C, belongs to the set Gbb(T ; Rd
+) (see appendix A). In terms of

(A.1), we have Ij,t(δ) = Iĝj,t
(δ) for all δ ∈ RC . Therefore, Ij,t is lower semicontinuous

on RC by Definition A.3. This argument can be repeated for −g̃j instead of g̃j, so
we conclude that Ij,t is continuous. Thus, by (3.2) the stated continuity follows from
Assumption 2.6. QED

Definition 3.1 A relaxed competitive equilibrium for the relaxed economy RE :=
〈T,RC , ω,W 〉 is a pair (p∗, δ∗) ∈ P ×RC such that

(i)
∫

T
[
∫

Ct
x δ∗(t)(dx)]µ(dt) =

∫
T
ω dµ,

(ii) δ∗(t)(argmaxx∈Bt,p∗
Wt(x, p∗, δ∗)) = 1 for a.e. t in T .

If in (i) the equality sign = is replaced by the coordinatewise inequality ≤, then we
speak of a relaxed free disposal competitive equilibrium.

The following remark explains the use of the adjective “relaxed” in the above def-
inition, for it shows that the original [free disposal] competitive equilibria can be
identified with a subset of the larger set of relaxed [free disposal] competitive equi-
libria.

Remark 3.1 Recall from appendix A that any Dirac transition probability inRDirac(T ; Rd
+)

can be expressed as εf for some measurable function f : T → Rd
+. Then the following

relationships hold respectively by the definitions of RC, Ij,t and by Definition 3.1:

(i) εf ∈ RC if and only if f ∈MC,

(ii) It(εf ) = Jt(f) for every t ∈ T ,

(iii) For p ∈ P the pair (p, εf ) is a relaxed [free disposal] competitive equilibrium for
RE if and only if (p, f) is a [free disposal] competitive equilibrium for E.

The main result of this section, which implies the main results of section 2, is as
follows. It will be proven in section 4.
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Theorem 3.1 (i) Under Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 there exists a free
disposal relaxed competitive equilibrium (p∗, δ∗).
(ii) Moreover, if in (i) Assumption 2.4 is replaced by Assumptions 2.4’ and 2.7 then
p∗ ∈ Rd

++ and (p∗, δ∗) is actually a relaxed competitive equilibrium.

Remark 3.2 (i) From the observation following Lemma 4.2 below, we conclude that
if all budget sets Bt,p, p ∈ P , are identical, then neither interiority of ω(t) in Ct nor
convexity of Ct are needed for Theorem 3.1(i) to hold.
(ii) Theorem 3.1 remains valid when (T, T , µ) is no longer nonatomic, for nonatomic-
ity has not been used anywhere in this section. We shall elaborate on the role of atoms
in Theorems 2.1, 2.2 and 2.3 in [18]; such a development turns out to be very similar
to what was done in [13, 17] in this respect.
(iii) Theorem 3.1 remains valid when, instead of via (3.1)-(3.2), W is introduced as a
general function W : C ×P ×RC → R (with Wt := W (t, ·, ·, ·)), that satisfies (i)-(ii)
of Lemma 3.1. This also means that certain parts of (3.1)-(3.2) can be generalized; for
instance, we could allow N to depend upon t, let g̃j also depend on p, etc. Similar to
[17], Theorem 3.1 continues to hold if W is general as above, meets (i) of Lemma 3.1
and if (ii) is replaced by requiring only upper semicontinuity of Wt(·, ·, ·) for every
t ∈ T . However, in addition for every t ∈ T the indirect utility function (p, δ) 7→
supx∈Bt,p

Wt(x, p, δ) must then be lower semicontinuous on P × RC. Under these
conditions the convexity condition for the set Ct in Assumption 2.3 can be omitted
and in Assumption 2.4 only ω(t) ∈ Ct is needed for Theorem 3.1 to hold. This
observation actually subsumes part (i) of the present remark. These observations
have also some repercussions for Theorems 2.1, 2.2 and 2.3, but we prefer it to leave
the details to the reader.
(iv) To J ′j,t(p, f) as in Remark 2.2 corresponds the following relaxed externality map-
ping:

I ′j,t(p, δ) :=

∫
At,p

[

∫
Rd

+

g̃j(t, τ, x)δ(τ)(dx)]µ(dτ).

By the properties (1)-(2) stated in Remark 2.2, together with Assumption 2.5, I ′j,t is
continuous on P × RC (apply Theorem 4.13 of [15]). So the above part (iii) of the
present remark applies.

Example 3.1 (i) In Example 2.1 we had P = {1}, ω ≡ 2, Ct ≡ [0, 2] and we used
Ut(x, 1, f) = |x − 1 + t −

∫ t

0
f |. As seen there, this corresponds to g̃t,1(t, τ, x) := x

if τ ≤ t and := 0 if τ > t. By (3.1) this now gives I1,t(δ) =
∫ t

0
[
∫

[0,2]
x δ(τ)(dx)]dτ .

Then (3.2) gives Wt(x, 1, δ) = |x − 1 + t −
∫ t

0
[
∫

[0,2]
x δ(τ)(dx)]dτ | for δ ∈ RC. Let

δ∗ ∈ RC be defined as follows: for each t in [0, 1], δ∗(t) ∈ Prob([0, 2]) is the prob-
ability measure that is entirely concentrated in 0 and 2 with equal probabilities 1

2
.

