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The problem of optimally estimating an unknown unitary quantum operation with the aid of
entanglement is addressed. The idea is to prepare an entangled pair, apply the unknown unitary
to one of the two parts, and then measure the joint output state. This measurement could be an
entangled one or it could be separable (e.g., measurements which can be implemented with local
operations and classical comunication or LOCC). A comparison is made between these possibilities
and it is shown that by using nonseparable measurements one can improve the accuracy of the
estimation by a factor of 2(d + 1)/d where d is the dimension of the Hilbert space on which U acts.

PACS numbers: 03.67.-a

I. INTRODUCTION

Consider a one-qubit unitary gate, the following ques-
tion arises: “how to characterize it?” This question is
motivated by recent experiments in quantum optics [1].
A possible approach is to prepare many known states and
use them as inputs, and then measure the outputs that
they produce; this is known as quantum process tomogra-
phy [2]. It turns out that one needs as inputs a basis of
the Hilbert space plus some linear combinations thereof.
The disadvantage of this approach is that, in many prac-
tical situations, such a set of states is not feasible in the
laboratory [1].

Another strategy is described in Refs. [1, 3, 4]. It is
enough to use a single bipartite entangled state; one of
the states is used as input for the quantum operation and
nothing is done to the other one, then the two qubits are
measured, as shown in Fig. 1.
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FIG. 1: The use of a single entangled input state suffices.

In Ref.[1] it is pointed out that in this setup there is a
one to one correspondence between the quantum opera-
tion and the joint output state. A maximally entangled
state is used as input and then the three components of
the spin in both output particles are measured. One can
ask whether it is possible to find a more accurate mea-
surement. Also, is it possible to find a measurement that
performs as well as the one in Ref. [1] which has less out-
comes? It will turn out that the answer is that one can
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find a more accurate measurement but this measurement
is nonseparable. It is also possible to find a measurement
with less outcomes.

In Ref. [3] it is proven that a maximally entangled
pure state is a good input state in the sense that if |φ〉 ∈
C2 ⊗ C2 is maximally entangled, then

∀ ρ on C2 ⊗ C
2, Hρ(θ) ≤ H|φ〉〈φ|(θ)

where Hρ(θ0) is the quantum Fisher information matrix
(QFI) for the joint output state, at θ = θ0, if the input
state is ρ. This quantity is defined for example in Ref.
[5] and explained in more detail in the following section.
The inverse of this matrix is a lower bound (quantum
Cramér-Rao bound or QCRB) for the mean-square er-
ror of estimators based on arbitrary measurements of the
output state. A maximally entangled state is a good in-
put also in the sense that the QCRB can be achieved if
and only if the input state is maximally entangled. The
problem here is that, as will be shown later, the mea-
surement that achieves the bound is actually a basis of
projectors onto maximally entangled states. This mea-
surement can be performed using nonlinear optics but is
far from being standard.

But perhaps the improvement in the estimation
through the use of entangled measurements is not very
large. Are entangled measurements worth the trouble?
The main aim of this paper is to show that the answer
to this question is positive. The value of entangled mea-
surements will be quantified precisely.

Before continuing with this discussion it is necessary to
explain what is meant with “better” and “best” and how
the quality of different positive operator valued measures
or POVMs is actually going to be quantified.

II. QFI, FISHER INFORMATION, AND QCRB

A. Quantum Fisher information

Suppose that the quantum state density matrix σ on
Cd is parametrized by θ ∈ Θ ⊂ R

p where p is the number
of parameters (less than or equal to d2 − 1 for mixed
states, 2d − 2 for pure states). In our case σ would be
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the joint output state. Define the symmetric logarithmic
derivatives λ1, . . . , λp as the self-adjoint operators that
satisfy

σ,i(θ) = ∂θi
σ(θ) = 1

2 [σ(θ)λi(θ) + λi(θ)σ(θ)].

For pure states, σ = |ψ〉〈ψ|, they simply are λi = 2σ,i.
The QFI is defined as the p× p matrix with elements

Hij(θ) = Re tr [σ(θ)λi(θ)λj(θ)]

which for pure states reduces to

Hij(θ) = Re〈li(θ)|lj(θ)〉

where |li(θ)〉 = λi(θ)|ψ(θ)〉.

