
NUMERICAL PERIODIC NORMALIZATION FOR CODIM 1

BIFURCATIONS OF LIMIT CYCLES ∗

YU.A. KUZNETSOV† , W. GOVAERTS‡ , E. J. DOEDEL § , AND A. DHOOGE ¶

Abstract. Explicit computational formulas for the coefficients of the periodic normal forms
for all codim 1 bifurcations of limit cycles in generic autonomous ODEs are derived. They include
second-order coefficients for the fold (limit point) bifurcation, as well as third-order coefficients for
the flip (period-doubling) and Neimark-Sacker (torus) bifurcations. The formulas are independent
of the dimension of the phase space and involve solutions of certain boundary-value problems on
the interval [0, T ], where T is the period of the critical cycle, as well as multilinear functions from
the Taylor expansion of the right-hand sides near the cycle. The formulas allow to distinguish
between sub- and super-critical bifurcations, in agreement with earlier asymptotic expansions of the
bifurcating solutions. Our formulation makes it possible to use robust numerical boundary value
algorithms based on orthogonal collocation, rather than shooting techniques, which greatly expands
its applicability. The actual implementation is described in detail. We include three numerical
examples, in which codim 2 singularities are detected along branches of codim 1 bifurcations of limit
cycles as zeroes of the periodic normal form coefficients.
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1. Introduction. Isolated periodic orbits (limit cycles) of smooth differential
equations

u̇ = f(u, α), u ∈ R
n, α ∈ R

m, (1.1)

play an important role in applications. In generic systems of the form (1.1) depending
on one control parameter (i.e., with m = 1) a hyperbolic limit cycle exists for an open
interval of parameter values α. At a boundary of such an interval, the limit cycle
may not exist, degenerating into an orbit homoclinic to an equilibrium or another
nonhyperbolic limit cycle (see, for example [23]). We do not consider such cases
here, instead focusing on those where the cycle does exist at the boundary parameter
values, but loses its hyperbolicity due to the presence of a nontrivial multiplier µ,
with |µ| = 1.

The codim 1 bifurcations of limit cycles in generic systems (1.1) are well-under-
stood (see, for example, [1], [17], [23]). The standard approach to the theoretical
and numerical analysis of local bifurcations of limit cycles is based on Poincaré maps:
Given a transversal section Σ to the cycle Γ at x(0), such a map assigns to each
point y of Σ close to x(0) another point P(y, α), where the orbit of (1.1) starting at
y intersects Σ again close to x(0). In local coordinates in Σ, the Poincaré map will
be represented by a smooth map P : Rn−1 ×Rp → Rn−1. The cycle corresponds to a
fixed point of this map; the eigenvalues of its linearization at the fixed point are the
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nontrivial multipliers of the periodic solution. Once the Poincaré map is introduced,
the theory of local bifurcations of maps can be applied.

It is well known (see, for example, [1, 17, 19] for the general theory and [23] for
computational formulas) that in generic smooth one-parameter families of maps

y 7→ P(y, α), y ∈ R
n−1, α ∈ R

1, (1.2)

only the following three bifurcations of fixed points occur:
(1) The Fold: The fixed point y0 has a simple eigenvalue λ1 = 1 and no other

eigenvalues on the unit circle, while the restriction of (1.2) to a one-dimensional
center manifold Wc(y0) at the critical parameter value has the form ξ 7→ ξ + b̃ξ2 +
O(ξ3), where b̃ 6= 0. When the parameter crosses the critical value, two fixed points
coalesce and disappear. This bifurcation is often called a saddle-node bifurcation, a
fold, or a limit point (LP), since two periodic solutions collide and disappear when
the parameter passes the critical value in (1.1). If Av = Pyv and B(u, v) = Pyy[u, v]
are evaluated at the critical fixed point y0, then

b̃ =
1

2
〈q∗,B(q, q)〉, (1.3)

where Aq = q, ATq∗ = q∗, and 〈q∗, q〉 = 1. Here and in what follows, 〈u, v〉 =
uHv = ūTv is the standard scalar product in an appropriate complex (or real) finite-
dimensional vector space; here: Rn−1. It should also be noted that the coefficient b̃ is
not uniquely defined but depends on the normalization of q. A similar remark holds
for all other normal form coefficients.

