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Abstract

An Israeli option (also referred to as game option or recall option) gen-
eralizes an American option by also allowing the seller to cancel the op-
tion prematurely, but at the expense of some penalty. Kifer (2000) shows
that in the classical Black-Scholes market such contracts have unique no-
arbitrage prices. In Kyprianou (2002) and Kiithn and Kyprianou (2003)
characterizations were obtained for the price of two classes of Israeli op-
tions. For the general case, we give a dual resp. pathwise pricing formula
similar to Rogers (2002). It offers alternative ways of numerically simulat-
ing the price for more complicated claim structures and leads to candidate

hedging strategies for the option.
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1 Introduction

There are few examples of derivatives having the feature that they can be both

exercised by the holder prematurely and recalled by the writer. The most promi-
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nent example are convertible bonds. The holder can convert them into a prede-
termined number of stocks of the issuing firm, and the issuer can recall them,
paying some compensation to the holder. These contracts were approached in
the economic literature for the first time by Brennan and Schwartz (1977) and
Ingersoll (1977a), (1977b). Optimal conversion and call policies were derived.
These approaches are limited however to Markovian claim structures. The first
general analysis of such kind of derivatives, using no-arbitrage arguments in
conjunction with game theory, was made by Kifer (2000). For a practical ex-
ample of a convertible callable bond see McConnell and Schwartz (1986), for an
overview of recent progress in handling convertible bonds see Sirbu, Pikovsky,

and Shreve (2002) and the references therein.

Let us introduce Kifer’s model. Fix some finite time horizon T' € (0, 00).
Suppose that X = {X; :¢ € [0,7]} and Y = {V; : ¢t € [0, T|} are two stochastic
processes, defined on some filtered probability space (Q, F.F = (Ft)tep,m), P),
with values in Ry U {400} and cadlag paths (right continuous with left limits).
We assume that ¥; > X, for all ¢ € [0,7) and Yp = Xp. The filtered probability
space satisfies the usual conditions of right-continuity and completeness.

The Tsraeli option, as introduced by Kifer (2000), is a contract between a
writer and holder at time ¢ = 0 such that both have the right to exercise at any
time before the expiry date T'. If the holder exercises, then (s)he may claim the
value of X at the exercise date and if the writer exercise, (s)he is obliged to pay
to the holder the value of Y at the time of exercise. If neither have exercised
at time T' then the writer pays the holder the amount X7 = Yp. If both decide
to claim at the same time then the lesser of the two claims is paid. But, it
turns out that this marginal case has no impact on the option price as long as
the payoff lies in the interval [X:, Y:]. In short, if the holder will exercise with
stopping time o and the writer with stopping time 7 we can conclude that the

holder receives at time o A 7 the amount

(11) Zo T = XU]'(O'ST) + Y71(1—<q)~

)



In a complete market, with a unique risk-neutral measure P ~ P, Kifer obtained
a unique no-arbitrage price for such contracts.

Suppose that the financial market consists of one riskless and d risky assets,
ie. S = (8% 8% ...,9%, where S' i =0,...,d, are positive locally bounded
semimartingales. To simplify notations we assume w.l.o.g. that S = 1. Put
differently, we work with discounted values with respect to the numéraire S°.

Assume that the market is complete, i.e. there is a unique equivalent measure
[P under which S is a local martingale. This is the situation in the Black-Scholes
model. We shall denote [E to be expectation under P. The following Theorem
is a slight generalization of Kifer’s pricing result. Kifer stated it under the
Black-Scholes model and a slightly stronger integrability assumption. However,
the arguments are based on martingale representation which holds for complete
markets in general, see Theorem 2.1 resp. Theorem 3.3. in Kramkov (1996)
applied to the case that the set of equivalent martingale measures is a singleton.
For a proof of Theorem 1.1 see Kifer (2000) in conjunction with Step 1 of the
proof of Theorem 2.6 in this paper.