B. (Classical) Fisher information

Take a POVM with elements M1, . . . ,Mn. The Fisher
information matrix (FI) for this measurement is the p×p
matrix with elements

Iij(M, θ) =
n∑

ξ=1

tr[σ,i(θ)Mξ] tr[σ,j(θ)Mξ]
tr[ρ(θ)Mξ]

.

For an estimator θ̂ and a measurement M , locally unbi-
ased at θ0 1, the (classical) Cramér-Rao bound is satisfied

V (M, θ0, θ̂) ≥ I(M, θ0)−1,

i.e., the FI is the smallest variance that a locally unbiased
estimator based on this measurement can have. This also
means that if one of the eigenvalues of I is zero, then the
variance of the function of the parameters correspond-
ing to that eigenvalue is infinity and therefore cannot be
estimated.

If one has N copies of the quantum state and performs
the same measurement on each of the copies then the
FI of the N copies, IN , satisfies IN (M, θ) = NI(M, θ)
where I(M, θ) is the FI of one system. It follows that

V N (M, θ0, θ̂) ≥ IN (M, θ0)−1 = I(M, θ0)−1/N.

It is a well known fact in mathematical statistics that
the maximum likelihood estimator (MLE) in the limit
of large N is asymptotically unbiased and saturates the
classical Cramér-Rao bound. Moreover no other reason-
able estimator (unbiased or not) can do better.

1 This means that the expectation of the estimator satisfies

EM,θ0 (θ̂i) = θ0i and ∂θj EM,θ(θ̂i)


θ=θ0
= δij .

C. QCRB

The QCRB states that for any measurement M

I(M, θ) ≤ H(θ). (1)

In other words, H(θ)− I(M, θ) is a positive semidefinite
matrix.

This bound is not achievable in general. A theorem due
to Matsumoto [6] states that for pure states, the bound
is achievable at θ = θ0 if and only if

Im〈li(θ0)|lj(θ0)〉 = 0. (2)

Furthermore, if condition (2) holds, there is a measure-
ment with p+ 2 elements that achieves the bound.

In analogy with [7], measurements will be compared
using the quantity

trH(θ)−1I(M, θ)

which is always less than or equal to p, the number of
parameters. For example, for the measurement used in
[1], trH−1I = 1.

One needs to use a quantity like this because of the
extra complexity that quantum theory adds to the prob-
lem. Namely, in the most general case there is no
POVM that achieves equality in (1). Typically, for any
POVM M1 which cannot be improved, one can find an-
other POVM M2 such that neither I(M1, θ) ≤ I(M2, θ)
nor I(M1, θ) ≥ I(M2, θ) are satisfied. The bound (1)
is sharp, i.e., H(θ) is the smallest matrix larger than
I(M, θ) for every M . The difficulties can be overcome by
using a single number (instead of a matrix) to quantify
the performance of a POVM. This defines an achievable
bound and any two POVMs can be compared according
to this quantity. Of course, no single number can be an
absolute quantification of the performance of a POVM. In
applications one must decide what one wants to estimate
and accordingly assign weights to the mean square error
of the parameters to be estimated. This comes down to
using a quantity such as trG(θ)I(M, θ). One needs to
maximize this quantity for a general2 G(θ) ≥ 0 tailored
to one’s specific needs. In this paper the general problem
is not solved. Only the caseG(θ) = H(θ)−1 is considered.
There are several good reasons for this choice:

1. Since H(θ) is the smallest upper bound for all the
I(M, θ), it defines a natural scale in which to com-
pare them.

2. trH(θ)−1I(M, θ) is parametrization invariant.

2 This quantity still has the property that if the inequality
trG(θ)I(M1, θ) > trG(θ)I(M2, θ) holds, then I(M1, θ) ≮
I(M2, θ).
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3. H(θ) is closely related to the fidelity between true
and estimated output states: the metric generated
by H(θ) is locally identical (up to a factor of 4) to
the Bures distance, dBures(ρ, σ)2 = 2(1−

√
F(ρ, σ)),

where F is he fidelity, which for pure states can be
defined as F(|ψ〉〈ψ|, |φ〉〈φ|) = |〈ψ|φ〉|2.