(2) The Flip: The fixed point y0 has a simple eigenvalue λ1 = −1 and no other
eigenvalues on the unit circle, while the restriction of (1.2) to a one-dimensional center
manifold Wc(y0) at the critical parameter value can be transformed to the normal
form ξ 7→ −ξ+c̃ξ3+O(ξ4), where c̃ 6= 0. When the parameter crosses the critical value,
a cycle of period 2 bifurcates from the fixed point. This is a period-doubling (PD) of
the periodic solution, i.e., there are nearby periodic solutions of approximately double
(minimal) period. If C(u, v, w) = Pyyy[u, v, w] is evaluated at y0, then

c̃ =
1

6
〈p∗, C(p, p, p) + 3B(p, (In−1 −A)−1B(p, p))〉, (1.4)

where In−1 is the (n − 1) × (n − 1) identity matrix, Ap = −p, ATp∗ = −p∗, and
〈p∗, p〉 = 1.

(3) The Neimark-Sacker (NS) bifurcation: The fixed point y0 has simple critical
eigenvalues λ1,2 = e±iθ and no other eigenvalues on the unit circle. Assume that

eiqθ − 1 6= 0, q = 1, 2, 3, 4 (no strong resonances).

Then the restriction of (1.2) to a two-dimensional center manifold W c(y0) at the
critical parameter value can be transformed to the normal form η 7→ ηeiθ(1+ d̃|η|2)+
O(|η|4), where η is a complex variable and d is a complex number. Further assume
that

Re d̃ 6= 0.

Under the above assumptions, a unique closed invariant curve around the fixed point
appears when the parameter crosses the critical value. This curve corresponds to an
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invariant torus, on which the flow of (1.1) contains periodic or quasi-periodic motions.
One has the following expression for d̃:

d̃ =
1

2
e−iθ〈v∗, C(v, v, v̄)+2B(v, (In−1−A)−1B(v, v̄))+B(v̄, (e2iθIn−1−A)−1B(v, v))〉,

(1.5)
where Av = eiθv, ATv∗ = e−iθv∗, and 〈v∗, v〉 = 1.

Application of these theoretical results to the analysis of concrete ODEs in science
and engineering is limited. One reason for this is the necessity to compute the Poincaré
map (1.2) and its derivatives (A,B, C,D, . . .) numerically. Finite differences work for
low-dimensional non-stiff systems (1.1), where they allow the approximation of the
Jacobian matrix A = Py with reasonable accuracy. However, this approach fails, when
the cycle is unstable or when (1.1) is stiff. In general, finite-difference approximations
of higher-order partial derivatives (i.e., B, C,D, . . .) have very low accuracy due to loss
of significant digits, and are therefore unreliable.

auto97 and content 1.5 support the detection of codim 1 bifurcations along
one-parameter families of limit cycles, but normal forms are not computed. auto

can continue all codim 1 cycle bifurcations in two parameters, however, it provides
no tools to detect and classify codim 2 singularities. content computes the normal
form coefficients at codim 1 bifurcations of fixed points of maps and detects all eleven
generic codim 2 bifurcations. However, application of these capabilities of content

to limit cycle analysis is usually based on the numerical construction of the Poincaré
map (1.2) and the computation of its partial derivatives via finite differences. Bet-
ter results for computing B and higher-order derivative tensors can be achieved by
numerical integration of the corresponding variational equations along the periodic
solution. This method has been successfully used in [26] to compute normal form coef-
ficients of the Poincaré map at the fold-flip bifurcation in a 4-dimensional atmosphere
circulation model. The approach, unfortunately, does not work well for stiff systems.
An interesting alternative to numerical integration of the variational equations is to
compute the higher-order derivatives of the Poincaré map P by automatic differen-
tiation [16] of the (for example, C-)code used to compute the Poincaré map. To our
knowledge, this alternative approach in computing normal forms (“normalization”)
has been not been used yet; see, however, [18].

There are at least two approaches to the analysis of the limit cycles bifurcations
that are not directly based on the Poincaré map. Since it is known which periodic or
quasi-periodic solutions can bifurcate at generic codim 1 bifurcations of limit cycles,
one can compute the Taylor series for the period T (ε), for the corresponding parameter
α(ε), and for the bifurcating solution itself, as functions of the solution amplitude ε.
The solvability of the linear systems is guaranteed by the Fredholm alternative. This
approach, which is conceptually similar to the Lyapunov-Schmidt method, has been
successfully applied to all codim 1 bifurcations of limit cycles in [22, Chapter XI].
The resulting asymptotic expressions use the derivatives of the right-hand side of
(1.1) with respect to u and α and involve solutions to linear boundary value problems
(BVPs) (on the interval [0, T ] in the LPC (Limit Point of Cycles) and NS cases and
on the interval [0, 2T ] for the PD bifurcation). They allow to distinguish between
sub- and supercritical bifurcations. However, these formulas are rather involved; in
particular, for the Neimark-Sacker case, where one has to distinguish between various
sub-harmonic and quasi-periodic solutions, and to our knowledge they have not been
implemented in bifurcation software.