Then
∫

[0,2]
x δ∗(τ)(dx) = 1 for all τ ∈ [0, 1], causing Wt(x, 1, δ∗) = |x − 1|. So

argmax[0,2]Wt(x, 1, δ∗) = {0, 2}; hence, for p∗ = 1 the pair (p∗, δ∗) is a relaxed free
disposal competitive equilibrium. The connection with Example 2.1 is as follows. Let
{fk}k be the sequence obtained in Example 2.1. Then, by Example 4.4 in [15], the
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corresponding sequence {εfk
}k of Dirac transition probabilities converges narrowly in

R([0, 1]; R+) to the above transition probability δ∗.
(ii) In Example 2.2 we had ω ≡ (1

2
, 1

2
) and used Ut(x, p, f) = |x − a(t, f)|. By

(3.1)-(3.2), we have Wt(x, p, δ) = |x− b(t, δ)|, where b(t, δ) := (cos ξ(t, δ), sin ξ(t, δ)),
with ξ(t, δ) := 5π

4
+ π

4
(
∫ t

0
[
∫

R2
+
(min(x1, 1) − min(x2, 1))δ(τ)(d(x1, x2))]dτ . Let δ∗ ∈

RC be defined as follows: for each t in [0, 1] δ∗(t) ∈ Prob(R2
+) is the probabil-

ity measure that is entirely concentrated in the two points (1, 0) and (0, 1), with
equal probabilities 1

2
. Then

∫
R2

+
(min(x1, 1) − min(x2, 1))δ∗(τ)(d(x

1, x2)) = 0 for all

τ ∈ [0, 1], causing Wt(x, p, δ∗) = |x − (−1
2

√
2,−1

2

√
2)|. So for p∗ := (1

2
, 1

2
) we find

argmaxBt,p∗
Wt(x, p∗, δ∗) = {(1, 0), (0, 1)}. This shows that (p∗, δ∗) is a relaxed com-

petitive equilibrium. To explain the connection with Example 2.2, let {fk}k be the
sequence obtained in Example 2.2. By Example 4.4 in [15] the corresponding sequence
{εfk

}k converges narrowly in R([0, 1]; R2
+) to δ∗, as defined above.

The connection between the competitive equilibria of Theorems 2.1 and Theorem 3.1,
as suggested by the above examples, will be confirmed in section 5.

Corollary 3.1 In addition to Assumptions 2.1, 2.2 and 2.3 (but not necessarily with
Ct convex for all t), suppose that there exists an integrable function ψ : T → R+ such
that

sup
x∈Ct

|x| ≤ ψ(t) for every t ∈ T .

Let W ′ : C ×RC → [−∞,+∞] be such that

W ′(·, ·, δ) is T ⊗ B(Rd)-measurable for every δ ∈ RC ,

W ′(t, ·, ·) is continuous on Ct ×RC for every t ∈ T .

Then there exists δ∗ ∈ RC such that

δ∗(t)(argmaxx∈Ct
W ′

t(x, δ∗)) = 1 for a.e. t in T .

This result remains valid if C ⊂ T × Rd is assumed instead of C ⊂ T × Rd
+.

Proof. Let ω(t) := ψ(t)e, where e := (1, . . . , 1); then evidently Bt,p = Ct for all
p ∈ P , so Remark 3.2(i) applies to all t ∈ T . With Remark 3.2(iii) in mind, we apply
Theorem 3.1(i) to the function W (t, x, p, δ) := W ′

t(x, δ). Hence, there exists a pair
(p∗, δ∗) ∈ P × RC such that δ∗(t)(argmaxBt,p∗

W ′
t(·, δ∗)) = 1 a.e. By Bt,p∗ = Ct we

obtain what had to be proven, because, similar to the proof of Corollary 3.1, we can
also invoke footnote 3. QED

The existence result of Schmeidler [38, Theorem 1] is a special case of Corollary 3.1
(recall that our previous Corollary 2.1 generalizes Theorem 2 of [38]). To see this,
take all sets Ct to be equal to a fixed finite set {a1, . . . , am} ⊂ Rd

+; then every
δ ∈ RC can be identified with the bounded and measurable (whence integrable)
vector function t 7→ (δ(t)({a1}), . . . , δ(t)({am})). So in this case the restriction of
the narrow topology to RC ∩ RDirac(T ; Rd

+) is immediately seen to coincide with
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the L1-weak topology, which is as used in [38]. See also [9]. A small discrepancy
with [38] concerns the measurability hypotheses used for the payoff profile W ′, but
this can be overcome by observing that the only way in which measurability of W
manifests itself is via measurability of the graphs of the best response multifunctions
t 7→ argmaxx∈Ct

Wt(x, p, δ) in the above proof of Theorem 3.1. In other words: it
would have been enough to require just that, and such a condition is fulfilled in [38].