4. Finally, the use of this quantity allows one to obtain
simple and striking results.

III. THE CASE d = 2

A. Entangled measurements

In [3] it was shown that in this case the best input is
any maximally entangled state. Here the singlet state
|τ〉 = [|10〉 − |01〉]/

√
2 will be used. The output is

then |ψ(α, θ, φ)〉 = [U(α, θ, φ]⊗ 1)|τ〉 where U(α, θ, φ) =
cosα 1+i sinα ~nθφ ·~σ is a 2×2 unitary matrix, ~nθφ is the
unit vector (sin θ cosφ, sin θ sinφ, cos θ) parametrized by
its polar coordinates, and ~σ = (σ1, σ2, σ3) are the Pauli
matrices.

It is quite straightforward to calculate that the QFI is

H(α, θ, φ) = 4

 1 0 0
0 (sinα)2 0
0 0 (sinα sin θ)2


and as expected Im〈li(α, θ, φ)|lj(α, θ, φ)〉 = 0. One can
find a simple measurement that achieves the bound; in
fact, any measurement of the type

Mα = |bα〉〈bα| α = 1, . . . , p+ 1,

Mp+2 = 1−
m+1∑
α=1

Mα,

|bα〉 =
p+1∑
β=1

oαβ |mβ〉,

|mk〉 =
∑

l

(H−1/2)kl|ll〉, |mp+1〉 = |φ〉,

(3)

with o a (p+1)×(p+1) real orthogonal matrix satisfying
oα,p+1 6= 0 achieves the bound. For example measuring
the Bell basis

MBell
1 =

|00〉 − |11〉√
2

〈00| − 〈11|√
2

,

MBell
2 =

|00〉+ |11〉√
2

〈00|+ 〈11|√
2

,

MBell
3 =

|01〉+ |10〉√
2

〈01|+ 〈10|√
2

,

MBell
4 =

|01〉 − |10〉√
2

〈01| − 〈10|√
2

(4)

achieves I(MBell, θ) = H(θ) for all θ and therefore satis-
fies

trH−1(θ)I(MBell, θ) = 3 (5)

everywhere; this is three times the value achieved in [1].
This measurement, which has been implemented using
non-linear optics [8], is not widely available in quantum
optics labs. On the other hand, a POVM with the two
components

M1 = MBell
k ,

M2 = 1−MBell
k

(6)

for k = 1, 2, 3 or 4 has been implemented with linear op-
tics and is much more standard than measuring the whole
basis. This is a POVM with only two outcomes (which
might be an advantage for its practical implementation)
and calculation shows that it satisfies trH−1I = 1 ev-
erywhere, which is as good as the measurement in [1].
It will be shown in the next section that it is actually
as good as any separable measurement (in terms of the
value of trH−1I). This measurement does have a serious
drawback, namely that one can only identify one func-
tion of α, β and φ. The drawback can be overcome, for
example, by measuring (6) for k = 1, 2 and 3 each in one
third of the available copies. In this way one is able to
identify all three parameters, trH−1I = 1 is still satis-
fied, and finally this new POVM should not be harder to
implement than the previous one. Again here everything
depends on what one wants to estimate.

A measurement with three elements

M1 = MBell
k ,

M2 = MBell
l ,

M3 = 1−MBell
k −MBell

l

(7)

for some k 6= l has also been implemented with linear
optics. In fact, it has been shown [9] that, with linear
optics, this is the best one can do. This POVM sat-
isfies trH−1I = 2. This is twice the value that can be
achieved with any separable measurement. Note that this
measurement has the same weakness as the previous one:
it cannot identify all three parameters (it identifies two
functions of α, θ and φ). It is easily possible to overcome
this difficulty in a similar way as before.

B. LOCC measurements

How well can one estimate U using only LOCC meas-
urements: measurements that can be implemented lo-
cally and with the aid of classical communication be-
tween the two parties. In fact, to begin with, the larger
class of separable measurements will be studied: mea-
surements whose elements are positive combinations of
products of one dimensional projectors. This definition
of “separable” is a slight generalization of that of [10],
where it was shown that there exist separable measure-
ments which are not LOCC. Nonseparable measurements
are called entangled.

