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Abstract. We study two-parameter bifurcation diagrams of the generalized Hénon map (GHM), that is known
to describe dynamics of iterated maps near homoclinic and heteroclinic tangencies. We prove the nondegeneracy of
codim 2 bifurcations of fixed points of GHM analytically and compute its various global and local bifurcation curves
numerically. Special attention is given to the interpretation of the results and their application to the analysis of
bifurcations of the homoclinic tangency of a neutral saddle in two-parameter families of planar diffeomorphisms. In
particular, an infinite cascade of homoclinic tangencies of neutral saddle cycles is shown to exist near the homoclinic
tangency of the primary neutral saddle.
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1. Introduction. The real planar map

(

X
Y

)

7→
(

1 + Y − aX2

bX

)

(1.1)

was first introduced by Hénon [19] as a planar diffeomorphism that mimics essential stretching and
folding properties of the Poincaré map of the Lorenz system and has a strange attractor. It was
also mentioned in [19], that any quadratic planar map with constant Jacobian can be put into the
canonical form (1.1) by a linear coordinate transformation. Making another linear transformation,
we can write (1.1) as

(

x
y

)

7→
(

y
α− βx− y2

)

, (1.2)

which is called the standard Hénon map in what follows. Since the late 1970s, the standard
Hénon map served as an important but artificial example to illustrate many analytical results and
numerical techniques of dynamical systems theory.

It is remarkable that the map (1.2) was earlier derived by Gavrilov and Shilnikov in [8, 9] as the
principle part of the Poincaré maps near the non-transverse homoclinic orbit to a saddle fixed point,
where its stable and unstable invariant manifolds have quadratic tangency. This phenomenon has
codimension one and is called the homoclinic tangency. Denote by λ and γ the eigenvalues of the
saddle fixed point, so that 0 < |λ| < 1 < |γ|. If the saddle quantity σ = |λγ| < 1, a one-parameter
unfolding of such a singularity leads to the standard Hénon map (1.2) with βk = O(σ−k), where
k enumerates shrinking definition strips of the Poincaré maps near the critical homoclinic orbit
(see Appendix). Thus, the appearing Hénon maps in this case have small Jacobians: βk → 0 as
k → ∞. If σ > 1, a similar result holds for the inverse Poincaré maps.

The standard Hénon map and related problems giving rise to Smale’s horseshoe have been
the object of many studies. The references can be found, for example, in [26].

Many details on the bifurcation diagram of (1.2) in the (β, α)-plane have been obtained by
Mira [25]. In Figure 1.1, principle bifurcation curves of (1.2) recomputed with content [22]
are shown, which constitute a small part of the bifurcation set described in [25]. A “backbone”
of the bifurcation diagram is formed by three curves: t(1) corresponding to the existence of a
fixed point with eigenvalue 1; f (1) corresponding to the existence of a fixed point with eigenvalue
-1; and n(1), where (1.2) has a fixed point with eigenvalues e±iθ, 0 < θ < π. Crossing the
curves t(1) or f (1) for β 6= ±1 results in nondegenerate fold or flip (period-doubling) bifurcations,
respectively. In contrast, a bifurcation at n(1) is degenerate, since for |β| = 1 the map (1.2) is
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Fig. 1.1. Principle bifurcation curves of the standard Hénon map (1.2).

area-preserving (conservative). At intersections of these curves fixed points with double linear
degeneracy exist: with eigenvalues ±1 (point FF ), with a double eigenvalue 1 (point R1(1)); and
with a double eigenvalue -1 (point R2(1)). These points are origins of other curves in the parameter
plane corresponding to local and global bifurcations in (1.2). From FF and R2(1) the bifurcation
lines n̄(2) and n(2) start, respectively, where the standard Hénon map has a period-2 cycle with
eigenvalues e±iθ, 0 < θ < π. From FF , R1(1), and R2(1) other curves emanate, where (1.2)
exhibits global bifurcations. Some of these curves are also shown in Figure 1.1. These are curves
hom1,2, where the stable and unstable invariant manifolds of a saddle fixed point are tangent
(homoclinic tangency), and het1,2, where a tangency of a stable manifold of one saddle with an
unstable manifold of another saddle occurs. Notice that curves hom1 and het2 intersect at point
(β, α) = (0, 2) on the α-axis, along which the standard Hénon map is noninvertible and reduces to
the scalar unimodular map y 7→ α− y2. For α = 2 this scalar map indeed has an orbit connecting
two fixed points and another orbit that is homoclinic to one of these fixed points. According to
[25], the standard Hénon map (1.2) has an infinite number of bifurcation curves corresponding to
fold (t(k)) and flip (f (k)) bifurcations of k-cycles with period k > 1. Some of them are depicted in
Figure 1.1. Several higher degeneracies on these curves were also reported and analyzed by Mira
[25].

Due to its conservative nature for |β| = 1, the bifurcation diagram of the standard Hénon map
(1.2) exhibits a number of highly degenerate features. This prevents applying Mira’s results in
homoclinic studies, where the standard Hénon map only approximates the actual Poincaré map.

In this paper, we study an extension of (1.2), namely the map
(

x
y

)

7→
(

y
α− βx− y2 +Rxy + Sy3

)

, (1.3)

where R and S are constants. This map is called the generalized Hénon map (GHM). For R =
S = 0 it reduces to (1.2). Of course, one can add many different terms to the standard Hénon
map to destroy its degeneracy. Our motivation to study this particular extension of (1.2) is that
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it appears in the bifurcation analysis of nontransversal homoclinic orbits and heteroclinic cycles
of both codim 1 and 2.

We focus on the following two codim 2 bifurcations of maps with homoclinic tangencies, which
will be described in more detail in Section 2:
(1) the critical diffeomorphism in R

2 has a neutral saddle (σ = 1) with a quadratic homoclinic
tangency (see [10], [16] and [17]; the analogous case in R

3 is considered in [18]);
(2) the critical diffeomorphism in R

3 has a saddle with a generalized homoclinic tangency (i.e.,
the unstable manifold of the saddle has a quadratic tangency to its stable manifold but
is nontransversal to leaves of the strong stable foliation in the stable manifold at the
homoclinic points) (see [11]).

There are other global bifurcations of generic maps, where GHM appears naturally. If a diffeo-
morphism in R

2 has two saddle fixed points O1 and O2 connected by two heteroclinic orbits, one
of which is nontransversal (codim 1), then GHM appears as a rescaled first-return map when
(σ1 − 1)(σ2 − 1) < 0, where σi is the saddle quantity of Oi [14]. If a diffeomorphism in R

3 has a
codim 1 homoclinic tangency to a saddle-focus fixed point with eigenvalues ν1,2 = λe±iϕ, ν3 = γ,
where 0 < λ < 1 < γ, 0 < ϕ < π, and λ2γ < 1, then GHM appears when λγ > 1 [15].

GHM seems to play an important role in other homoclinic studies. From [7] it follows that the
Poincaré map near a non-transverse homoclinic orbit to a saddle-saddle equilibrium in a three-
dimensional ODE is a smooth extension of the standard Hénon map (1.2) that can be reduced to
GHM with S = 0 and small β and R. It is also known, that GHM with |β| = 1 andR = 0 appears in
the analysis of two-dimensional area-preserving diffeomorphisms with homoclinic tangencies [13],
and three-dimensional divergence-free ODEs with a homoclinic orbit to a saddle-focus equilibrium
[5]. It seems that the appearance of GHM as a rescaled first-return map can be expected in other
cases of homoclinic and heteroclinic tangencies, when the so-called “effective dimension of the
problem” [27] can change.