4 Proof of Theorem 3.1

Let e ∈ Rd
+ be the vector given by e := (1, . . . , 1). For m ∈ N define

Pm := {p ∈ P : p ≥ 1

m
e} = {p ∈ Rd

+ :
d∑

i=1

pi = 1 and pi ≥ 1

m
for 1 ≤ i ≤ d}

and

Cm
t := {x ∈ Ct : e · x ≤ m

d∑
i=1

ωi(t)}.

Note that t 7→ Cm
t is integrably bounded because of Assumption 2.2. The following

elementary inclusion is important:

Bt,p ⊂ Cm
t for every t ∈ T and p ∈ Pm. (4.1)

Since Cm
t is obviously compact, this implies that Bt,p is also compact for every t ∈ T

and p ∈ Pm. Clearly, the set Cm := {(t, x) ∈ C : e · x ≤ m
∑

i ω
i(t)} is product

measurable, so the corresponding set RCm of transition probabilities can be defined in
complete analogy toRC above: it is the set of all δ ∈ R(T ; Rd

+) such that δ(t)(Cm
t ) = 1

for a.e. t in T .

Lemma 4.1 For every m ∈ N the set RCm is a narrowly compact, convex and
nonempty subset of RC.

Proof. Define hm : T × Rd
+ → [0,+∞] as follows: hm(t, x) := 0 if (t, x) ∈ Cm

and hm(t, x) := +∞ otherwise. Evidently, hm(t, ·) is inf-compact on Rd
+ for every

t ∈ T and Ihm(δ) = 0 for all δ ∈ RCm . Thus, RCm is tight (see Definition A.4),
so by Proposition A.4 it follows that RCm is relatively narrowly compact. But since
RCm is precisely equal to the set {δ ∈ R(T ; Rd

+) : Ihm(δ) ≤ 0}, it follows from the
definition of the narrow topology that RCm is closed as well, because hm(t, ·) is also
lower semicontinuous on Rd

+ for every t ∈ T . So RCm is narrowly compact; also, it is
trivially convex and nonempty (it contains the Dirac transition probability εω). QED

Inspired by [12], we introduce for every m ∈ N the multifunction Fm : Pm ×
RCm → 2P m×RCm by defining Fm(p, δ) to be the set of all (q, η) ∈ Pm × RCm for
which
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(i) supp η(t) ⊂ argmaxx∈Bt,p
Wt(x, p, δ) for a.e. t in T ,

(ii) q ∈ argmaxp′∈P m p′ ·
∫

T
(bar δ(t)− ω(t))µ(dt).

Here “supp ” denotes support (see appendix A) and the barycenter bar δ(t) of δ(t) ∈
Prob(Rd

+), is the vector in Rd whose i-th component is defined by

(bar δ(t))i :=

∫
Rd

+

xiδ(t)(dx) =

∫
Cm

t

xiδ(t)(dx). (4.2)

This is just the classical first moment (expectation) of the probability measure δ(t).
By compactness of the set Cm

t , this expression is a well-defined number in R+. Also
the integral in (ii) is well-defined, because of integrable boundedness of t 7→ Cm

t and
measurability of t 7→ bar δ(t) : T → Rd

+ (the latter follows by standard measure
theory, referenced in appendix A).

Lemma 4.2 For every m ∈ N the multifunction Fm has a closed graph and compact
convex nonempty values.

Proof. The proof consists of two parts.
Part 1. First, we prove that the graph of Fm is closed; this can be done by means

of an argument that only involves sequences (recall that RC is semimetrizable). Let
{(pn, δn, qn, ηn)} converge to (p0, δ0, q0, η0) and suppose that (qn, ηn) ∈ Fm(pn, δn) for
all n ∈ N. Then by Proposition A.3 supp η0(t) ⊂ Lsnsupp ηn(t) for a.e. t. First, we
claim that every point x0 ∈ Lsnsupp ηn(t) belongs to the set argmaxBt,p0

Wt(·, p0, δ0).

For this it is enough to prove that for any x ∈ Ct (actually, x ∈ Cm
t would suf-

fice) with p0 · x < p0 · ω(t) the inequality Wt(x0, p0, δ0) ≥ Wt(x, p0, δ0) obtains,
for clearly Bt,p0 is the closure of B′t,p0

:= {x′ ∈ Ct : p0 · x′ < p0 · ω(t)}. This
holds by convexity of Ct and nonemptiness of B′t,p0

(such nonemptiness follows by
Assumption 2.4). Suppose without loss of generality that x0 is the limit of a se-
quence {xn}n where xn ∈ supp ηn(t) ⊂ argmaxBt,pn

Wt(·, pn, δn) for every n. For
large enough n we have pn · x < pn · ω(t), so Wt(x, pn, δn) ≤ Wt(xn, pn, δn). By
the continuity of Wt (see Lemma 3.1(ii)) this gives Wt(x, p0, δ0) ≤ Wt(x0, p0, δ0) in
the limit. So our claim has been demonstrated. It follows from the above that
supp η0(t) ⊂ argmaxBt,p0

Wt(·, p0, δ0) for a.e. t.