There is another theoretical approach [1] for the analysis of limit cycle bifurcations
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in (1.1), which avoids the Poincaré map reduction. First, in a neighborhood of Γ in
W c(Γ), normal coordinates can be chosen so that the restricted system (1.1) becomes a
non-autonomous T -periodic system in Rn−1. This periodic system can be considered
as an autonomous system with one cyclic variable (mod T ). Near the bifurcation,
this system can be restricted to an (nc + 1)-dimensional invariant center manifold
W c(Γ), thus giving a periodic nc-dimensional system of ODEs. One can then apply
(in general, 2T -)periodic coordinate transformations to this system, and write it as
the sum of an autonomous nc-dimensional normal form and higher-order periodic
terms. The autonomous part of this periodic normal form allows one to study local
and global bifurcations of (1.1) near the critical cycle. This approach is very useful
for the theoretical analysis of limit cycle bifurcations (see [1] and [4] for normal forms
for some codim 2 cases).

Since the late 1980s, an improvement of this approach is known [13], that combines
the computation of the center manifold with the normalization of the ODEs restricted
to this manifold. This technique leads to simple formulas for the computation of
normal form coefficients in two codim 1 cases of equilibrium bifurcations in ODEs
(derived earlier with the Lyapunov-Schmidt method), as well as in all five codim 2
cases (see [24]). Although a similar normalization technique was introduced in [12]
for time-periodic systems and in [20, 21] for limit cycle bifurcations, it has remained
mainly a theoretical tool up to now. There are no numerical algorithms for the
computation of the coefficients of the normal forms on W c(Γ) that are based on this
approach and that have been implemented in available bifurcation software.

Below we derive a powerful numerical normalization tool based on this technique.
In a sense, we combine the periodic normal forms derived in [20] with the Fredholm
alternative used in [22]. It should be noted that the idea to apply Fredholm’s solvabil-
ity condition to compute the normal form coefficients for time-periodic systems can
be traced back to [12]. The main difference between our approach and that of [12] and
[20] is that we avoid Fourier series solutions of the linear BVPs, instead solving them
numerically, using orthogonal collocation as discretization. This leads to simple and
explicit algorithms for the normal form coefficients. A further simplification occurs
because we consider only the critical normal forms, and therefore we do not need
derivatives of f(u, α) with respect to α. Our results fully agree with the asymptotic
expansions for the bifurcating solutions derived in [22].

This paper is organized as follows. In Section 2 we fix notation and formulate
the periodic normalization on the center manifold. In Sections 3–5 we apply this
technique to derive explicit formulas to compute the critical normal form coefficients
for fold, period-doubling and torus bifurcations of limit cycles. The formulas are
independent of the dimension of the phase space and involve solutions to certain
BVPs on the interval [0, T ], where T is the period of the critical cycle, as well as
multilinear functions from the Taylor expansion of the right-hand sides of (1.1) near
the cycle. In Section 6 we show that our algorithms fit very well into the BVP-
collocation framework of existing continuation software. Three numerical examples
are given in Section 7. Future work is discussed in Section 8.

2. The method. Write (1.1) at the critical parameter values as

u̇ = F (u), (2.1)
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and suppose that (2.1) has a periodic solution u0(t) = u0(t + T ), where T > 0 is its
(minimal) period. Develop F (u0(t) + v) into the Taylor series

F (u0(t) + v) = F (u0(t)) +A(t)v +
1

2
B(t; v, v) +

1

6
C(t; v, v, v) +O(‖v‖4), (2.2)

where A(t) = Fu(u0(t)) and B(t, v, v) = Fuu(u0(t))[v, v], C(t; v, v, v) = Fuuu(u0(t))
[v, v, v]. Recall, that the components of B and C are given by

Bi(t;x, y) =

n
∑

j,k=1

∂2Fi(ξ)

∂ξj∂ξk

∣

∣

∣

∣

ξ=u0(t)

xjyk, (2.3)

Ci(t;x, y, z) =

n
∑

j,k,l=1

∂3Fi(ξ)

∂ξj∂ξk∂ξl

∣

∣

∣

∣

ξ=u0(t)

xjykzl, (2.4)

for i = 1, 2, . . . , n. The multilinear forms A,B, and C are periodic in t with period T .