Theorem 1.1 Suppose that

(1.2) E( sup Xt> < 0.

te[0,71]

Let T 7 be the class of F-stopping times valued in [t,T]. There is a unique no-
arbitrage price process of the Israeli option. It can be represented by the right
continuous process V.= {V, :t € [0, T} where

Vi = ess-infreT, pess-supoet, 1 B( Zor | Fi)
(1.3) = ess-SupyeT, pess-infreT, 2B ( Zo 2| Fr)
t.e. Vi is the dynamic value of a Dynkin game. Further, if Y has no positive
gumps and X has no negative jumps then optimal stopping strategies exist and
are given by
(1.4) of =inf{set,T]:V, < X,} and 77 —inf{sec[t,T]:V, >Y,}

for allt €10,77.



Remark 1.2 In incomplete markets no-arbitrage arquments alone are not suf-
ficient to determine unique derivative prices. An established approach to price
derivatives in incomplete markets is by utility (indifference) arguments. For
American and Israeli options this was done in Kallsen and Kihn (2003). It
turns out that the “fair price” of an Israeli option is again the value of a Dynkin
game. The unique equivalent martingale measure P in (1.3) is replaced by a well-
chosen so-called neutral pricing measure P* ~ P which plays a crucial role in
utility mazimization, see Kallsen and Ktuhn (2003). Therefore, the results of
this paper can be used in the same manner to simulate (utility based) option

prices in incomplete markets.

Although in special cases the optimal stopping problem in (1.3) can be solved
explicitly (see Kithn and Kyprianou (2003) for the Israeli put option and the
Israeli-Russian option), in general, analytical methods are virtually out of the
question. Clearly one should not expect to be in any a better position than
when posing the same question for American claims. Consider for example, for

large d € N, an American option with contingent claim of the form
- : 1 dyt
(K —min{S},..,S{})".

Trying to characterize free boundary problems for such an option can also be
a problem because of the high dimensionality. For such cases, Rogers proposes
to work via a dual pricing formula which inspires a different outlook when it

comes to simulation.

The goal of this paper is to produce a dual representation of the price of an
Israeli option which could in the same way be used for Monte Carlo simulation
as Rogers’ contribution on American options. American claims are covered in
this paper by setting ¥; = oo for ¢ € [0,7) since we only need an integrability
assumption for the lower bound X. We made the following observation which
can help when it comes to simulation. Let us interpret the stopping game in

1.3) no longer as a stochastic but as a deterministic stopping game, by choosin
. g pping g , DY g



the optimal exercise strategies for each path w € Q separately. This represents
the hypothetical situation where all information about future price movements
of the underlyings are available at the very beginning. Instead of the payoff
function 7, ; as defined in (1.1) we consider 7, ;(w) — M}, (w) where M* is a
martingale which will be characterized later on. In the complete market M*
corresponds to the gain process generated by a hedging strategy. Tt turns out
that the values of these stopping games coincide P-a.s. with Vg, the price of
the TIsraeli option, see Theorem 2.9. Therefore, with the right martingale M™* it
is possible to attain the exact option price by the simulation of a single sample
path. Together with Theorem 2.12, which provides estimations in the case of a
simulation with a wrong martingale M # M*, this is the main contribution of
this paper.

Cvitanié and Karatzas (1996) established a connection between the value of
a Dynkin game, i.e. a stochastic stopping game as it arises in Theorem 1.1, and
the solution of a backward stochastic differential equation with reflection. In this
framework they also construced a corresponding deterministic stopping game,
i.e. a game played path by path. However, their pathwise obtained values
of the deterministic stopping games are still stochastic and coincides only in

expectation with the value of the stochastic stopping game.

2 Representations of the Israeli option price

Throughout the whole paper we assume that X satisfies the integrability con-
dition (1.2).