Next, we prove that δ 7→
∫

T
bar δ dµ is narrowly continuous on RCm . Indeed,

lower semicontinuity of δ 7→
∫

T
(bar δ)i follows by noting that (bar δ)i = Igm

i
(δ). Here

gm
i (t, x) := xi if (t, x) ∈ Cm and gm

i (t, x) := +∞ otherwise defines a function gm
i ∈

Gbb(T ; Rd
+). Next, upper semicontinuity of δ 7→ (bar δ)i must also be proven, which

is equivalent to lower semicontinuity of δ 7→ −(bar δ)i. Now −
∫

T
(bar δ)i = Iḡm

i
(δ),

where ḡm
i (t, x) := −xi if (t, x) ∈ Cm and ḡm

i (t, x) := +∞ otherwise, defines a function
ḡm

i ∈ Gbb(T ; Rd
+). Note that for the latter argument it is essential that we use the

truncation Cm
t of Ct, because this ensures integrable boundedness from below of ḡm

i .
So we have demonstrated that δ 7→

∫
T

bar δ is narrowly continuous. Hence, it follows
easily that q0 ∈ argmaxp′∈P mp′ ·

∫
T
(bar δ0(t) − ω(t))µ(dt), since we were given that
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qn ∈ argmaxp′∈P mp′ ·
∫

T
(bar δn(t) − ω(t))µ(dt) for all n. This proves that (q0, η0)

belongs to Fm(p0, δ0). We conclude that the graph of Fm is closed.
Part 2. In the second part of the proof we verify that Fm(p, δ) is compact and

nonempty for arbitrary p ∈ Pm and δ ∈ RCm (of course, convexity is trivial). First, for
every t ∈ T the set Kt := argmaxBt,p

Wt(·, p, δ) ⊂ Cm
t is nonempty and compact, for,

by what was said following (4.1), this is a simple application of the Weierstrass theo-
rem and Lemma 3.1(ii). By product measurability of the set Cm, the multifunction
t 7→ Cm

t has a Castaing representation [23, III.7]. Hence, by Lemma 3.1 the graph of
t 7→ Kt is measurable. So it follows by the von Neumann-Aumann measurable selec-
tion theorem [23, III.22] that there exists a T -measurable function f : T → Rd

+ such
that f(t) ∈ Kt a.e. But then εf , the Dirac transition probability that corresponds to
this measurable selection, clearly satisfies supp εf (t) ⊂ argmaxBt,p

Wt(·, p, δ) a.e. By
(4.1) this also gives εf ∈ RCm . Finally, it follows very simply from the Weierstrass the-
orem that argmaxp′∈P m p′ ·

∫
T
(bar δ(t)−ω(t))µ(dt) is nonempty and compact as well.

So Fm(p, δ) is nonempty. Second, the set of all η ∈ RCm such that supp η(t) ⊂ Kt

a.e., which by (4.1) coincides with the set {η ∈ R(T ; Rd
+) : supp η(t)(Kt) = 1 a.e.}, is

narrowly compact. This is seen by imitating the proof of Lemma 4.1. So we conclude
that Fm(p, δ) is also compact. QED

We observe that if all budget sets Bt,p, p ∈ P , are identical, then neither interiority
of ω(t) in Ct nor convexity of Ct are needed for Lemma 4.2 to hold. This justifies
Remark 3.2(i).

Lemma 4.3 For every m ∈ N there exists (q∗m, η
∗
m) ∈ Pm ×RCm such that

(i) q∗m ∈ argmaxp∈P mp ·
∫

T
(bar η∗m(t)− ω(t))µ(dt),

(ii) supp η∗m(t) ⊂ argmaxx∈Bt,q∗m
Wt(x, q

∗
m, η

∗
m) for a.e. t in T .

Proof. By Lemmas 4.1 and 4.2 the stage is set for an application of the Kakutani
fixed point theorem. Here one can use the non-Hausdorff version of that result (see
[13]), from which the stated result follows immediately. QED

Alternatively, to prove the above lemma one can introduce the quotient of RCm ,
which is Hausdorff, by the usual µ-equivalence relation (two transition probabilities
are said to be µ-equivalent if they coincide almost everywhere on T ). Another alter-
native would be to use the ws-topology, quite related to the narrow topology, which
is automatically Hausdorff [16].

Lemma 4.4 (i) The sequence {am}m in Rd, defined by

am :=

∫
T

(bar η∗m − ω)dµ,

satisfies maxi a
i
m ≤ 1

m−d

∫
T

∑
i ω

idµ for all m ≥ d+1. Hence, it is relatively compact.
(ii) The sequence {η∗m}m in RC is tight and hence relatively compact.
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Proof. (i) Lemma 4.3(i) implies supp∈P m p · am = q∗m · am. Here q∗m · am ≤ 0 holds by
Lemma 4.3(ii). Writing am = (ai

m)d
i=1, we can easily verify that

sup
p∈P m

p · am =
1

m

∑
i

ai
m + (1− d

m
) max

i
ai

m,

because of Pm = 1
m
e + {q ∈ Rd

+ : q · e = 1 − d
m
}. Trivially, ai

m ≥ −
∫

T
ωi; thus, the

above gives the desired inequality in (i). It is now easily seen that {am}m is bounded,
so relative compactness of {am}m follows by the Heine-Borel theorem.