Consider the initial-value problem for the fundamental matrix solution Y (t),
namely

dY

dt
= A(t)Y, Y (0) = In, (2.5)

where In is the n×n identity matrix. The monodromy matrix M = Y (T ) always has
a “trivial”eigenvalue µn = 1. The cycle is hyperbolic if there are no other eigenvalues
with |µ| = 1, and nonhyperbolic otherwise.

The cycle has a fold bifurcation if µ1 = 1 is an eigenvalue of Y (T ), the correspond-
ing Jordan block is two-dimensional, and there are no other critical eigenvalues of the
monodromy matrix. The cycle has a period-doubling (flip) bifurcation if µ1 = −1
is simple and the only nontrivial critical eigenvalue of Y (T ). Finally, at a Neimark-
Sacker (torus) bifurcation, there is a simple pair of nonreal eigenvalues µ1,2 = e±iθ,
such that eiqθ 6= 1 for q = 1, 2, 3, 4 (no strong resonances), and Y (T ) has no further
critical multipliers other than 1. We will refer to these conditions as the spectral
assumptions.

To describe the periodic normal forms for the three critical cases mentioned above,
we parametrize the corresponding (nc +1)-dimensional center manifold W c(Γ) near Γ
by (τ, ξ), where τ ∈ [0, T ] or [0, 2T ], and ξ is a real or complex coordinate, depending
on the bifurcation. It follows from [20] that it is possible to select the ξ-coordinates
so that the restriction of (2.1) to the corresponding critical center manifold W c(Γ)
will take one of the following periodic normal forms.

The periodic normal form at the Limit Point of Cycles (LPC) bifurcation is















dτ

dt
= 1 − ξ + aξ2 + · · · ,

dξ

dt
= bξ2 + · · · ,

(2.6)

where τ ∈ [0, T ], ξ is a real coordinate on W c(Γ) that is transverse to Γ, a, b ∈ R, and
the dots denote nonautonomous T -periodic O(ξ3)-terms. One can show that b and
b̃ vanish together, where b̃ is obtained via the Poincaré map reduction and given by
(1.3).
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The periodic normal form at the Period Doubling (PD) bifurcation is














dτ

dt
= 1 + aξ2 + · · · ,

dξ

dt
= cξ3 + · · · ,

(2.7)

where τ ∈ [0, 2T ], ξ is a real coordinate on W c(Γ) that is transverse to Γ, a, c ∈
R, and the dots denote nonautonomous 2T -periodic O(ξ4)-terms. The coefficient c
determines the stability of the critical cycle; if c 6= 0 then

sign c = sign c̃,

where c̃ is obtained via the Poincaré map reduction and given by (1.4).
The periodic normal form at the Neimark-Sacker (NS) bifurcation is















dτ

dt
= 1 + a|ξ|2 + · · · ,

dξ

dt
=

iθ

T
ξ + dξ|ξ|2 + · · · ,

(2.8)

where τ ∈ [0, T ], ξ is a complex coordinate on W c(Γ) that is complementary to
τ , a ∈ R, d ∈ C, and the dots denote nonautonomous T -periodic O(|ξ|4)-terms. If
Re d 6= 0 then

sign(Re d) = sign(Re d̃),

where d̃ is given by (1.5), obtained via the Poincaré map reduction.
In view of the above, we can assume that a parametrization of the center manifold

W c(Γ) is selected so that the restriction of (2.1) to this manifold has one of the normal
forms (2.6), (2.7), or (2.8). The Taylor expansions of T - or 2T -periodic unknown
functions involved in these parametrizations can be found by solving appropriate
BVPs on [0, T ] or [0, 2T ], respectively, so that (2.1) restricted to W c(Γ) will have
the corresponding periodic normal form. The coefficients a, b, and c arise from the
solvability conditions for the BVPs as integrals of scalar products over [0, T ], involving
quadratic and cubic terms of (2.1) near the periodic solution u0, as well as the critical
eigenfunctions.