This paper is organized as follows. In Section 2 we describe in detail two codim 2 homoclinic
bifurcations, where the generalized Hénon map appears as a rescaled Poincaré map near the
homoclinic orbit. Section 3 is devoted to analytical and numerical study of the bifurcation diagram
of (1.3) in case S = 0 and then in the general case S 6= 0. In Section 4 we discuss the correspondence
between the bifurcations of the generalized Hénon map and those of the original diffeomorphisms
with the codim 2 homoclinic tangencies. Some open problems are discussed in Section 5, while
in Appendix we revisit the classical results of Gavrilov and Shilnikov using a modern scaling
technique.

2. Homoclinic bifurcations and GHM. As mentioned in the Introduction, here we for-
mulate two problems with homoclinic tangencies [10, 17] leading to the generalized Hénon map.
Namely, we consider (1) a two-dimensional diffeomorphism with a homoclinic tangency of a neu-
tral saddle; (2) a three-dimensional diffeomorphism with a generalized homoclinic tangency. In
both cases the analysis leads to a two-parameter family fµ, µ = (µ1, µ2)

T ∈ R
2 of diffeomorphisms

close to the diffeomorphism f0. The first parameter µ1 in both cases is the splitting parameter,
i.e., it measures the displacement of the stable and unstable manifolds. The second parameter
µ2 is the deviation of the saddle quantity from 1 in the first case, and a characterization of the
geometry in the second case.

We are interested in orbits located entirely in a small neighborhood U of the critical homoclinic
orbit. This neighborhood consists of a small neighborhood U0 of the saddle fixed point and a finite
number of small neighborhoods of points of the homoclinic orbit outside of U0. We call a periodic
orbit p-round if it lies entirely in U and has exactly p points within each of the small neighborhoods
located outside U0. Bifurcations of single-round orbits (1-round orbits) are studied below with the
help of first-return (or Poincaré) maps.

2.1. Homoclinic tangency of a neutral saddle in R
2. In this section we consider bifur-

cations in a generic two-parameter family fµ of planar diffeomorphisms satisfying at µ = 0 the
following conditions:
(A) f0 has a saddle fixed point O with eigenvalues γ, λ, such that 0 < |λ| < 1 < |γ|;
(B) the saddle quantity σ ≡ |λγ| = 1;
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(C) the invariant manifolds W u(O) and W s(O) have a quadratic tangency at points of a homo-
clinic orbit Γ (see Figure 2.1).

2.1.1. Domains of definition. As usual in homoclinic studies, the Poincaré map is con-
structed as the composition of two maps: “local” – defined in U0 and “global” – defined along
the part of the homoclinic orbit in U \ U0. In other words, single-round periodic orbits of period
k+n0 for all k > k̄ (the meaning of k̄ will be explained later) are fixed points of fk+n0

µ ≡ fn0

µ ◦fkµ .
In this construction, we will use a general representation of the global map T1 = fn0

µ (based only

on the geometry of tangency) and a special form of the local map T k0 = fkµ , in which nonlinear
terms are asymptotically small for k → ∞ (see Appendix).

Let us consider two points of the critical homoclinic orbit Γ in U0: M+ on a local stable
manifold and M− on a local unstable manifold1. It is obvious that there is an integer n0 such
that M+ = fn0

0 (M−).

Next we can choose two small neighborhoods: Π+ (of point M+) and Π− (of point M−).
Consider the forward images of Π+ under f0. As is shown in Figure 2.2, there is some k̄, such that
for all k ≥ k̄ there is a “good” intersection of fk0 (Π+) and Π−. “Good” means that fk0 (Π+) \ Π−

consists of two components. Denote fk0 (Π+) ∩ Π− by σ1
k . We can also iterate Π− under f−1

0 to
obtain domains σ0

k = f−k
0 (Π−) ∩ Π+, which are the preimages of σ1

k, i.e. σ1
k = fk0 (σ0

k). It is easy
to see that the Poincaré map for the single-round (k + n0)-periodic orbit is defined only in σ0

k.
Indeed, only σ0

k may consist of orbits which end up in Π− after k iterations2.

Now we can define T1 ◦ T k0 = fk+n0

µ as the first-return map in such a strip for all µ with
sufficiently small ‖µ‖. For details we refer to [10, 11]. Here we give only a representation of the
global map T1, because it is used below:

x̄0 − x+ ≡ ax1 + b(y1 − y−) + e20x
2
1 + e11x1(y1 − y−) + e02(y1 − y−)2 + · · · ,

ȳ0 ≡ µ1 + cx1 + d(y1 − y−)2 + f20x
2
1 + f11x1(y1 − y−)+

+ f30x
3
1 + f21x

2
1(y1 − y−) + f12x1(y1 − y−)2 + f03(y1 − y−)3 + · · · .

(2.1)

Here all coefficients are smooth functions of µ; moreover, bcd 6= 0. Note that the definition of the
global map depends on n0.

1In this neighborhood there are infinitely many such points – we choose any two of them
2If we consider 2-round periodic orbits the situation would be different, because then we should think about

i + j + 2n0-periodic orbits of type (i, j). The 2-round periodic orbit of type (i, j) has i points near the saddle, then
n0 points near the “global” part of the homoclinic orbit, then j points near the saddle, and n0 points near the
homoclinic orbit. In this case, the domain of definition consists of two strips, σ0

i and σ0
j .

U0

O M+

M−

Fig. 2.1. Tangency of the stable and the unstable invariant manifolds.
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2.1.2. Rescaling results. Here we present only the results of the rescaling performed in
[10]. The Poincaré map for any k > k̄ can be reduced to the map

{

X̄ = Y,
Ȳ = α− βX − Y 2 +RλkXY + SλkY 3 + o(λk),

(2.2)

where λ is the stable eigenvalue of the saddle, α, β,X, Y cover all finite values as k → ∞, and
R,S depend on the coefficients of the global map (2.1), namely:

R = 2a− b

d
f11 − 2

c

d
e02, S = − bc

d2
f03. (2.3)

There is the following correspondence between (α, β) and (µ1, µ2):

α = −dγ2k[µ1 − γ−k(y− + . . . ) + cλk(x+ + . . . )],
β = −bc(1 + µ2)

k(1 + . . . ).
(2.4)

2.2. Generalized homoclinic tangency in R
3. In this section we consider a generic two-

parameter family fµ of three-dimensional diffeomorphisms satisfying at µ = 0 the following con-
ditions:

F
ss

M−

W u(O)

M+

W s(O)

O

Fig. 2.3. Generalized homoclinic tangency
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(A) f0 has a saddle fixed point O with eigenvalues λ1, λ2, γ, such that 0 < |λ2| < |λ1| < 1 < |γ|;
(B) |λ1γ| > 1, |λ2γ| < 1;
(C) the invariant manifolds W u(O) and W s(O) have a quadratic tangency at points of a homo-

clinic orbit Γ (see Figure 2.3);
(D) T1(P

ue(M−)) is transversal toW s
loc atM+ but is tangent to F ss(M+) atM+ whereM+,M−

are some points on local stable and local unstable manifolds respectively, P ue is the tangent
plane to the extended unstable manifold at the point M−, T 1 is the global map from a
neighborhood of M− to M+, F ss(M+) is a leaf of the strong stable foliation containing
M+.3.