Consider a separable POVM with elements Mξ =∑
i cξi(|ψA

ξi〉 ⊗ |ψB
ξi〉)(〈ψA

ξi| ⊗ 〈ψB
ξi|). One can refine this
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POVM to obtain another POVM with elements that
are proportional to one-dimensional projectors Mξi =
cξi(|ψA

ξi〉 ⊗ |ψB
ξi〉)(〈ψA

ξi| ⊗ 〈ψB
ξi|). By relabeling ξ i → ξ

one obtains

Mξ = cξ(|ψA
ξ 〉 ⊗ |ψB

ξ 〉)(〈ψA
ξ | ⊗ 〈ψB

ξ |). (8)

The Fisher information corresponding to this refined
POVM is greater than or equal to the Fisher information
of the original POVM. Thus, since one wants to maximize
the FI, one may restrict oneself to measurements of the
type described in Eq. (8).

For the calculations that follow it is more convenient
to express Eq. (8) using the Pauli matrices

Mξ = cξ
1+ ~aξ · ~σ

2
⊗ 1+~bξ · ~σ

2

with |~aξ| = |~bξ| = 1 and cξ > 0. The condition
∑

ξ Mξ =
1 can be rewritten as follows:∑

ξ

cξ = 4,
∑

ξ

cξ~aξ = 0,

∑
ξ

cξ~bξ = 0,
∑

ξ

cξaξkbξl = 0.
(9)

Since

|10〉 − |01〉√
2

〈10| − 〈01|√
2

=
1
4

(
1⊗ 1−

3∑
i=1

σi ⊗ σi

)
the density matrix of the system can be written as

ρ(α, θ, φ) =
1
4

(
1⊗ 1−

3∑
i=1

U(α, θ, φ)σiU
†(α, θ, φ)⊗ σi

)
.

The probabilities are then

pξ =
cξ
4

1−
3∑

i,j=1

bξiaξj
tr (UσiU

†σj)
2


and 1

2 tr (UσiU
†σj) can be calculated to be

cos 2α δij − sin 2α
3∑

k=1

εijknk + 2 sin2 α ninj .

Substituting this into the expression for the probabilities
one gets

pξ =
cξ
4

(
1− cos 2α (~aξ ·~bξ) + sin 2α (~bξ × ~aξ · ~n)

−2 sin2 α (~n · ~aξ)(~n ·~bξ)
)
.

(10)

After some not very interesting manipulations one finds

1
pξ

(
(pξ,α)2

4
+

(pξ,θ)2

4 sin2 α
+

(pξ,φ)2

4 sin2 α sin2 θ

)
=
cξ
4

(
1 + cos 2α (~aξ ·~bξ)− sin 2α (~bξ × ~aξ · ~n)

+2 sin2 α (~n · ~aξ)(~n ·~bξ)
)
.

(11)

Finally, using the conditions (9) one obtains that for sep-
arable measurements of the type (8)

tr [H−1(θ)I(M, θ)]

=
∑

ξ

1
pξ

(
(pξ,α)2

4
+

(pξ,θ)2

4 sin2 α
+

(pξ,φ)2

4 sin2 α sin2 θ

)
= 1.

(12)

Any separable measurement can be refined to a mea-
surement of the type (8). Therefore for all separable
measurements Msep

trH(θ)−1I(Msep, θ) ≤ 1.

This bound therefore also holds for LOCC measurements.
Since there are LOCC measurements of the type (8), the
bound is achievable with LOCC measurements.

IV. THE CASE d > 2

A. Entangled Measurements

Before starting with any calculations it will be shown
that the quantity that is being analyzed

f(θ) = sup
M

trH−1(θ)I(θ,M)

does not depend on θ.
For any θ1 and θ0 there exists a unitary matrix V such

that V U(θ0) = U(θ1). It is easy to see that for such a
choice

trH−1(θ1)I(θ1, (V ⊗1)M(V ⊗1)†) = trH−1(θ0)I(θ0,M)

This implies that

sup
M1

trH−1(θ1)I(θ1,M1) ≥ sup
M0

trH−1(θ0)I(θ0,M0).

Thus f(θ1) ≥ f(θ0), but since θ0 and θ1 are arbitrary, the
function f must be constant. Therefore one can choose
any value of the parameter to perform the calculations.
One of the implications this has is that if one proves
that the QCRB can (not) be achieved at one value of
the parameter, then it can (not) be achieved everywhere
(anywhere).

In [3] it is mentioned that in dimension d > 2, it is
no longer true that a maximally entangled state maxi-
mizes the QFI; however it is still true that the QCRB is
achieved if and only if the input state is maximally en-
tangled. In order to prove the first statement it is enough
to find a counter example. This is not difficult to do for
example in d = 3. The second statement is also not dif-
ficult to prove and because of the last discussion it will
be enough to do it for U equal to the identity.