The following (or similar) construction will often be used below. Denote by
Ck([a, b],Rn) the space of k times continuously differentiable functions on [a, b], with
values in R

n. Let ϕ ∈ C1([0, T ],Rn) be the only solution of the BVP






ϕ̇(τ) −A(τ)ϕ(τ) = 0, τ ∈ [0, T ],
ϕ(T ) − ϕ(0) = 0,

∫ T

0
〈ϕ(τ), ϕ(τ)〉dτ − 1 = 0,

and let ϕ∗ ∈ C1([0, T ],Rn) be a nontrivial solution of the adjoint BVP
{

ϕ̇∗(τ) +AT(τ)ϕ∗(τ) = 0, τ ∈ [0, T ],
ϕ∗(T ) − ϕ∗(0) = 0.

(2.9)

If h ∈ C1([0, T ],Rn) is a solution of the singular BVP
{

ḣ(τ) −A(τ)h(τ) = g(τ), τ ∈ [0, T ],
h(T ) − h(0) = 0,

(2.10)
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then g ∈ C1([0, T ],Rn) satisfies

∫ T

0

〈ϕ∗(τ), g(τ)〉 dτ = 0. (2.11)

Indeed, taking into account (2.9), we see that this integral equals

∫ T

0

〈ϕ∗(τ), ḣ(τ) −A(τ)h(τ)〉 dτ = −
∫ T

0

〈ϕ̇∗(τ) +AT(τ)ϕ∗(τ), h(τ)〉 dτ = 0.

We will refer to (2.11) as the Fredholm solvability condition. If (2.11) holds, then the
problem (2.10) has a unique solution h, satisfying

∫ T

0

〈ϕ∗(τ), h(τ)〉 dτ = 0.

3. The fold bifurcation. The two-dimensional critical center manifold W c(Γ)
at the LPC bifurcation can be parametrized locally by (τ, ξ) as

u = u0(τ) + ξv(τ) +H(τ, ξ), τ ∈ [0, T ], ξ ∈ R, (3.1)

where H satisfies H(T, ξ) = H(0, ξ), and has the Taylor expansion

H(τ, ξ) =
1

2
h2(τ)ξ

2 +O(ξ3), (3.2)

with h2(T ) = h2(0), while







v̇(τ) −A(τ)v(τ) − F (u0(τ)) = 0, τ ∈ [0, T ],
v(T ) − v(0) = 0,

∫ T

0 〈v(τ), F (u0(τ))〉dτ = 0.

(3.3)

The function v exists due to Lemma 2 of [20]. Note that (3.3) implies

∫ T

0

〈ϕ∗(τ), F (u0(τ))〉 dτ = 0, (3.4)

for any ϕ∗ satisfying (2.9). Moreover, due to the spectral assumptions at the LPC-
point, we can also assume that

∫ T

0

〈ϕ∗(τ), v(τ)〉dτ = 1. (3.5)

Therefore, ϕ∗ is the unique solution of the BVP







ϕ̇∗(τ) +AT(τ)ϕ∗(τ) = 0, τ ∈ [0, T ],
ϕ∗(T ) − ϕ∗(0) = 0,

∫ T

0
〈ϕ∗(τ), v(τ)〉dτ − 1 = 0.

(3.6)

The function h2(τ) can be found by solving an appropriate BVP, assuming that
(2.1) restricted to W c(Γ) has the periodic normal form (2.6). The coefficient b arises
from the solvability condition for the BVP as an integral over the interval [0, T ] of
scalar products. Specifically, these scalar products involve the quadratic terms of
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(1.1) near the periodic solution u0, the (generalized) eigenfunction v, and the adjoint
eigenfunction ϕ∗ defined by (3.6).

Substitute (3.1) into (2.1), using (2.2), (2.6), and (3.2), as well as

du

dt
=
∂u

∂ξ

dξ

dt
+
∂u

∂τ

dτ

dt
.