(ii) By definition (4.2) of the barycenter we have∑
i

ai
m =

∫
T

[

∫
Rd

+

(
∑

i

xi −
∑

i

ωi(t))η∗m(t)(dx)]µ(dt)

for every m. By boundedness of {am}m and integrability of ω this clearly implies

sup
m

∫
T

[

∫
Rd

+

∑
i

xiη∗m(t)(dx)]µ(dt) < +∞,

which amounts to supm Ih(η
∗
m) < +∞ when we define h(t, x) :=

∑
i x

i on T × Rd
+.

Because x 7→
∑

i x
i is evidently inf-compact on Rd

+, the claimed tightness of {η∗m}m

has been demonstrated. Therefore, relative narrow compactness of {η∗m}m follows by
Proposition A.4. QED

Remark 4.1 Lemmas 4.3 and 4.4(i) express that (q∗m, η
∗
m) is an “almost free dis-

posal” relaxed competitive equilibrium for the artificial economyREm := 〈T,RCm , ω,W 〉
if m ≥ d+ 1.

Lemma 4.5 (i) The sequence {(am, q
∗
m, η

∗
m)}m contains a subsequence {(amj

, q∗mj
, η∗mj

)}j

such that {amj
}j converges to a vector a∗ ∈ Rd with a∗ ≤ 0, {q∗mj

}j converges in Rd

to a vector p∗ ∈ P and {η∗mj
}j converges to a transition probability δ∗ ∈ R(T ; Rd

+).
(ii) The pair (p∗, δ∗) in part (i) constitutes a free disposal relaxed competitive equilib-
rium.

Proof. (i) The existence of a subsequence that converges as stated follows immediately
from Lemma 4.4 and obvious compactness of the price simplex P . Also, a∗ ≤ 0 is
immediate by Lemma 4.4(i).

(ii) Fix i ∈ {1, . . . , d}. We know that ai
mj

:=
∫

T
(bar η∗mj

− ω)idµ → ai
∗ ≤ 0 for

i = 1, . . . , d. By (4.2) we have ai
m = Igi

(η∗m)−
∫

T
ωi dµ, where gi(t, x) := xi. Because

gi : T × Rd
+ → R is nonnegative, it is integrably bounded from below, and obviously

gi(t, ·) is lower semicontinuous on Rd
+ for every t ∈ T . Hence, gi ∈ Gbb(T ; Rd

+), so
limj Igi

(η∗mj
) ≥ Igi

(δ∗) follows by Definition A.3. Therefore, the above yields∫
T

(bar δ∗)
idµ = Igi

(δ∗) ≤ ai
∗ +

∫
T

ωi dµ ≤
∫

T

ωi dµ.

This proves that (p∗, δ∗) satisfies part (i) of Definition 3.1.

21



Next, by Lemma 4.3(ii) we have supp η∗mj
(t) ⊂ argmaxx∈Bt,q∗mj

Wt(x, q
∗
mj
, η∗mj

)

for every j and for a.e. t in T . By part (i), {η∗mj
}j converges narrowly to δ∗. We

can now mimick the first half of part 1 of the proof of Lemma 4.2. This gives
supp δ∗(t) ⊂ argmaxBt,p∗

Wt(·, p∗, δ∗) a.e. Hence, (p∗, δ∗) also satisfies part (ii) of
Definition 3.1. QED

Obviously, the above Lemma 4.5 concludes the proof of Theorem 3.1(i). We
now turn to the proof of part (ii) of that theorem. It is an obvious adaptation of
similar strengthening of free disposal equilibrium existence results into equilibrium
existence results (e.g., see [27, p. 38]). Define ωk := ω + 1

k
e, where, as before, e :=

(1, . . . , 1). Because now Ct = Rd
+ by Assumption 2.7, we see that for every fixed

k ∈ N Assumption 2.4 is met by ωk. So for every k ∈ N Theorem 3.1(i), just proven,
gives the existence of a pair (p∗k, δ

∗
k) ∈ P ×RC such that

(i)
∫

T
bar δ∗k dµ ≤

∫
T
ωk dµ,

(ii) δ∗k(t)(argmaxx∈Bt,p∗
k

Wt(x, p
∗
k, δ

∗
k)) = 1 for a.e. t in T .

Lemma 4.6 (i) The sequence {(p∗k, δ∗k)}k contains a subsequence {(p∗kj
, δ∗kj

)}j such

that {p∗kj
}j converges to some p∗∗ ∈ P and {δ∗kj

}j converges narrowly to some δ∗∗ in
RC.
(ii) The pair (p∗∗, δ∗∗) in part (i) constitutes a relaxed competitive equilibrium.

Proof. (i) Since
∫

T
ωk →

∫
T
ω, part (i) of the preceding equilibrium statement

for (p∗k, δ
∗
k) gives tightness of {δ∗k}k. To see this, use again h(t, x) :=

∑
i x

i, then
supk Ih(δ

∗
k) < +∞, just as in the proof of Lemma 4.4(ii). So, just as in that proof

and the proof of Lemma 4.5, we conclude that a subsequence {(p∗kj
, δ∗kj

)}j exists such

that {p∗kj
}j converges to some p∗∗ ∈ P and {δ∗kj

}j converges narrowly to some δ∗∗ in
RC .