2.2.1. Domains of definition. As in the planar case, we can choose two points on the
homoclinic orbit in a sufficiently small neighborhood U0 of the saddle fixed point: M+ on the
local stable manifold, and M− on the local unstable manifold. We also choose sufficiently small
neighborhoods Π+ and Π− of points M+ and M−. We write k̄ for the minimal k such that
fk0 (Π+) and Π− have a “good” intersection. And we denote σ1

k = fk0 (Π+) ∩ Π− and σ0
k =

f−k
0 (Π−) ∩ Π+. The picture is similar to Figure 2.2 but in three dimensions (with an additional

contraction direction).
Also we need a representation for the global map T1:

x̄1 − x+
1 = a11x1 + a12x2 + µ2(y − y−) + e02(y − y−)2 + · · · ,

x̄2 − x+
2 = a21x1 + a22x2 + b2(y − y−) + · · · ,
ȳ = µ1 + c1x1 + c2x2 + d(y − y−)2 + · · · .

(2.5)

Here all coefficients are smooth functions of µ; moreover, c1d 6= 0. As in the planar case, the
definition of the global map depends on the choice of points M±.

2.2.2. Rescaling results. For a family fµ of diffeomorphisms of R
3 close to the diffeo-

morphism f0 with the generalized homoclinic tangency the following result is valid [11]. The
first-return map for |λ1γ| > 1, |λ2γ| < 1 and for any k > k̄ can be reduced on some invariant
2-dimensional manifold to the map

{

X̄ = Y,
Ȳ = α− βX − Y 2 +Rλk1XY + o(λk1),

(2.6)

where

R = 2
(

a11 −
e02c1
d

)

(2.7)

and

α = −dγ2k[µ1 − γ−k(y− + . . . ) + λk(c1x
+ + . . . )]

β = −c1(µ2 + . . . )(λ1γ)
k.

(2.8)

Note that in this case only the quadratic extra term appears (the term with y3 exists but has
order of O(γ−k) = o(λk) since |λ1γ| > 1).

When |λ1γ| > 1 and |λ2γ| > 1, another extension of the standard Hénon map appears [11].

3. Bifurcation diagrams of GHM. In this section we study the generalized Hénon map

(

x
y

)

7→ Fα,β =

(

y
α− βx− y2 +Rxy + Sy3

)

, (3.1)

where R and S are (not necessarily small) constants. Then we consider the limit case when R and
S are substituted by Rλk and Sλk, respectively. Since |λ| < 1, these sequences tend to zero as
k → ∞.

3In this article we consider only one of the two cases treated in [11] (case I). Case II is similar.
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3.1. Codim 1 and 2 bifurcations of fixed points. This subsection is organized as follows.
First we consider (3.1) with S = 0. We derive the bifurcation curves for local codim 1 bifurcations
and verify their nondegeneracy conditions. At the codim 2 points we compute the critical normal
form coefficients. Thus we prove the nondegeneracy of these bifurcations for R 6= 0. Having this
knowledge, we consider S 6= 0 and obtain similar results.

3.1.1. The Quadratic Extension (S = 0).

Proposition 3.1. The generalized Hénon map (3.1) with S = 0 has the following codimension

one bifurcations of fixed points:

Fold: If R 6= 1, there is a nondegenerate fold bifurcation for α = (β+1)2

4(R−1) with the critical

fixed point at x = y = β+1
2(R−1) .

Flip: If R 6= 3, there is a nondegenerate flip bifurcation for α = 1
4 (β + 1)2(3 − R) with

the critical fixed point at x = y = β+1
2 .

Neimark-Sacker: If R 6= 0, 1, 2, there is a Neimark-Sacker bifurcation for

α =
(β − 1)(β − 1 + 2R)

R2

with the critical fixed point at x = y = β−1
R . It is defined for β ∈ [ 2−3R

2−R ,
2+R
2−R ] when

R ∈ (0, 2) and β ∈ [ 2+R2−R ,
2−3R
2−R ] when R /∈ [0, 2]. The bifurcation is nondegenerate away

from strong resonances.

Proof. We write DF for the Jacobian matrix of F with respect to (x, y). These curves follow
easily from the fixed point equation, i.e. Fα,β(x) − x = 0, together with a condition on the
multipliers. These conditions are given by the following equations are det(DF − I) = 0 (fold),
det(DF + I) = 0 (flip) and det(DF ) − 1 = 0 (NS). We have to exclude neutral saddles for the
NS-bifurcation and therefore restrict to the interval as given above.

Then we have to check that these codim 1 bifurcations are nondegenerate. We use the formulas
for the normal form coefficients from [21]. The bilinear form corresponding to the GHM with S = 0
is

B(x, y) =

(

0
R(x1y2 + y1x2) − 2x2y2

)

, (3.2)

while the vectors

qfold =

(

1
1

)

, pfold =

(

−β + (β+1)R
2(R−1)

1

)

(3.3)

qflip =

(

−1
1

)

, pflip =

(

1
2 (β(2 −R) −R)

1

)

, (3.4)

qns =

(

(β−1)(R−2)+
√

(β−1)2(R−2)2−4R2

2R
1

)

, pns =

(

− (β−1)(R−2)+
√

(β−1)2(R−2)2−4R2

2R
1

)

(3.5)

satisfy the conditions:

(DF )qfold = qfold, (DF )T pfold = pfold, 〈pfold, qfold〉 6= 0,

(DF )qflip = qflip, (DF )T pflip = pflip, 〈pflip, qflip〉 6= 0,

(DF )qns = eiθqns, (DF )T pns = eiθpns, 〈pns, qns〉 6= 0.
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We do not give intermediate calculations, but directly present the normal form coefficients

cfold =
〈pfold, B(qfold, qfold)

〈pfold, qfold〉
=

4(1 −R)2

β(2 −R) − (2 − 3R)
, (3.6)

cflip =
〈pflip, B(qflip, (I −DF )−1B(qflip, qflip))〉

2〈pflip, qflip〉
=

4(1 +R)

β(2 −R) − (2 +R)
, (3.7)

cNS = Re

(

e−iθ〈pns, 2B(qns, (I −DF )−1B(qns, q̄ns)) +B(q̄ns, (e
2iθI −DF )−1B(qns, qns))〉

2〈pns, qns〉

)

=
(1 −R)R2

β(2 −R) − (2 − 3R)
. (3.8)

From the expressions above we see that for R = −1, 0, 1, 2 the map is more degenerate.
Proposition 3.2. The generalized Hénon map (3.1) with S = 0, R 6= 0, has the following

codimension two bifurcations of fixed points:
Fold-flip There is a fold-flip bifurcation of the fixed point x = y = 0 for (α, β) = (0,−1).
The normal form coefficients defined in [23] are a(0) = 1 − R, b(0) = 1 + R, c(0) =
3
2 (1 −R), d(0) = − 1

2 (5 + 3R).

Resonance 1:1 There is a resonance 1:1 at (α, β) = ( 4(−1+R)
(2−R)2 ,

2−3R
2−R ) for the fixed point

x = y = β−1
R . The normal form coefficient is s = sgn((1 −R)R).

Resonance 1:2 There is a resonance 1:2 at (α, β) = ( 4(3−R)
(2−R)2 ,

2+R
2−R ) for the fixed point

x = y = β−1
R . The normal form coefficients are C1 = −2(R+ 1) and D1 = (1 −R)R/2.

Resonance 1:3 There is a resonance 1:3 at (α, β) = ( 5−2R
(2−R)2 ,

2
2−R ) for the fixed point

x = y = β−1
R . The normal form coefficient is c =

(1−R)(R−i
√

3(2+R))
4(1+R+R2) .