This gives

u̇0 + ξ(v̇ − u̇0) + ξ2
(

1

2
ḣ2 + au̇0 + bv − v̇

)

+O(ξ3)

= F (u0) + ξA(τ)v +
1

2
ξ2(A(τ)h2 +B(τ ; v, v)) +O(ξ3),

where dots denote the derivatives with respect to τ .
Collecting the ξ0-terms we get the identity

u̇0 = F (u0),

since u0 is the periodic solution of (2.1).
The ξ1-terms provide another identity, namely,

v̇ −A(τ)v − u̇0 = 0,

due to (3.3).
Finally, collecting the ξ2-terms, we obtain the equation for h2

ḣ2 −A(τ)h2 = B(τ ; v, v) − 2au̇0 + 2v̇ − 2bv, (3.7)

to be solved in the space of vector-functions on [0, T ] satisfying h2(T ) = h2(0). The
differential operator d

dτ
−A(τ) is singular in this space, with u̇0 as the eigenfunction

corresponding to zero eigenvalue. The null-eigenfunction ϕ∗ of the adjoint operator
− d

dτ
− AT(τ) is defined by (3.6). Thus, the Fredholm solvability condition implies

that

∫ T

0

〈ϕ∗(τ), B(τ ; v(τ), v(τ)) − 2au̇0(τ) + 2v̇(τ) − 2bv(τ)〉 dτ = 0.

Using (3.4) and (3.5), we get the expression

b =
1

2

∫ T

0

〈ϕ∗(τ), B(τ ; v(τ), v(τ)) + 2A(τ)v(τ)〉 dτ. (3.8)

Here v and ϕ∗ are defined by (3.3) and (3.6), respectively. Therefore, the critical
coefficient b in the periodic normal form for the LPC bifurcation has been computed.
The bifurcation is nondegenerate if b 6= 0. Note that the coefficient a does not enter
in (3.8) due to (3.4).

4. The period-doubling bifurcation. The two-dimensional critical center man-
ifold W c(Γ) at the PD bifurcation can be parametrized locally by (τ, ξ) as

u = u0(τ) + ξw(τ) +H(τ, ξ), τ ∈ [0, 2T ], ξ ∈ R, (4.1)
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where the function H satisfies H(2T, ξ) = H(0, ξ). It has the Taylor expansion

H(τ, ξ) =
1

2
h2(τ)ξ

2 +
1

6
h3(τ)ξ

3 +O(ξ4), (4.2)

with hj(2T ) = hj(0), while

w(τ) =

{

v(τ), τ ∈ [0, T ],
−v(τ − T ), τ ∈ [T, 2T ],

(4.3)

with






v̇(τ) −A(τ)v(τ) = 0, τ ∈ [0, T ],
v(T ) + v(0) = 0,

∫ T

0 〈v(τ), v(τ)〉dτ − 1 = 0.

(4.4)

The function v exists due to Lemma 5 of [20].
The parametrization (4.1) provides a two-cover of W c(Γ) that is locally diffeo-

morphic to the Möbius band (see Fig. 4.1).

τ

Γ

W c(Γ)

ξ

Fig. 4.1. Center manifold W c(Γ) at the period-doubling bifurcation.

The functions h2(τ) and h3(τ) can be found by solving appropriate BVPs, assum-
ing that (2.1) restricted to W c(Γ) has the periodic normal form (2.7). The coefficients
a and c arise from the solvability conditions for the BVPs as integrals of scalar prod-
ucts over the interval [0, T ]. Specifically, these scalar products involve the quadratic
and cubic terms of (1.1) near the periodic solution u0, the eigenfunction v, and a
similar adjoint eigenfunction v∗ satisfying







v̇∗(τ) +AT(τ)v∗(τ) = 0, τ ∈ [0, T ],
v∗(T ) + v∗(0) = 0,

∫ T

0
〈v∗(τ), v(τ)〉dτ − 1/2 = 0.

(4.5)

Similarly to (4.3), define

w∗(τ) =

{

v∗(τ), τ ∈ [0, T ],
−v∗(τ − T ), τ ∈ [T, 2T ],

(4.6)

Note that
∫ 2T

0

〈w∗(τ), w(τ)〉dτ = 1. (4.7)
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To derive the normal form coefficients, we proceed as in Section 3, namely, we
substitute (4.1) into (2.1), and use (2.2), as well as (2.7) and (4.2). This gives

u̇0 + ξẇ + ξ2
(

1

2
ḣ2 + au̇0

)

+ ξ3
(

1

6
ḣ3 + aẇ + cw

)

+O(ξ4)

= F (u0) + ξA(τ)w +
1

2
ξ2(A(τ)h2 +B(τ ;w,w))