Remark 2.1 We do not need that sup,¢q 7y Xt € LF(P) for some p > 1 as it
is assumed in Rogers (2002). In addition, we state our duality result, Theo-
rem 2.12, for all martingales vanishing at zero, not assuming that the pathwise

supremum of the martingale is integrable.

Firstly we need a couple of notations. They are rather voluminous. Primarily,

this is the price for capturing the case of discontinuous payoff processes.



Definition 2.2 A stochastic process U = (Ut)iejo,r) 15 said to be of class (D)
if {Ur | 7€ Tor} is uniformly integrable.

Definition 2.3 Denote by My the set of martingales vanishing at zero.

In continuation of the usual notations for stopped processes we make the fol-

lowing definition.

Definition 2.4 Let U be a stochastic process, T a stopping time, and D an
F._ -measurable subset of Q (F._ is the o-algebra generated by Fo and by the
sets of the form AN{t < 7}, wheret € (0,T] and A € F;). We denote by UTP
the process U stopped at 7—, if the event D occurs, and at 7, if D does not

occur, i.e.

7,0 __
U™ = Utlper) + UT_l(tZT and weD) + UTl(tzr and w¢D)"

Remark 2.5 If U is a martingale or predictable, then the respective property
also holds for UTP. This can be derived by using e.g. Proposition 1.2.10 in
Jacod and Shiryayev (2003).

Define the stopping times

(2.1) f=inf{s>0 | V; >Y,—¢}, >0, and 7=limr®°.

e—0
The limit 1s well defined as 7° is monotone in €. If Y is lower semicontinuous

from the left (i.e. it has no positive jumps), then 7 = 7*. Analoguously we set

ocf =inf{s >0 | V; < X;+¢}, >0, and E:lin})oﬁ.
£

Let g be the American claim given by the (discounted) payoff process
(@32#: X51(5<:‘:) + Y?_l(?Ss and TELT Va)O) + Y?l(?Ss and 3e>0 S.t. T!:‘F)'

g 1s the payoff process the buyer is faced with — given the optimal exercise
strategy of the seller. Analogously we define the payoff process the seller is
faced with by

(e 33 Xa—l(agt and o°<5 ve>0) + Xﬁl(agt and 3e>0 s.t. 0°=7) +Yil(i<a)-

Let D1 ={r* <7, Ve>0}and Dy = {0 <7, Ve>0}



Theorem 2.6 The process V7'°1 is a supermartingale, the process VZP? is a
. = 5,D = 7,D1 . .
submartingale, and the process (VTVDI)G’ = (V‘”D?)T’ ' is a martingale. It

follows that V7V enjoys a canonical decomposition of the form

(2.4) VT = Vo + M* + A— B,

where

(i) the process M* = {M; :t € [0,T]} belongs to My,

(ii) A= {A; :t €[0,T]} is predictable and non-decreasing such that A™P1 = (.

(iii) B = {B; :t €[0,T]} is predictable and non-decreasing such that B%"2 =
0.

In addition, the Snell envelope of g
vV, = ess-supoeT, 7 B ( go| Ft)

exists as an element of class (D) so that it possesses a Doob-Meyer decomposi-

tion. Analogously, the lower Snell envelope of h
V"= ess-infrer, ;B (e | Fr) .

exists as an element of class (D) and possesses a Doob-Meyer decomposition.

We have Vo =V = V{'. The process (M*)"P1 coincides with the martingale
part in the Doob-Meyer decomposition of V' and (M*)aD2 coincides with the

martingale part in the Doob-Meyer decomposition of V.

Proof. Step 1: Let us show that under assumption (1.2) the Dynkin game
possesses an equilibrium point, i.e. the process V in (1.3) exists. This was proven
by Lepeltier and Maingueneau (1984) (henceforth LM) for bounded payoff pro-
cesses X and Y. However, the existence of an equilibrium point holds also under
the weaker assumption (1.2), as it is shown in Kallsen and Kihn (2003). To
see this assume in the first instance that Y is bounded by a P-martingale M.