(ii) Assumption 2.4’ implies p∗∗ ·
∫

T
ω dµ > 0; therefore p∗∗ · ω(t) > 0 for all t in

some non-null set Ã ∈ T . Hence, the set {x ∈ Rd
+ : p∗∗ · x < p∗∗ · ω(t)} is nonempty

for t ∈ Ã, because of Ct ≡ Rd
+. This allows us to conclude, just as in part 1 of the

proof of Lemma 4.2 (where the above set is denoted B′t,p∗∗), that

δ∗∗(t)(argmaxx∈Bt,p∗∗
Wt(x, p∗∗, δ∗∗)) = 1 (4.3)

holds for a.e. t in Ã. Thus, because of Assumption 2.7, we conclude that p∗∗ belongs
to Rd

++. Armed with this fact, we can now conclude that p∗∗ ·ω(t) is strictly positive
for every t ∈ T for which ω(t) 6= 0. So it follows that (4.3) actually holds for a.e. t in
T . Just as in the final part of the proof of Theorem 3.1(i), we also get∫

T

bar δ∗∗ dµ ≤ lim inf
j

∫
T

ωkj
dµ =

∫
T

ω dµ.

However, here we can say more, for it follows by Assumption 2.7 from (4.3), already
shown to be valid a.e., that for a.e. t in T the support of δ∗∗(t) is actually concentrated
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on the budget line in Bt,p∗∗ . In other words, we get p∗∗ · bar δ∗∗(t) = p∗∗ · ω(t). So
p∗∗ ·

∫
T
(bar δ∗∗ − ω)dµ = 0. By

∫
T
(bar δ∗∗ − ω)dµ ≤ 0 and p∗∗ ∈ Rd

++ this implies
the desired equality

∫
T
(bar δ∗∗ − ω)dµ = 0. This proves that (p∗∗, δ∗∗) constitutes a

mixed competitive equilibrium. QED

5 Proof of Theorems 2.1, 2.2 and 2.3

Theorem 3.1, just proven, will now be employed to prove the main existence results
of this paper.

Proof of Theorem 2.1(i). The assumptions of Theorem 3.1(i) hold, so it follows that
there exists (p∗, δ∗) ∈ P ×RC such that

∫
T
[
∫

Ct
xδ∗(t)(dx)]µ(dt) ≤

∫
T
ω and such that

(ii) of Definition 3.1 is fulfilled. The previous inequality can be rewritten as

Igi
(δ∗) ≤

∫
T

ωi dµ for i = 1, . . . , d.

Here gi : T × Rd
+ → R is defined by gi(t, x) := xi. Therefore, by Proposition A.5

there exists a sequence {fk} of measurable functions fk : T → Rd
+ such that {εfk

}k

converges narrowly to δ∗ and such that for every k both
∫

T
fk ≤

∫
T
ω and fk(t) ∈

argmaxx∈Bt,p∗
Wt(x, p∗, δ∗) a.e. hold (here the property of supp δ∗(t) in Definition 3.1(ii)

is used). By Bt,p∗ ⊂ Ct this implies that {fk}k ⊂ MC . Since (i) in Definition 2.1 is
already fulfilled, it remains to prove (ii) of that definition. To this end, let

Ŵt(δ) := sup
x∈Bt,p∗

Wt(x, p∗, δ).

Then ∫
T

[

∫
Rd

+

(arctan(Wt(x, p∗, δ∗)− Ŵt(δ∗)))δ∗(t)(dx)]µ(dt) = 0 (5.4)

by Definition 3.1(ii); here the arctangent transformation serves to ensure bounded-
ness, and hence integrability. Fix t ∈ T . By Lemma 3.1(ii), the function Wt(·, p∗, ·)
is continuous on Ct×RC . Also, the set Bt,p∗ is compact, because of the compactness
hypothesis for Ct in Assumption 2.3’. Therefore, Berge’s theorem of the maximum
implies that Ŵt is continuous. So ` : T × N̂× Rd

+ → R, defined by

`(t, k, x) :=

{
arctan(Wt(x, p∗, εfk

)− Ŵt(εfk
)) if k ∈ N,

arctan(Wt(x, p∗, δ∗)− Ŵt(δ∗)) if k = ∞,

defines a nonpositive normal integrand ` ∈ Gbb(T ; Rd
+ × N̂), which is bounded from

below by the value −π/2. Applying Proposition A.1 to this `, the narrow convergence
of {εfk

}k to δ∗ gives

lim inf
k

∫
T

arctan(Wt(fk(t), p∗, εfk
)−Ŵt(εfk

)))µ(dt) =

∫
T

[

∫
Rd

+

`(t,∞, x)δ∗(t)(dx)]µ(dt) = 0,
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where the right hand side is zero by combining the above definition of `(t,∞, x)
and (5.4). By nonpositivity of the integrands φk : t 7→ arctan(Wt(fk(t), p∗, εfk

) −
arctan Ŵt(εfk

))), this tells us that {φk}k converges to 0 in L1-seminorm. A fortiori, it
follows that {φk}k converges to 0 in measure, as does the sequence {tanφk}k, because
the tangent function is continuous (e.g., use Exercise 20.27 in [22]). By definition of
convergence in measure, this gives (ii) in Definition 2.1.