+
1

6
ξ3(A(τ)h3 + 3B(τ ;w, h2) + C(τ ;w,w,w)) +O(ξ4),

where dots denote the derivatives with respect to τ , for τ ∈ [0, 2T ].
Collecting the ξ0-terms we get the identity

u̇0 = F (u0),

since u0 is the T -periodic solution of (2.1).
The ξ1-terms provide the identity

ẇ = A(τ)w ,

due to (4.3) and (4.4).
Collecting the ξ2-terms, we obtain the equation for h2

ḣ2 −A(τ)h2 = B(τ ;w,w) − 2au̇0, (4.8)

to be solved in the space of functions on [0, 2T ] satisfying h2(2T ) = h2(0). In this
space, the differential operator d

dτ
− A(τ) is singular with two linearly-independent

null-functions: ψ = u̇0 and w.
Thus, two Fredholm solvability conditions are involved, namely,

∫ 2T

0

〈w∗(τ), B(τ ;w(τ), w(τ)) − 2au̇0(τ)〉 dτ = 0,

which holds automatically for any a, due to the T -periodicity of the right-hand side
of (4.8), and

∫ 2T

0

〈ψ∗(τ), B(τ ;w(τ), w(τ)) − 2au̇0(τ)〉 dτ = 0,

where ψ∗ satisfies







ψ̇∗(τ) +AT(τ)ψ∗(τ) = 0, τ ∈ [0, T ],
ψ∗(T ) − ψ∗(0) = 0,

∫ T

0 〈ψ∗(τ), F (u0(τ))〉 dτ − 1/2 = 0,

(4.9)

and is extended to [T, 2T ] by periodicity. Note that
∫ 2T

0 〈ψ∗(τ), F (u0(τ))〉 dτ 6= 0,

since 0 is a semi-simple eigenvalue of the differential operator d
dτ

− A(τ). This leads
to the expression

a =
1

2

∫ 2T

0

〈ψ∗(τ), B(τ ;w(τ), w(τ)〉 dτ,
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or, equivalently,

a =

∫ T

0

〈ψ∗(τ), B(τ ; v(τ), v(τ)〉 dτ, (4.10)

where v and ψ∗ are defined by (4.4) and (4.9), respectively.
With a defined in this way, let h2 be the unique solution of (4.8) in the space of

functions on [0, 2T ] satisfying h2(0) = h2(2T ), as well as two orthogonality conditions:

∫ 2T

0

〈w∗(τ), h2(τ)〉 dτ = 0,

which holds automatically, due to the T -periodicity of h2 (h2(0) = h2(T )), and

∫ 2T

0

〈ψ∗(τ), h2(τ)〉 dτ = 0,

which is equivalent to

∫ T

0

〈ψ∗(τ), h2(τ)〉 dτ = 0.

Thus h2 is the unique solution of the BVP







ḣ2(τ) −A(τ)h2(τ) −B(τ ; v(τ), v(τ)) + 2aF (u0(τ)) = 0, τ ∈ [0, T ],
h2(T ) − h2(0) = 0,

∫ T

0 〈ψ∗(τ), h2(τ)〉 dτ = 0,

(4.11)

and extended by periodicity to [T, 2T ]. Collecting the ξ3-terms, we get the equation
for h3

ḣ3 −A(τ)h3 = C(τ ;w,w,w) + 3B(τ ;w, h2) − 6aẇ − 6cw, (4.12)

that again must be solved in the space of functions on [0, 2T ] satisfying h3(2T ) =
h3(0). Its solvability implies

∫ 2T

0

〈w∗(τ), C(τ ;w(τ), w(τ), w(τ)) + 3B(τ ;w(τ), h2(τ)) − 6aẇ(τ) − 6cw(τ)〉 dτ = 0.

Taking into account (4.7), we obtain

c =
1

6

∫ 2T

0

〈w∗(τ), C(τ ;w(τ), w(τ), w(τ )) + 3B(τ ;w(τ), h2(τ)) − 6aA(τ)w(τ)〉 dτ,

and finally

c =
1

3

∫ T

0

〈v∗(τ), C(τ ; v(τ), v(τ), v(τ )) + 3B(τ ; v(τ), h2(τ)) − 6aA(τ)v(τ)〉 dτ, (4.13)

where a is defined by (4.10), h2 is the solution of (4.11), and v and v∗ are defined
by (4.4) and (4.5), respectively. Thus, the critical coefficient c in the periodic normal
form for the PD bifurcation has been computed. The critical cycle is stable within the
center manifold if c < 0 and is unstable if c > 0. In the former case, the bifurcation
is supercritical, while in the latter case it is subcritical.
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5. The torus bifurcation. The three-dimensional critical center manifoldW c(Γ)
at the NS bifurcation can be parametrized locally by (τ, ξ) as

u = u0(τ) + ξv(τ) + ξ̄v̄(τ) +H(τ, ξ, ξ̄), τ ∈ [0, T ], ξ ∈ C, (5.1)

where the real function H satisfies H(T, ξ, ξ̄) = H(0, ξ, ξ̄), and has the Taylor expan-
sion