W.lo.g. P(Myr > 0) = 1. By applying the statements of LM to the processes



X, = J\);—’t and Y, = % (which have values in [0, 1]), taking the measure P

defined by % = %—z, we obtain the existence of a value process V. On the other

hand, we have for U € {X, Y}, t€[0,7],0 € Ty 1

(0,

-Tt) = MLtF ( MrpU,

1
]—}) = (Uo7

This implies that the value process V for the payoff processes X, Y and the

measure P also exists with V; = M, V. Thus, the following implication holds
(2.5) Y is bounded by a martingale = value process V for (X,Y) exists.

Now, assume only (1.2), instead of ¥ < M, which immediately implies that
X < M, where M is the martingale t — E(supse[O’T] Xs|.7:t). Instead of YV
consider the upper bound ¥ := Y A (1 + M) and let V be the corresponding
value process for the payoff processes X = X and V. As X <Y and Xp = Yr
the value process of this Dynkin game exists by (2.5). Let us show that the

value process V for X and Y also exists and coincides with V. We have
(2.6) Vi < ess-supoer, »B( Xo| Ft) < M.

Consider now the g-optimal recall time of the option seller given by 77 := inf{s >
t | V, > Y, —¢}. By right-continuity we have Vz; > Yz — £. Together with
(2.6) this implies that Yze < 14 M for all € € (0, 1). Therefore, by definition
of Y

(27) T :Y'Ft!’ Ve € (0,])
With this we obtain

ess-SUPy e, ress-infrer, ( Xol<r) +Yrlir<o) | ‘Tt)
> Vi

= lim ess-supoer, r B ( Xol(o<rr) + Yer 1irr <o) | F2)

= lir% eSS—SqueTt’TE<Xo’1(aS‘Ft’) + Yrel(reco) | ft)

£—

(2.8) > ess-inf, 7, pess-supoer, [E ( Xolo<r) + Yrl(r<o) | .7-}) .



The first inequality is by ¥ > Y. The first equality is by Theorem 11 in LM
applied to X and Y and the second equality by (2.7). By (2.8) V exists and
coincides with V.

Step 2: Assumption (1.2) implies that

(2.9) Vi <E| sup X,|F: | < M,
s€ft,T]

where M is defined in Step 1. Tn addition we have

)

Vi < esssuprer, o B( Xo| Ft) + ( Ve_lgecr veso) + Val(aoso st rezr)

29 _
S Mt+MtT7D1

and

V! <E(Yp|F)+E| sup X,|F | <2M,,
s€[0,T]

where the second inequality follows because Yy = Xp. As M and M7P1 are
martingales they are processes of class (D), cf. e.g. Proposition 1.1.46 in Jacod
and Shiryaev (2003). Therefore, V, V', and V" are processes of class (D), which
is of later use for the Doob-Meyer decomposition.

Step 3: Let us show that V7?1 = V/. Fix at € [0, 7T]. On the event {T < ¢}
the assertion is obvious. In the following calculations, we assume that we are

working on the event {7 > t}. By Theorem 11 in LM, we have for ¢ > 0

(2.10) ess-SUPoeT, B ( Zo s

ft)SW—FE,

where 77 = inf{s >t | V, > Y, —¢}. Let § > 0. Again, by Theorem 11 in
LM, we can choose an d-optimal stopping strategy o such that E(g,s|F;) >
ess-SUpgeT, » ( go| Fi) — 3. Let e, | 0 as n 1 co. Possibly after re-definition of
Zs ¢ for s =t (which does not change the value process V'), we have pointwise
convergence of Z,s ren t0 gos as n — 00 (note that 77 = 7~ for sufficiently

small £,). By (2.9) the sequence (Z,s is uniformly integrable so that

VT:n)nEN
Fi) to B gys| Fi) in L'(P). This implies

fn

we have convergence of E(Zos -
1t




P-a.s. convergence on a subsequence (gp, )ren, W.l.o.g. np = k. Together with

)

(2.10) applied to € = &, we obtain

Viter > ess-Supger; oI ( L rek

%)

v

E ( T oh

k—o0

— E(ga5|ft)

> ess-SupoeT, (90| Fi) — 0.