(ii) The proof of this part is a modification of the previous proof: First, note
that now the assumptions of Theorem 3.1(ii) hold, so it follows that there exists
(p∗, δ∗) ∈ P ×RC such that both (i) and (ii) of Definition 3.1 are fulfilled, and this
time with p∗ ∈ Rd

++. We use the previous gi(t, x) := xi, and also gd+i(t, x) := −xi.
Then Proposition A.5 yields existence of a sequence {εfk

}k that converges narrowly to
δ∗ and such that for every k both

∫
T
fk =

∫
T
ω and fk(t) ∈ argmaxx∈Bt,p∗

Wt(x, p∗, δ∗)

a.e. hold. Again, the continuity of Ŵt follows by Berge’s theorem, but this time the
needed compactness of Bt,p∗ follows by p∗ ∈ Rd

++. The remainder of the proof is
precisely the same.

Proof of Theorem 2.2. The assumptions of Theorem 3.1(ii) hold, so it follows that
there exists (p∗, δ∗) ∈ P × RC that satisfies Definition 3.1. Define gi(t, x) := xi for
i = 1, . . . , d and set gd+j := ḡj, j = 1, . . . , N (cf. Assumption 2.5’). Then Igi

(δ∗) <
+∞ for i = 1, . . . , d + N by the force of Definition 3.1(i) (see also an identity in
the previous proof) and by Assumption 2.5’(iv). Similar to the previous proof, it
follows by Proposition A.5 that there exists a sequence {fk}k of measurable functions
fk : T → Rd

+ such that {εfk
}k converges narrowly to δ∗ and such that for every k

we have (1)
∫

T
f i

k =
∫

T
ωi for i = 1, . . . , d, (2) Iḡj

(εfk
) = Iḡj

(δ∗) for j = 1, . . . , N
and (3) fk(t) ∈ supp δ∗(t) ⊂ argmaxx∈Bt,p∗

Wt(x, p∗, δ∗) a.e. Define f∗ to be the

first function f1 from this sequence. Then (1) implies
∫

T
f∗ =

∫
T
ω, (3) implies

f∗(t) ∈ argmaxx∈Bt,p∗
Wt(x, p∗, δ∗) a.e. and (2) implies Jt(f∗) = It(εf∗) = It(δ∗). We

conclude that f∗(t) ∈ argmaxx∈Bt,p∗
Wt(x, p∗, εf∗) a.e., which brings the proof to an

end, because of Remark 3.1. QED

Proof of Theorem 2.3. The assumptions of Theorem 3.1(i) are fulfilled, so it follows
that there exists (p∗, δ∗) ∈ P × RC that satisfy both Definition 3.1(i), but with ≤
instead of =, and Definition 3.1(ii). The above proof of Theorem 2.2 can be repeated
(only this time its (1) runs as follows:

∫
T
f i
∗ = Igi

(δ∗) ≤
∫

T
ωi for i = 1, . . . , d, but the

rest stays the same). QED

A The narrow topology: highlights

In this appendix we recapitulate five essential results on the narrow topology for tran-
sition probabilities (alias Young measures). This topology goes back to L.C. Young
and E.J. McShane in the calculus of variations (late thirties) and, ten to fifteen years
later but independently, to A. Wald and L.M. Le Cam in statistical decision theory.
Via [20, 39] this led the present author in [4] to start a program of systematic exten-
sion of the main themes of classical narrow convergence of probability measures (e.g.,
cf. [21]) to narrow convergence of transition probabilities. This program resulted in
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extensive treatments, presented in [10, 14, 15]. For additional relevant expositions
the reader is referred to [7, 16]; however, all the material in this appendix is taken
from [5], [15] and [34].

Let (T, T , µ) be a finite measure space. In this paper the following convention
is used to define the integral over T of a measurable function ψ : T → R that is
integrably bounded from below (i.e., max(−ψ, 0) is µ-integrable). The integral

∫
T
ψdµ

is defined by
∫

T
ψdµ :=

∫
T

max(ψ, 0)dµ−
∫

T
max(−ψ, 0)dµ even when

∫
T

max(ψ, 0)dµ
should equal +∞. For an ordinary integrable function ψ this convention contains no
news, but when max(ψ, 0) is not µ-integrable, it means that we use

∫
T
ψ dµ := +∞.

Let Y be a complete separable metric space; this is a special case of the Suslin
spaces used in [5, 15] (of course, the present paper only uses Y = Rd

+). The space
Y is equipped with its Borel σ-algebra B(Y ). Let Prob(Y ) denote the set of all
probability measures on (Y,B(Y )).

Definition A.1 A transition probability (also known under the names of Markov
kernel or Young measure) from (T, T ) into (Y,B(Y )) is a function δ : T → Prob(Y )
such that t 7→ δ(t)(B) is T -measurable for every B ∈ B(Y ). The set of all such
transition probabilities is denoted by R(T ;Y ). Special Dirac transition probabilities
correspond to measurable functions: if f : T → Y is measurable, then εf , defined by
εf (t)(B) := 1B(f(t)) = 1f−1(B)(t) is easily seen to belong to R(T ;Y ). This subset of

R(T ;Y ) is denoted by RDirac(T ;Y ).