Resonance 1:4 There is a resonance 1:4 for the fixed point x = y = 0 at (α, β) = (0, 1).

The normal form coefficient is A(0) = R(1−R)+i(−2+3R+R2)√
(1+R2)(4+4R+2R2)

.

Proof. We calculate common points of the three bifurcation curves and find the first three
codimension two bifurcations. It is easy to see that on the Neimark-Sacker bifurcation curve we
encounter the strong resonances 1:3 and 1:4, while we move from the resonance 1:1 point to the 1:2
point. Solving for the eigenvalues, the parameter values for these bifurcations can be computed
explicitly.

The fold-flip bifurcation was analyzed in [23]. For the strong resonance bifurcations we use
the formulas from [21] without further references.

Fold-flip. Using the formulas from [23] with the critical eigenvectors

qfold = 2pfold =

(

1
1

)

, qflip = 2pflip =

(

1
−1

)

, (3.9)

we find for the truncated critical normal form

(

x1

x2

)

7→
(

x1 + 1
2a(0)x2

1 + 1
2b(0)x2

2 + 1
6c(0)x3

1 + 1
2d(0)x1x

2
2

−x2 + x1x2

)

(3.10)

the following coefficients

a(0) = (1 −R), b(0) = (1 +R), c(0) =
3

2
(1 −R), d(0) = −1

2
(5 + 3R).

We see that, indeed, depending on R the following cases occur.
sign a(0) sign b(0)

R < −1 + - case 3
−1 < R < 1 + + case 1

R > 1 - + case 2
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Next we calculate the critical coefficient determining the nondegeneracy of the FF point (see [23])
to be cNS = R2(1 −R), meaning that a closed invariant curves coming from the Neimark-Sacker
bifurcation of the period-2 cycle will be unstable for case 1 and stable for case 2. Note that we
excluded R = 0 and R = 1. For (α, β,R) = (0,−1, 0) we actually have a codimension three point,
since the coefficient cNS is then equal to zero.

Resonance 1:1 We shift the critical fixed point to the origin:

(

x
y

)

7→
(

y
−x+ 2y +Rxy − y2

)

. (3.11)

Bringing the linear part to the Jordan form, we get

(

x
y

)

7→
(

1 1
0 1

)(

x
y

)

+

(

1
2a20x

2 + a11xy + 1
2a02y

2

1
2b20x

2 + b11xy + 1
2 b02y

2

)

, (3.12)

where a20 = 0, b20 = 2(R− 1) and b11 = R− 2. This map is locally topologically equivalent to the
time-one flow of the Bogdanov normal form

{

η̇1 = η2,
η̇2 = η2

1 + sη1η2.
(3.13)

Here the critical coefficient is given by s = sgn(b20(a20 + b11 − b20)) = sgn((1 −R)R).
Resonance 1:2 The shifted map can be written as

(

x
y

)

7→
(

y
−x− 2y +Rxy − y2

)

, (3.14)

while the time-one flow that approximates the second iterate of the normal form of this map is
generated by

(

ẋ
ẏ

)

=

(

y
C1(0)x3 +D1(0)xy2

)

. (3.15)

where C1(0) = −2(1 +R) and D1(0) = (1 −R)R/2.
Resonance 1:3 Shifting the fixed point to the origin and introducing a complex variable, we

can write the critical map as

z 7→ µz +
∑

k+l≥2

1

k!l!
gklz

kz̄l (3.16)

where µ = ei2π/3 and g20 = −1 − i√
3
(1 + 2R), g11 = −1 − R

2 , g02 = −(1 + R) + i√
3
(R − 1). The

third iterate of the corresponding normal form can be approximated by the time-one flow of the
equation

ż = B1(0)z̄2 + C1(0)z2z̄, (3.17)

where

B1(0) =
3R

2
+
i

2

√
3(2 +R), C1(0) =

1

2
(R− 1)

(

−R+ i
√

3(2 +R)
)

(3.18)

Since B1(0) 6= 0 we can scale C1(0) to c = C1(0)
|B1(0)|2 . After some simplifications we find c =

(R−1)(−R+i
√

3(2+R))
4(1+R+R2) .

Resonance 1:4 We apply the same procedure as above with µ = eiπ/2 and obtain g20 =
ḡ02 = −1− iR and g11 = −1. The coefficients of the truncated critical normal form

z 7→ µz + C(0)z2z̄ +D(0)z̄3 (3.19)
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are

C(0) =
1

4
(1+i)

(

(1 − i) − (1 − 2i)R−R2
)

, D(0) =
1

4
(1+i)

(

(−1 + i) + (1 + 2i)R+R2
)

. (3.20)

Since D(0) 6= 0 the flow approximating the 4-th iterate of this map can be scaled to

ż = A(0)z2z̄ + z̄3, (3.21)

where

A(0) =
−iC(0)

|D(0)| =
R(1 −R) + i(R2 + 3R− 2)
√

(1 +R2)(2R2 + 4R+ 4)
.

We plot A(0) as a parametric function of R in Figure 3.1

-2 -1.5 -1 -0.5 0.5
Re[A]

-2.5

-2

-1.5

-1

-0.5

0.5

1
Im[A]

Fig. 3.1. The complex values of A as a function of R.

3.1.2. The Cubic Extension (S 6= 0).
Proposition 3.3. The generalized Hénon map (3.1) with R,S 6= 0 has the following codi-

mension one bifurcations of fixed points:
Fold. There is a fold bifurcation at

α =
2(1 −R)3 + 9(β + 1)(1 −R)S ± 2

(

(R − 1)2 + 3(β + 1)S
)3/2

27S2

of the fixed point

x = y =
(1 −R) ±

√

(R− 1)2 + 3(β + 1)S

3S
.

The fold normal form coefficient is given by

cfold =
−6S

√

(1 −R)2 + 3(β + 1)S

(3(β − 1)S −R(1 −R)) ±R
√

(1 −R)2 + 3(β + 1)S
. (3.22)

Flip. There is a flip bifurcation of the fixed point

x = y =
1 ±

√

1 − 3(β + 1)S

3S

at

α =
2(1 − 3R) + 9(β + 1)(R+ 1)S ± 2(1 − 3R+ 6(β + 1)S)

√

1 − 3(β + 1)S

27S2
.

The normal form coefficient is given by

cflip =
3S2

(

−3 + R − 3R2 + 6(β − 1)S ± 7R
√

1 − 3(β + 1)S
)

(

3(β − 1)S + R(−1 ∓
√

1 − 3(β + 1)S)
)(

3(β + 1)S + R(−1 ∓
√

1 − 3(β + 1)S)
) .

(3.23)
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Neimark-Sacker. There is a Neimark-Sacker bifurcation of the fixed point x = y = β−1
R

at

α =
(β − 1)R(β − 1 + 2R) − (β − 1)3S

R3
.

for which we have

cNS =
R2((1 −R)R− 3S(β − 1)

(β(2 −R) − (2 − 3R))R− 3(β − 1)2S
. (3.24)

Proof. The bifurcation curves follow from the same equations as in the previous proof. We
should note that, unlike in the quadratic case, here the fold and flip curves consist of two branches
which are connected. To prove the nondegeneracy we have to find the critical eigenvectors and
higher order derivatives as before. We show computations for one branch only.