As 6 > 0 was arbitrary this implies V; > ess-supye7, - E(go|F:). For the

opposite estimation we use that, again by Theorem 11 in LM,
(2.11) Vi — e < ess-infrer, B ( Zos - | F2)

where of = inf{s > | Vi, < X;+¢}. On asubsequence (ng)reny we have again
]—'t) to E(g(,: ]—}), w.lo.g. ng = k. We

pointwise convergence of E ( Zoe rom

obtain
Vi—e < essinfrer, ,E(Zps | F)
< B Zosren | Fr)
= (90| 7o)
< esssupoer, r E(g0| Ft), k— oo

Altogether we arrive at

(2.12) Vi =y
Using similar reasoning one can conclude that
(2.13) voPs =y,

As V' is a supermartingale and V' is a submartingale it follows that V7V7 is a

special semimartingale, i.e. it possesses a unique decomposition
V:V0+M*+A—B,

with the properties as stated in the Theorem. The last assertion of the theorem

follows then from (2.12), (2.13), and Remark 2.5. =

10



Remark 2.7 Theorem 2.6 provides a canonical decomposition of the process V
only up to ¢ V 7. For the whole process such a decomposition need not erist,
as V is in general not a semimartingale. For example, V can be deterministic
and possess infinite variation on [0,T]. This is in contrast to American claims

where V' is a supermartingale and hence a semimartingale.

Lemma 2.8 Let I = (Lt):e[o,r] be a positive process such that its Snell-envelope
VL erists as an element of class (D) and let VE = VL + ML 4 AL be the Doob-
Meyer decomposition of the Snell envelope. Then we have

VOL = sup (Ls —MSL), P-a.s.
s€[0,T]

Proof. By L < VI < VI 4+ M the left-hand side is obviously not smaller than
the right-hand side. On the other hand for each ¢ > 0 define the [0, T]-valued
stopping time 7¢ = inf{s > 0 | V,F < L; +¢}. By equation (24) in Fakeev
(1970) we have AL = 0 and therefore L,e — ME >VE ML —e=V] —c =

Theorem 2.9 We have

Vo = sup inf (Zs:— M.
’ sc[0, 7] tE€[0,T] (Zs. n
= inf sup (Zs:— M},,),P-as,
t€[0,T] se[OI,)T] (Zas )

where M™ s the martingale part in (2.4).

Proof. Consider the American contingent claim ¢ defined in (2.2). By The-
orem 2.6 its Snell envelope V' possesses a Doob-Meyer decomposition V' =
Vo + M' + A" with Vj = Vg and M’ = (M*)?VDl. By this and Lemma 2.8 we
obtain

Vo = sup E(g,)

o€Ta,r

2.14 > inf sup (Z,.— M?* P-as.
( Z p , NIE

11



To assure oneself of the last inequality choose t(w) = 7°(w) for all € > 0.
Again, by Theorem 2.6 we know that the lower Snell envelope V" of the process
h defined in (2.3) has a Doob-Meyer decomposition V"' = Uj + M"” — B” with
V' =Vy and M" = (M*)57D2. We obtain as in (2.14)

Vo= inf E(hr)

= inf (hy — M/
tel[%,T]( t t)

‘ : _ * _
(2.15) < seSBI,)T]tEI[%VfT](Zs’t M;.,), P-as.

(2.14) and (2.15) imply the assertion. m

Theorem 2.10 Let M € Mgy and assume that there exists a v € R such that

v = sup inf (Zgy— Msat)
se[0,7]t€[0,T]
(2.16) = inf  sup (Z,4— M,n), P-as.

t€[0,T] 5¢f0,7]

Then v = Vy (The supremum and the infimum in (2.16) can ever be inter-

changed).