A SU(d) matrix can be written as exp
(
i
∑d2−1

α=1 θαTα

)
.

Here θ ∈ Rd2−1 and the T ’s are in the su(d) Lie Algebra.
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They are traceless self-adjoint matrices and are chosen so
that they also satisfy:

tr(TαTβ) = δαβ .

For U close to the identity (or θ close to zero),

U ≈ 1+ i
d2−1∑
α=1

θαTα

the input state can be written as
∑

kl Rkl|kl〉. Normal-
ization implies trRR† = 1 where R is the d × d matrix
with elements Rkl. Since RR† has trace one and is self-
adjoint it can be written RR† = 1/d +

∑
α tαTα where

the t’s are real numbers. At the identity the output state
satisfies

|ψ〉 =
∑
kl

Rkl|kl〉,

|ψ,α〉 = i
∑
kl

RklTα|k〉 ⊗ |l〉;
(13)

the |lα〉 vectors defined in section II can be written as

|lα〉 = 2(|ψ,α〉+ 〈ψ,α|ψ〉|ψ〉)

and the condition for achieving the QCRB (2) becomes

Im〈lα|lβ〉 = 4 Im〈ψ,α|ψ,β〉 =
2 tr(RR†[Tα, Tβ ])

i
= 0(14)

for all α and β. This implies RR† = 1/d 3. This means
that the input state is maximally entangled 4.

For the calculations the maximally entangled state,∑d
k=1 |kk〉/

√
d, is used. H can be very easily calculated

to be

Hαβ =
4
d
δαβ . (15)

Since the QCRB can be achieved

sup
M

trH−1(θ)I(M, θ) = d2 − 1.

B. LOCC measurements

It will be shown here that for all separable measure-
ments Msep the following holds

trH−1(θ)I(Msep, θ) ≤
d(d− 1)

2
. (16)

3 Since (RR† − 1/d) ∈ su(n) and su(n) is a perfect Lie algebra
(i.e. can be spanned by commutators), Eq. (14) may be rewritten

as ∀Y ∈su(n) tr[(RR† − 1/d)Y ] = 0, this implies RR† − 1
d

= 0
because the trace form is non-degenerate.

4 The condition for a bipartite state to be maximally entangled is
that the partial trace should be proportional to the identity. In
our case tr2 |ψ〉〈ψ| = RR†.

This shows that if one allows nonseparable measure-
ments, the estimation can be improved by a factor of
2(d+1)/d with respect to separable measurements. This
is always more than twice.

In order to prove Eq.(16) a particular representation
for the T ’s will be chosen, namely:

Tkls = is
|k〉〈l|+ (−1)s|l〉〈k|√

2
k > l, s = {0, 1},

Tm =
d∑

k=1

cmk|k〉〈k| m = 1, . . . , d− 1,
(17)

where the coefficients cmk obey

d∑
k=1

cmk = 0,

d∑
k=1

cmkcnk = δmn.

(18)

From these two one can derive the relation

d−1∑
m=1

cmkcml = δkl −
1
d
. (19)

Measurements of the form

Mξ = cξ|φξ〉〈φξ| = cξ|aξ〉〈aξ| ⊗ |bξ〉〈bξ|

are considered. The quantity of interest is

trH−1I =
d

4
tr I

=
d

4

∑
ξα

cξ
(〈φξ|ψ,α〉〈ψ|φξ〉+ 〈φξ|ψ〉〈ψ,α|φξ〉)2

|〈φξ|ψ〉|2

=
d

2

∑
ξ

cξ

Re

 〈ψ|φξ〉
〈φξ|ψ〉

d2−1∑
α=1

〈φξ|ψ,α〉2


+
d2−1∑
α=1

〈φξ|ψ,α〉〈ψ,α|φξ〉

 .

(20)

The second term in the previous equation is easy to cal-
culate,

d

2

∑
ξ

cξ

d2−1∑
α=1

〈φξ|ψ,α〉〈ψ,α|φξ〉 =
d

2

d2−1∑
α=1

〈ψ,α|ψ,α〉

=
d

2

d2−1∑
α=1

trT 2
α

d
=
d2 − 1

2
,

(21)

but for the first term a little more work will be needed.
One needs to calculate

〈φξ|ψ,α〉 =
i√
d

d∑
k=1

〈aξ|Tα|k〉〈bξ|k〉.
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For α = {kls}

〈φξ|ψ,kls〉 =
is+1

√
2d

[〈aξ|k〉〈bξ|l〉+ (−1)s〈aξ|l〉〈bξ|k〉],

1∑
s=0

〈φξ|ψ,kls〉2 = −2
d
〈aξ|k〉〈bξ|l〉〈aξ|l〉〈bξ|k〉.