B(x, y) =

(

0

R(x1y2 + y1x2) − 2x2y2

(

R +
√

(1 −R)2 + 3(β + 1)S
)

)

, (3.25)

qfold =

(

1
1

)

, pfold =

(

−β +
R
(

−1+R+
√

(1−R)2+3(β+1)S
)

3S
1

)

. (3.26)

With these definitions we calculate cfold = 〈p,B(q, q)〉/〈p, q〉 as given in the proposition on one
branch. On the other it is similar. We proceed with the flip bifurcation.

B(x, y) =

(

0

R(x1y2 + y1x2) − 2x2y2
√

1 − 3(β + 1)S

)

, C(x, y, z) =

(

0
6Sx2y2z2

)

,(3.27)

qflip =

(

−1
1

)

, pflip =

(

β +
R
(

−1+
√

1−3(β+1)S
)

3S
1

)

, (3.28)

we calculate cflip = 〈p, C(q, q, q)− 3B(q, (A− I)−1B(q, q))〉/6〈p, q〉 and find the expression on one
branch.

For the Neimark-Sacker bifurcation we omit the intermediate calculations, but the coefficient
cNS is obtained in the same way.

The above codimension one bifurcations are degenerate in several points. We treat them in two
propositions. The cusp, generalized flip and generalized Neimark-Sacker are collected together,
since they are determined by vanishing of the corresponding normal form coefficient. The fold-flip
and the strong resonances fall into another group, since an extra condition on the multipliers is
imposed.

Proposition 3.4. The generalized Hénon map (3.1) with R,S 6= 0 has the following codi-

mension two bifurcations of fixed points:

Cusp. There is a cusp bifurcation of the fixed point x = y = 1−R
3S at α = (R−1)3

27S2 and

β = −1 − (R−1)2

3S .

Generalized flip. With α, x, y defined in the previous Proposition, the flip bifurcation

is degenerate at

β = −1 +
1

24S

(

12− 4R− 37R2 ± 7R
√

−8 + 8R+ 25R2
)

.

Chenciner. The Neimark-Sacker bifurcation of the previous Proposition is degenerate

at α = (R−1)(R2+R−2−18S)
27S2 , β = 1 + R(1−R)

3S , while the fixed point satisfies x = y = 1−R
3S .
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Proof. This follows easily from the expressions for the normal form coefficients at the codi-
mension one bifurcations.

Proposition 3.5. The generalized Hénon map (3.1) with R,S 6= 0 has the following codi-

mension two bifurcations of fixed points:
Fold-flip There is a fold-flip bifurcation of the fixed point x = y = 0 at α = 0 and

β = −1. There is another fold-flip bifurcation for x = y = 2−R
3S and α = (R+1)(R−2)2

27S2 , β =

−1 − R(R−2)
3S .

Resonance 1:1. For β = 1 − R
6S

(

R− 2 ±
√

(R− 2)2 + 24S
)

there is a resonance 1:1.

Resonance 1:2. For β = 1 − R
6S

(

R− 2 ±
√

(R− 2)2 − 24S
)

there is a resonance 1:2.

Resonance 1:3. For β = 1 + R
6S

(

R− 2 ±
√

(R− 2)2 − 12S
)

there is a resonance 1:3.

Resonance 1:4. There is a resonance 1:4 at β = 1 and β = 1 − R(R−2)
3S .

It is possible that either the 1:1 or the 1:2 resonance does not exist. In the first case even the 1:3

resonance may not be present.

Proof. The eigenvalues can easily be computed along the codim 1 curves. Imposing an extra
condition on them one finds the reported values for β on the corresponding codim 1 curve. The
nondegeneracy of the codim 2 points can also be checked.

3.2. Global bifurcations. It is known that the strong resonances and the fold-flip points
are the origins of homoclinic and heteroclinic “horns”. The boundaries of these horns correspond
to primary homoclinic and heteroclinic tangencies, respectively. Here we use the algorithm from
[4] to compute these boundary curves numerically.

Let us briefly explain the algorithm. Let f(x) have a transverse homoclinic orbit at the
fixed point ξ. We want to find the boundary, on which we have tangency. We approximate
the homoclinic orbit by a finite number of points, say n. Let qs and qu be eigenvectors of the
matrix DF T , the transposed of the Jacobian, corresponding to the stable and unstable manifold
respectively. Then we define the following algebraic system.

xi+1 − f(xi) = 0 for 1 ≤ i ≤ n− 1,

〈qs, (x1 − ξ)〉 = 0,

〈qu, (xn+1 − ξ〉 = 0.

The solution to this system can be continued in one parameter using content [22] and its limit
point corresponds to a tangency of the stable and unstable manifolds. Continuation of such a
limit point in content in two parameters using a standard defining system gives the boundary
curves for homo- and heteroclinic structures.

To compute the stable and unstable manifolds of fixed points and cycles at fixed parameter
values, we used the algorithms due to Krauskopf and Osinga [20] implemented in DsTools [3].

3.3. Small coefficients. As we have seen in Section 2, the Poincaré map for both codim 2
homoclinic tangency cases can be reduced to the map

x̄ = y
ȳ = α− βx− y2 +Rλkxy + Sλky3 + o(λk),

(3.29)

where |λ| < 1 is the stable eigenvalue of the saddle, α, β, x, y cover all finite values as k → ∞.
The closer we are to the neutral saddle, the higher k we have to consider. Since R and S scale with
λk, the case when k is large corresponds to exponentially small coefficients R and S. It follows
from the previous text that the codim 1 bifurcation are nondegenerate away from the codim 2
bifurcations. If we use the parametric form of the Neimark-Sacker bifurcation curve,

α = cos2 ψ − 2 cosψ, β = 1 −R cosψ, 0 < ψ < π, (3.30)

we find

cNS =
R

4 cos2
(

ψ
2

)λk + o(λk). (3.31)
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We find that for smallR the stability of the closed invariant curve emerging from the NS-bifurcation
depends on the sign of R.

The codimension 2 bifurcations which occur only if S 6= 0, are at infinity and therefore
inaccessible. For the codim 2 bifurcation we give the constant and linear terms in λk .

Fold-flip The normal form coefficients are

a(0) = 1 −Rλk + o(λk), b(0) = 1 +Rλk + o(λk),

c(0) =
3

2
(1 −Rλk) + 3Sλk + o(λk), d(0) = −1

2
(5 + 3Rλk) + 3Sλk + o(λk).

The critical coefficient cNS at the fold-flip point is4

cNS = (R2 + 2RS + 8s21)λ
2k + o(λ2k).

Resonance 1:1 The normal form coefficient s has the same sign as Rλk.
Resonance 1:2 The normal form coefficients are C1 = −2 + 2(R − 4S)λk + o(λk) and
D1 = 1

2Rλ
k + o(λk).

Resonance 1:3 The nondegeneracy is given by the real part of the normal form coefficient
C1 = 1

6 (Rλk + i
√

3(−2 + (R − 2S)λk)) + o(λk).
Resonance 1:4 The normal form coefficient A determining the bifurcation sequence is
given by A = −i+

(

1
2 + 2i

)

Rλk − 4iSλk + o(λk)

We see immediately that when R → 0, the bifurcations of the strong resonance become degenerate.
For the fold-flip it follows that the Lyapunov coefficient for the Neimark-Sacker bifurcation of
period 2 becomes degenerate if we do not consider O(λ2k)-terms.