Remark 2.11 Theorem 2.9 removes the involvement with stopping strategies
and instead transfers the essence of the pricing problem to a clever choice of a
martingale M. In complete markets the choice of a M € Mg corresponds to a
hedging strategy. With the right martingale M = M* the random variable
(2.17) sup inf (Z5: — Mgae)
se[0,T]t€[0,T]

degenerates to a real number and the option price can be attained by the simu-
lation of a single sample path.

sFrom a practical point of view it remains of course the problem to approz-
tmate M*. Arguably, one has not made things any easier. Theorem 2.10 helps
at least to identify the right M. It says that M 1is the "right” martingale if
and only if the random variable (2.17) is a constant. This can be "checked” by
a Monte Carlo simulation. One way to approrimate M* could be to choose a

finite basis of martingales in My and minimize the empirical variance of the

12



random variable (2.17) over linear combinations of this basis. Rogers argues
that with sensible choices of basis one can do quite well in this respect. For an
effective computation of the dual upper bound we refer the reader to Kolodko
and Schoenmakers (2003). For a general overview on Monte Carlo methods for

American options we refer to Glasserman (2003) and the references therein.

Proof of Theorem 2.10. The interchangeability of supremum and infimum

in (2.16) follows from LM. Assume that

inf  su Ty — Mgpe) =", P-as.
t€[0,7] se[OPT] (Zox )
for some v' € R with v/ # V5. W.lo.g. v > V. We have of course that

sup (gs — ME’DI) > W,
s€[0,7]

where g is defined in (2.2). By X; <V, Vs € [0,7],and Y;’Dl = T?’Dl we have
that ¢ < V71, Remember that V has the decomposition V = Vo+ M*+A—B
with ATP1 = (. This implies
sup (Vo—i—(M*)j’Dl —ME’DI) > sup Vj’Dl —ME’DI)
s€[0,T] s€[0,7]

> sup |gs— Mf’Dl) > Vo, P-as.
s€[0,7]

But this is a contradiction to the fact that (M*)™P1 — M7P1 is a martingale,

cf. Remark 2.5. m

Theorem 2.12 We have

2.1 = inf inf E Zs,r = Mo
(2.18) Vo = nf inf (s:;szﬂ( ’ ”)

= sup sup E( inf (Za,t—Ma/\t)>~
MeMoo€To,r t€[0,7] v

Further, the infimum as well as the supremum are achieved when M 1is chosen

to be M*.

13



Remark 2.13 By choosing an arbitrary pair (7, M) € Tor x Mg and simulat-
g E (supse[n’T] (Zsr — Ms/\r)) we can get an upper bound for Vi and by simu-
lating E(infte[gyT] (Zo — Mo,\t)) with an arbitrary pair (o, M) € Top x My we
obtain a lower bound for V. Of course, to obtain tight estimations we have to
find both a "good” stopping time and a "good” martingale. This corresponds to
the fact that for Israeli options a hedging strateqy consists of a trading strategy

(in the underlyings) and a stopping time.
Proof of Theorem 2.12. By symmetry we have only to show (2.18). For
any (1, M) € Tor x Mg we have that

E( sup (Zs,T - MsAT))

s€[0,7]

> sup E(Zgr — Monr)
o€To,r

= sup E(Z,,).
o€To,T

Taking the infimum over all 7 € 7o 7 this implies that the right-hand side of
(2.18) is at least as big as Vj.

To prove the other direction we take for each € > 0 the stopping time 7°
as defined in (2.1) and the martingale part M* of the Snell envelope for the
American claim with buying back time 7¢. We obtain

()

s€[0,T]

= sup E(Zy )
o€To,r

§V0+5a

where the equality holds by Lemma 2.8 and the inequality by Theorem 11 of
LM. =
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