(22)

Since the last expression is symmetric with respect to
exchanging k with l,

∑
k>l = 1

2

∑
k 6=l = 1

2 (
∑

kl −
∑

k=l)
and

∑
k>l

1∑
s=0

〈φξ|ψ,kls〉2 =
1
d

d∑
k=1

〈aξ|k〉2〈bξ|k〉2 − 〈φξ|ψ〉2.

In the case α = m

d−1∑
m=1

〈φξ|ψ,m〉2

= −1
d

d∑
k,l=1

d−1∑
m=1

cmkcml〈aξ|k〉〈bξ|k〉〈aξ|l〉〈bξ|l〉

=
1
d

∑
kl

(
1
d
− δkl)〈aξ|k〉〈bξ|k〉〈aξ|l〉〈bξ|l〉

=
1
d
〈φξ|ψ〉2 −

1
d

d∑
k=1

〈aξ|k〉2〈bξ|k〉2

putting things together

d2−1∑
α=1

〈φξ|ψ,α〉2 =
1− d

d
〈φξ|ψ〉2 (23)

and

d

2

∑
ξ

cξ Re

 〈ψ|φξ〉
〈φξ|ψ〉

d2−1∑
α=1

〈φξ|ψ,α〉2


=
1− d

2

∑
ξ

cξ|〈ψ|φξ〉|2 =
1− d

2
.

(24)

Finally, substituting the previous equation and Eq. (21)
in (20) one obtains the desired result, namely, for any
separable measurement M of the type (8)

trH−1(θ)I(M, θ) =
d(d− 1)

2
. (25)

Of course this impliesEq. (16). The argument for LOCC
measurements is the same as for the two dimensional case
and one obtains the same bound for them.

V. CONCLUSIONS AND OPEN PROBLEMS

In this paper it has been shown that by using nonsep-
arable measurements there is a significant improvement
in the accuracy of the estimation of unitary operations.
It is also proven that in d dimensions the QCRB can be
achieved if and only if the input state is maximally entan-
gled. An open problem is the estimation of more general
quantum operations, described by the Kraus decomposi-
tion [2].
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[4] A. Aćin, E. Jané, and G. Vidal, Phys. Rev. A 64, 050302
(2001), quant-ph/0012015.

[5] A. Holevo, Probabilistic and Statistical Aspects of Quan-
tum Theory (North-Holland Publishing, Amsterdam ,
New York , Oxford, 1982).

[6] K. Matsumoto, J. Phys. A 35, 3111 (2002), quant-
ph/9711008.

[7] R. D. Gill and S. Massar, Phys. Rev. A 61, 042312
(2000), quant-ph/9902063.

[8] Y.-H. Kim, S. P. Kulik, and Y. Shih, Phys. Rev. Lett.
86, 1370 (2001), quant-ph/0010046.

[9] J. Calsamiglia and N. Lutkenhaus, Appl. Phys. B: Lasers
Opt. 72, 67 (2001), quant-ph/0007058.

[10] C. H. Bennett et al., Phys. Rev. A 59, 1070 (1999),
quant-ph/9804053.

http://www.arxiv.org/abs/quant-ph/0210210/
http://www.arxiv.org/abs/quant-ph/0012015/
http://www.arxiv.org/abs/quant-ph/9711008/
http://www.arxiv.org/abs/quant-ph/9711008/
http://www.arxiv.org/abs/quant-ph/9902063/
http://www.arxiv.org/abs/quant-ph/0010046/
http://www.arxiv.org/abs/quant-ph/0007058/
http://www.arxiv.org/abs/quant-ph/9804053/

	Introduction
	 QFI, Fisher Information, and QCRB
	Quantum Fisher information
	(Classical) Fisher information
	QCRB

	The case d=2
	Entangled measurements
	LOCC measurements

	The case d>2
	Entangled Measurements
	LOCC measurements

	Conclusions and open problems
	Acknowledgments
	References