Definition A.2 A normal integrand on T × Y is a T ⊗ B(Y )-measurable function
g : T × Y → R such that g(t, ·) is lower semicontinuous on Y for every t ∈ T . This
function g is said to be integrably bounded from below if there exists an integrable
φ : T → R such that g(t, y) ≥ φ(t) for all (t, y) ∈ T × Y . The set of all such normal
integrands that are integrably bounded from below is denoted by Gbb(T ;Y ).

By the theory surrounding Fubini’s theorem (see [34, III.2]) for every T ⊗ B(Y )-
measurable function g : T × Y → (−∞,+∞] that is integrably bounded from below
the integral

Ig(δ) :=

∫
T

[

∫
Y

g(t, y)δ(t)(dy)]µ(dt) (A.1)

is well-defined in (−∞,+∞] and, in particular, t 7→
∫

Y
g(t, y)δ(t)(dy) is T -measurable.

Definition A.3 The narrow topology on R(T, Y ) is the coarsest topology for which
all mappings δ 7→ Ig(δ), g ∈ Gbb(T ;Y ), are lower semicontinuous.

Clearly, the narrow topology on R(T ;Y ) generalizes the usual weak topology on
Prob(Y ) (e.g., see [21]), as is seen by taking (T, T , µ) to be trivial (say, a singleton).
Several equivalent characterizations of the narrow topology exist; e.g., see [7, Theo-
rem 2.3]. The following related result comes from [4] (see also [15, Theorem 4.13]),
where N̂ := N ∪ {∞} is the usual Alexandrov compactification of the set of natural
numbers:
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Proposition A.1 Let {δk}k be a sequence narrowly converging to δ0 in R(T ;Y ) and
let ` ∈ Gbb(T ; N̂× Y ). Then

lim inf
k

∫
T

[

∫
Y

`(t, k, y)δk(t)(dy)]µ(dt) ≥
∫

T

[

∫
Y

`(t,∞, y)δ0(t)(dy)]µ(dt).

Semimetrizability of the narrow topology on R(T ;Y ) allows us to concentrate on
sequences. It is guaranteed when (T, T , µ) is separable:

Proposition A.2 If (T, T , µ) is separable then R(T ;Y ) is semimetrizable for the
weak topology.

This result follows by Theorem 2.3 of [7]. In this paper an important property of
sequential narrow convergence in R(T ;Y ), in terms of the Kuratowski limes superior
of the pointwise support sets, is as follows (such results were introduced in [4] – see
also Theorem 4.12 of [15]). First, recall that the support of a probability measure
ν ∈ Prob(Y ) is defined as the smallest closed set F ⊂ Y such that ν(F ) = 1; this set
is denoted by supp ν.

Proposition A.3 For every sequence {δk}k that narrowly converges to δ0 in R(T ;Y )

supp δ0(t) ⊂ Lsksupp δk(t) for a.e. t in T

Recall here that the Kuratowski limes superior of a sequence {Sk}k of subsets of Y is
the set LskSk of all y ∈ Y for which there exists a subsequence {Skj

}j and correspond-
ing points ykj

∈ Skj
such that {ykj

}j converges to y. To obtain narrowly convergent
sequences, the following generalization of Prohorov’s theorem is very important. The
following definition was given in [4], inspired by [20]:

Definition A.4 A subsetR0 ofR(T ;Y ) is tight if there exists a T ⊗B(Y )-measurable
function h : T × Y → [0,+∞] such that for every t ∈ T the function h(t, ·) is inf-
compact4 and such that supδ∈R0

Ih(δ) < +∞.

The next result, Prohorov’s theorem for transition probabilities, follows by Theo-
rem 2.2 of [7] or Theorem 4.10 of [15] (incidentally, it holds regardless of semimetriz-
ability as established in Proposition A.2).

Proposition A.4 Every tight subset of R(T ;Y ) is both relatively compact and rela-
tively sequentially compact for the narrow topology.

We remark that in the setting of this appendix, where Y is complete separable and
metric, tightness is also a necessary condition for either relative compactness property
in the above proposition to hold. The following denseness result, well-known in
relaxed control theory in a less general form, is Corollary 3 in [5] (see also [11] and
Theorem 5.6 in [15]).

4I.e., the set {y ∈ Y : h(t, y) ≤ β} is compact for every β ∈ R+.
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Proposition A.5 Suppose that (T, T , µ) is nonatomic. For m ∈ N let {g1, . . . , gm}
be a finite collection in Gbb(T ;Y ). Let δ ∈ R(T ;Y ) be such that Igj

(δ) < +∞ for

j = 1, . . . ,m. Then there exists a sequence {εfk
}k in RDirac(T ;Y ) that narrowly

converges to δ such that for every k ∈ N the following hold: Igj
(εfk

) ≤ Igj
(δ) for

every j ∈ {1, . . . ,m} and fk(t) ∈ supp δ(t) for a.e. t in T .

Here the multifunction ∆ : t 7→ supp δ(t), which has a product-measurable graph
and closed values, is as required in [5, Corollary 3].
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