3.4. Description of bifurcations. Here we describe the bifurcation diagram of the quad-
ratic GHM for both positive and negative R. The bifurcations of the standard Hénon map remain
as a backbone, compare Figure 1.1 and Figures 3.2, 3.3. However, from the previous sections, it
follows that the bifurcations are nondegenerate for R 6= 0 and that the cubic term can be neglected
if S is small. We describe the local codim 2 bifurcations of low period of the generalized Hénon
map, since these organize the parameter plane mostly. These points are also the origins of some
global bifurcations, which are then addressed. All bifurcation curves are computed using content

[22]. Below the t(1) curve there are no fixed points, and the dynamics are not interesting. On this
curve there are two codim 2 points.

First we have the fold-flip point FF . For small R this is case 1 of [23]. Near this bifurcation an
unstable invariant closed circle appears and is destroyed. To show what happens, we take α = 0.3
and vary β, see Figures 3.4 and 3.5. From (1) to (3) we see the stable and unstable manifolds of
the two saddle fixed points getting closer until they intersect. Furthermore we see that an Arnol’d
tongue of period 12 is present around the period 2 fixed point. Going from (3) to (4) this orbit
gains stability and an invariant closed curve is born. It consists of two disjoint sets and an iterate
jumps from one set to the other. Close to n̄(2) the closed invariant curve is smooth, but moving to
(5) it becomes bigger and loses its smoothness. Eventually it “merges” with the stable manifold of
the period 12 orbit and is destroyed. Then from (5) to (6) the period 12 orbits disappear through
a fold bifurcation and the manifolds move away from each other.

The second codim 2 point R1(1) on the t(1) curve is a 1:1 resonance. From this point a Neimark-
Sacker curve n(1) emerges. The corresponding invariant closed curve is stable for negative R and
unstable for positive R. The structure is completed with Arnol’d tongues and curves of homoclinic
tangencies, see Figure 3.6.

The Neimark-Sacker bifurcation generates closed invariant curves, here we discuss their domain
of existence. Possible destruction scenarios for a closed invariant curve inside the resonance tongue
were studied theoretically in [1, 2, 6]. We consider here the lowest weak resonance, i.e. 1:5, which
is located inside the homoclinic wedge of the 1:1 resonance. The bifurcation curves are shown
in Figure 3.7, while the meaning of the hom-curves is explained in Figure 3.8. In the region



14 V.S. Gonchenko, Yu.A. Kuznetsov and H.G.E. Meijer

-3

-2

-1

0

1

2

3

4

5

-3 -2 -1 0 1 2 3

FF

het1

f (2)

R2
(2) f (1)

n(2)

R2
(1)

f (4)

hom2

t(4)

R1
(1)

β

α

f (3)

n(1)

t(1)

hom1

het2

t(3)n̄(2)

R2
(2)

Fig. 3.2. Bifurcation diagram for the generalized Hénon map for R = −0.5.
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Fig. 3.3. Bifurcation diagram for the generalized Hénon map for R = 0.5.

4We took every possible term of the order of λ2k in the second equation of (3.29). The coefficient s21 in front
of the x2y-term was the only relevant coefficient.
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Fig. 3.4. Close up of the bifurcation diagram of the generalized Hénon map for R = −0.5 near the FF point.
Numbers correspond to phase portraits in Figure 3.5.
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Fig. 3.5. Stable(blue) and unstable(red) manifolds near the fold-flip point. Parameter values are R =
−0.5, α = 0.3 and β = −1.3 (1),−1.1 (2),−1.06 (3),−1.057 (4),−1.055 (5),−0.9 (6). The green object in (4)
is the invariant closed circle.

bounded by n(1) and homi,i a closed invariant curve exists, surrounded on the outside by saddles
and nodes of period 5. Then there are two curves homi,i and homi,o. The distance between them
becomes exponentially small if we move to the tip of the horn. In the region bounded by these
two curves there are transversal homoclinic structures. Between curves homi,o and homo,i the
invariant circle exists as the unstable manifold of a saddle together with a node. We remark that
these two curves intersect below the flip f (5) and end up tangentially at the t(5)-curves. If we move
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Fig. 3.6. Close-up near the 1:1 resonance for (a) R = −0.1, (b) R = 0.1. Visible are fold and Neimark-Sacker
of period 1(red), curves of homoclinic tangencies(yellow) and period 9(blue) and 13(green/pink) Arnol’d tongues.
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Fig. 3.7. Resonance horn of period 5 for R = −0.1. Displayed are curves of Neimark-Sacker(red) and homo-
clinic tangencies(pink) of period 1. Then for period 5 fold, flip and Neimark-Sacker curves(blue), and homoclinic
tangencies(green). The first index i/o refers to the position of the closed curve relative to the saddles. The second
index refers to the type of tangency.

on, the curves homo,i and homo,o bound another region with homoclinic tangle. If we move further
across homo,o we will again see an invariant circle. Other weak resonances are present and the
previous structure repeats itself again. This agrees well with the theoretical picture. However, we
note that the model map studied in [1], has some degeneracies, so that only two of four possible
branches of homoclinic tangencies appeared. Also the intersection of homi,o with homo,i may
occur either above or below the flip bifurcation curve.

Tracing the Neimark-Sacker curve, we encounter other strong resonances. The 1:4 resonance
can have several bifurcation sequences, but when R is small, only case I for positive R and case VIII
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Fig. 3.8. Sketches of various homoclinic tangencies inside the resonance tongue of period 5.
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Fig. 3.9. (a) Close up of the bifurcation diagram of the generalized Hénon map for R = −0.5 near the DHT
point. Only the primary bifurcations are displayed; (b) Dependence of the β-coordinate of the DHT point on R.

for negative R remain. While case I is the simplest, case VIII has the richest bifurcation sequence
(see, for example, [21]). Then the 1:3 resonance is encountered. Apart from a period 3 orbit with a
homoclinic connection nothing special occurs. Then finally we meet the 1:2 resonance. For small
R, this involves only one of two possible cases [21], namely, the one from which the Neimark-
Sacker curve n(2) for the period-2 cycle emanates. The behavior of the generated invariant circle
is determined by the sign of R. Continuing further we observe a cascade of nondegenerate 1:2
resonances R2(k) located on the flip curves and connected by Neimark-Sacker bifurcation segments
(in Figure 3.2 only R2(1) and R2(2) are visible).

We now give more details on global bifurcations. Above the period-doubling curve there always
exists a transversal heteroclinic orbit connecting the two period-1 saddles. The other invariant
manifolds of these saddles can also intersect or become tangent. The wedges of the correspond-
ing heteroclinic and homoclinic tangencies (delimited by het1,2 and hom1,2) form boundaries of
parameter regions where nontrivial hyperbolic sets exist. The boundary curves het2 and hom1
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(−0.04, 2),(2):(α, β) = (−0.02, 2),(3):(α, β) = (−0.06, 2) and (4):(α, β) = (−0.04, 2.05)

intersect giving rise to a Double (Homoclinic/Heteroclinic) Tangency (DHT ) point, see Figures
3.9 and 3.10. We start in region (1) where there are two saddle fixed points and two transversal
heteroclinic orbits which are always present. Going to region (2) the stable manifold of x1 becomes
tangent to the unstable manifolds of this point and two transversal homoclinic orbits are born.
From (1) to (3) the unstable manifolds of x2 touch the stable of x1 and two heteroclinics are born.
In region (4) all six transversal orbits are present.

Finally, let us point out that there exists a homoclinic tangency to a neutral saddle in the
generalized Hénon map (see points NHT in Figure 3.11). This means that GHM, which itself was
derived to study the homoclinic tangency to a neutral saddle, also exhibits this codim 2 bifurcation.
It implies the existence of a fractal bifurcation set near this singularity in the parameter plane.
In particular, we see that the fold and flip curves accumulate on the homoclinic tangency curve,
while strong 1:1 resonances (slowly) approach the corresponding NHT points.

4. Interpretation. Here we discuss the correspondence between the obtained bifurcation
diagrams of the generalized Hénon map and two bifurcations of diffeomorphisms with codim 2
homoclinic tangencies.

4.1. Homoclinic tangency of a neutral saddle in the plane. We begin with a note
on invertibility. The standard Hénon map has the line β = 0 in the parameter plane, which
corresponds to zero Jacobian (i.e., the map is noninvertible). The GHM has no such line in the
parameter plane, but in the phase plane it always has a line of non-invertibility for all α, β. This
line y = β

Rλk = −bc
R γk shifts to infinity as k → ∞. The non-invertibility effects are, therefore,

inaccessible (not observable) in the original map fµ near the codim 2 point (when k is sufficiently
large), which is consistent with the fact that fµ is a diffeomorphism.
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Fig. 3.11. Resonance 1:1 points near a homoclinic tangency for (a) R = −0.1, (b) R = 0.1, indicated by
dots. Resonance 1:2 points are not shown since these lie very close to the 1:1 points. The Neimark-Sacker curves
connecting 1:1 and 1:2 resonances are not visible by the same reason.

The correspondence between parameters (α, β) and (µ1, µ2) is given by the formulas (2.4)
from Section 2. From the second equation in (2.4) follows that in this case µ2 has the asymptotic
form

µ2 =

(

− β

bc

)
1

k

− 1 (4.1)

for k → ∞. Thus, in the (µ2, µ1)-plane we can see only one half of the (α, β)-plane of the GHM,
depending on the sign of bc which is determined by the global map: bc < 0 if the global map is
orientation-preserving, bc > 0 if the global map is orientation-reversing.

4.1.1. Interpretation for fixed k. The relationships (2.4) imply that bifurcations which
occur in GHM at finite values of parameters (α, β) are present in the original map (even infinitely
many times – for every k ≥ k̄) and that the corresponding parameter values (µ1, µ2) tend to
the point (0, 0) as k → ∞. Moreover here we have infinitely many regions in the (µ1, µ2)-plane,
where the bifurcation diagram of the GHM appears in the rescaled coordinates. All these regions
accumulate on the line µ1 = 0.

For all k ≥ k̄ we have the same (rescaled) picture – a “half” of the bifurcation diagram of
the generalized Hénon map that is described in the previous section. Note that in the considered
case the stability type is the same for fixed points of GHM as for the corresponding orbits in the
original planar map. A fixed point of GHM corresponds to a single-round periodic orbit with
period k+n0 of the original map. A cycle of period m corresponds to a cycle of period m(k+n0),
more precisely to a m-round orbit of period m(k+n0), which exactly m times did k iterations near
the saddle (from strip σ0

k to σ1
k) and n0 iterations along the “global” part of homoclinic trajectory

(from strip σ1
k to σ0

k). A closed invariant curve in GHM corresponds to a closed invariant curve
of the k + n0-iterate of the original map (in general, it has k + n0 disjoint components). The
parameters α, β on the curves of homoclinic and heteroclinic tangencies in GHM correspond to
the tangencies of some one-dimensional manifolds of k + n0-periodic orbits.

4.1.2. Interpretation for all periods. If the original diffeomorphism fµ is orientation-
preserving, then λγ > 0 and the global map T1 also preserves the orientation. In this case we

have the accumulation of the fold bifurcation curves t
(1)
k , the flip bifurcation curves f

(1)
k , and

the Neimark-Sacker bifurcation curves n
(1)
k , as well as domains of existence of closed invariant

curves, to the line µ1 = 0 [9]. We denote the strips between the fold and flip curves by Dk.
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These strips also accumulate on the line µ1 = 0. Moreover, we also have the accumulation of
curves of homoclinic tangencies and curves of heteroclinic tangencies of the invariant manifolds of
single-round periodic orbits of saddle type.

When γ > 0, the accumulation on the line µ1 = 0 is monotone (see Figure 4.1(a)).
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Fig. 4.1. Bifurcation curves near the planar neutral tangency when the global map is orientation-preserving.

When γ < 0, the accumulation is non-monotone, so that the curves are located above or below
of the line µ1 = 0 depending on the parity of k (see Figure 4.1(b))5.

If the original diffeomorphism fµ is orientation-reversing, then λγ < 0 and the global map
T1 can either preserve or reverse the orientation, depending on the parity of n0. If T1 preserves

the orientation, we get the described above accumulation of the bifurcation curves t
(1)
k and f

(1)
k

connected by n
(1)
k . If T1 reverses the orientation, we will see no curves n

(1)
k but, instead, the

accumulation of the curves t
(1)
k and f

(1)
k touching at the fold-flip points, as k → ∞ (see Figure

4.2). As above, this accumulation is monotone (Figure 4.2(a)) or non-monotone (Figure 4.2(b)),
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Fig. 4.2. Bifurcation curves near a planar neutral tangency when the global map is orientation-reversing.

depending on the sign of γ. Therefore, the whole bifurcation diagram in the case when fµ reverses
the orientation is a superposition of those sketched in Figures 4.1 and 4.2.

4.2. Generalized homoclinic tangency in R
3. The correspondence between parameters

(α, β) and (µ1, µ2) is given in this case by (2.8) from Section 2. Contrary to the planar case, the
whole (α, β)-plane is projected to (µ1, µ2) in this case. Indeed, from the second equation in (2.8)

5Note that strips in parameter space between t
(1)
k

and f
(1)
k

with different k can intersect when c > 0. It means,
that for some values of parameters (in the intersection of Di and Dj) two single-round periodic orbit of different
period can coexist. Moreover, these coexisting orbits can have different type of stability.
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follows the linear asymptotic correspondence between µ2 and β in this case, namely

µ2 = − β

c1(λ1γ)k
(4.2)

for k → ∞.
Recall that in this case the GHM is obtained via the reduction to a stable two-dimensional

invariant center manifold. Therefore a stable point(invariant curve) in GHM corresponds to a
stable orbit(invariant curve) of the 3D-diffeomorphism, but a completely unstable point (unstable
invariant curve) in GHM corresponds to a saddle orbit (saddle invariant curve) in the original
diffeomorphism. Further interpretation is similar to the case of the planar neutral tangency. In
particular, the bifurcation curves and regions accumulate on µ1 = 0. See Figure 4.3.
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Fig. 4.3. Accumulation of bifurcation curves in the 3-dimensional case: (a) γ > 0; (b) γ < 0.

5. Discussion. In this paper we gave a rather detailed characterization of the bifurcation
structure of the generalized Hénon map (1.3). This allowed us to establish new facts about the
codim 2 homoclinic tangencies. To the best of our knowledge, the following results are new:

1. The nondegeneracy of codim 1 and 2 bifurcations of fixed points in (1.3), including all
strong resonances, is verified analytically by computing the corresponding normal form
coefficients.

2. Accumulation of fold and flip bifurcation curves on heteroclinic tangencies is observed
numerically.

3. Cascades of nondegenerate 1:2 resonances of k-cycles are found in GHM.
4. It is shown that GHM itself has a homoclinic tangency of a neutral saddle.
5. The above bifurcation phenomena are interpreted in terms of the original maps with the

codim 2 homoclinic tangencies. In particular, infinite cascades of homoclinic tangencies
of neutral saddles are predicted.

Below we provide some additional comments on these issues.
The accumulation of fold and flip bifurcation curves on the homoclinic tangency curve was

first proved in [8] (see Appendix). It is not guaranteed that all fold curves originating from
n(1) at weak resonance points have to approach the homoclinic tangency curve. However, the
fold curves in GHM (originated at n(1)) indeed look as if they all approach the corresponding
homoclinic tangency curves hom1 and hom2. It seems that the 1

q -resonant periodic orbits are

exactly the single-round orbits of period q, which exist near homoclinic tangency (see Section 2 for
more details). It would be very interesting to explain the correspondence between 2-round (and
more round) orbits near the homoclinic tangency and orbits of the original map. There are some
topological arguments which do not allow to associate directly 2

q -resonant orbits with 2-round
periodic orbits.

The accumulation of nondegenerate 1:2 resonancesR2(k) is an interesting phenomenon waiting
for its analysis. Since its first observation in a periodically forced prey-predator model [24] it has
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been shown to exist in various dynamical systems but the progress in its theoretical understanding
is very slow. The generalized Hénon map (1.3) seems to be the most tractable model to study this
phenomenon. Indeed, for S = 0 and small R, all 1:2 resonance points are located near the line
β = 1, where the standard Hénon map is area-preserving (conservative).

Our numerical analysis demonstrated that the double homoclinic tangency point DHT moves
to the half-plane β < 0 for both positive and negative small values of R 6= 0 (see Figure 3.9(b)).
This implies that such codim 2 global bifurcations will not be present near the homoclinic tangency
to a neutral saddle, if the considered planar diffeomorphism preserves the orientation. Topological
reasons for this effect are not clear.

We conclude this discussion with numerical evidence that the resonances 1:1 and 1:2 indeed
accumulate to NHT as sketched in Figure 4.1. Note that we see only one half of the parameter
plane. Figure 3.11 shows bifurcation curves for orbits with relatively high period together with
strong resonances. Figure 3.11 shows that the 1:1 resonance points with periods ≥ 10 lie practically
either on hom1 (a) or on hom2 (b). However, according to Section 4.2, these resonance points
must converge to the NHT point. This is not very evident from the figure, since even the 1:1
points of period 14 (picture (a)) or period 11 (picture (b)) are rather far from the NHT points.
Fortunately, this is not a contradiction with the theory. Indeed, from (2.4) in Section 2.1.2 follows
that the 1:1 resonance point of period k lies, on the parameter plane, at a distance of order of
O(γ−k) from the curve of the homoclinic tangency, where γ is the unstable multiplier of the saddle,
while the distance from this 1:1 point to the NHT point is only of order O( 1

k ) . To see this, recall

that (4.1) implies that the 1:1 resonance k-point has the coordinate µ2 ∼ ( 1
−bc )

1

k − 1 ∼ 1
k ln( 1

−bc ).
Thus, such points are exponentially close to the corresponding homoclinic tangency curve but only
polynomially close to the NHT point. These two very different asymptotics are clearly visible in
Figure 3.11.
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6. Appendix: Homoclinic bifurcations of codimension 1. We give here a simplified
derivation of the well-known results by Gavrilov-Shilnikov [9] using modern rescaling techniques.

Consider a generic one-parameter family fµ of planar Cr-diffeomorphisms close to a diffeo-
morphism f0 with a quadratic homoclinic tangency of a saddle fixed point, whose saddle quantity
σ is assumed to be not equal to one (say, σ < 1).

For such families the following classical result is valid [9]: There is a countable set of values

µ = µ+
k and µ = µ−

k accumulating on µ = 0 as k → ∞, corresponding to the birth of saddle and

stable single-round (k + n0)-periodic orbit at µ = µ+
k and to the period-doubling of such orbit at

µ = µ−
k .

As explained in Section 2, the first-return map is constructed as the composition of two maps:
global T1 and local T k0 .

For the local map it is known [12] that its kth-iterate T k0 can be represented for all sufficiently
small |µ| in the form

x1 = λk(µ)x0(1 + γ̂−kξk(x0, y1, µ)) ,
y0 = γ−k(µ)y1(1 + γ̂−kηk(x0, y1, µ)) ,

(6.1)

where γ̂ = max{|λ(µ)|−1, |γ(µ)|} and functions ξk and ηk with their derivatives up to and including
order r − 2 are uniformly bounded in k, and that ξk and ηk with their derivatives up to and
including order r − 1 tend to 0 as k → ∞. In some sense the iterations of T0 are asymptotically
close to the iterations of its linear part. Note that the local map is written in the “cross-form”
(x1, y0) → (x0, y1), not as (x0, y0) 7→ (x1, y1). This construction, that can be traced back to
Jacobi, is referred to in homoclinic studies as the Neimark-Shilnikov variables.
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The global map T1 is taken in the general form

x̄0 − x+(µ) = G(x1, y1, µ),
ȳ0 = F (x1, y1, µ).

(6.2)

Using the geometric properties of the quadratic homoclinic tangency, we can write (6.2) as

x̄0 − x+ = ax1 + b(y1 − y−) + · · · ,
ȳ0 = µ+ cx1 + d(y1 − y−)2 + f11x1(y1 − y−) + · · · , (6.3)

where only essential quadratic terms are displayed6. Taking into account (6.1) and (6.3), the
first-return map takes the form

x̄0 = x+ + aλkx0 + b(y1 − y−) + · · · ,
γ−kȳ1 = µ+ cλkx0 + f11λ

kx0(y1 − y−) + d(y1 − y−)2 + · · · . (6.4)

Then, we make the following coordinate shift

x0 − x+ 7→ x, y1 − y− 7→ y, (6.5)

and an additional “small” shift

x 7→ x+
bf11
2d

λk, y +
f11x

+

2d
λk 7→ y. (6.6)

This “kills” the constant term in the first equation and the term linear in y in the second
equation, so that (6.4) becomes:

x̄ = by + · · · ,
γ−kȳ = µ− γ−ky− + cλkx+ + cλkx0 + f11λ

kxy + dy2 + · · · . (6.7)

After the final rescaling

x 7→ − b

d
γ−kX, y 7→ −1

d
γ−kY, (6.8)

(6.7) is transformed into
(

X
Y

)

7→
(

Y
α+ bc(λγ)kX − Y 2

)

+O(λk), (6.9)

where

α = −dγ2k(µ− γ−ky− +O(λk)). (6.10)

When k → ∞, we obtain the standard Hénon map (1.2) with a small Jacobian −bc(λγ)k (recall
that σ = |λγ| < 1). Note that even though x and y are small, the rescaled variables X and Y
cover a large range.

Since the standard Hénon map exhibits the fold and flip bifurcations, infinite sequences of such
bifurcations should exist for the family fµ. Indeed, for (6.9), fold and flip bifurcations happen at

α+
k = −1

4
+O(λk), α−

k =
3

4
+O(λk),

respectively (see, for example, Proposition 3.1). Relation (6.10) implies the existence of two
infinite sequences of bifurcation parameter values:

µ+
k = γ−ky− − 1

4d(0)
γ−2k + o(γ−2k), µ−

k = γ−ky− +
3

4d(0)
γ−2k + o(γ−2k),

accumulating on µ = 0 as k → ∞.

6The dependence of x+, y−, a, b, c, d, and f11 on µ is not indicated to simplify notation.
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