H(τ, ξ, ξ̄) =
1

2
h20(τ)ξ

2 + h11(τ)ξξ̄ +
1

2
h02(τ)ξ̄

2

+
1

6
h30(τ)ξ

3 +
1

2
h21(τ)ξ

2 ξ̄ +
1

2
h12(τ)ξξ̄

2 +
1

6
h03(τ)ξ̄

3 (5.2)

+ O(|ξ|4),

with hij(T ) = hij(0) and hij = h̄ji so that h11 is real, while











v̇(τ) −A(τ)v(τ) +
iθ

T
v(τ) = 0, τ ∈ [0, T ],

v(T ) − v(0) = 0,
∫ T

0
〈v(τ), v(τ)〉dτ − 1 = 0.

(5.3)

The function v exists due to Lemma 2 of [20]. Recall that 〈u, v〉 = uHv = ūTv.

Note that

w(τ) = exp

(

iθτ

T

)

v(τ)

satisfies







ẇ(τ) −A(τ)w(τ) = 0, τ ∈ [0, T ],
w(T ) − eiθw(0) = 0,

∫ T

0
〈w(τ), w(τ)〉dτ − 1 = 0,

(5.4)

which is often used in the defining system for the NS bifurcation.

As in the previous cases, the functions hij(τ) can be found by solving appropriate
BVPs, assuming that (2.1) restricted to W c(Γ) has the periodic normal form (2.8).

Also introduce the adjoint eigenfunction v∗ that satisfies











v̇∗(τ) +AT(τ)v∗(τ) − iθ

T
v∗(τ) = 0, τ ∈ [0, T ],

v∗(T ) − v∗(0) = 0,
∫ T

0 〈v∗(τ), v(τ)〉dτ − 1 = 0.

(5.5)

Substitute (5.1) into (2.1), using (2.2), (2.8), and (5.2), as well as

du

dt
=
∂u

∂ξ

dξ

dt
+
∂u

∂ξ̄

dξ̄

dt
+
∂u

∂τ

dτ

dt
.
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This gives

u̇0 + ξ

(

v̇ +
iθ

T
v

)

+ ξ̄

(

˙̄v − iθ

T
v̄

)

+
1

2

(

ḣ20 +
2iθ

T
h20

)

ξ2 + (au̇0 + ḣ11)|ξ|2 +
1

2

(

ḣ02 −
2iθ

T
h02

)

ξ̄2

+
1

2

(

ḣ21 +
iθ

T
h21 + 2av̇ + 2dv

)

ξ2ξ̄ + · · ·

= F (u0) + ξA(τ)v + ξ̄Av̄(τ)

+
1

2
ξ2

(

Ah20 +B(τ ; v, v)

)

+ |ξ|2
(

Ah11 + B(τ ; v, v̄)

)

+
1

2
ξ̄2

(

Ah̄02 +B(τ ; v̄, v̄)

)

+
1

2

(

2B(τ ;h11, v) +B(τ ;h20, v̄) + C(τ ; v, v, v̄)

)

ξ2ξ̄ + · · · ,

where among cubic terms only the ξ2ξ̄-terms are displayed. All non-displayed cubic
terms and higher-order terms are irrelevant for the computation of d. Collecting
coefficients, we get the following equations:

The ξ-independent terms give the usual identity

u̇0 = F (u0).

The ξ-terms give another identity, namely,

v̇ −A(τ)v +
iθ

T
v = 0,

while the ξ̄-terms lead to the corresponding complex-conjugate identity.
Collecting the coefficients of the ξ2- or ξ̄2-terms leads to the equation

ḣ20 −A(τ)h20 +
2iθ

T
h20 = B(τ ; v, v), (5.6)

or its complex-conjugate. This equation has a unique solution h20(τ) satisfying
h20(T ) = h20(0), since e2iθ is not a multiplier of the critical cycle by the spectral
assumptions. Thus, h20 can be found from the BVP

{

ḣ20(τ) −A(τ)h20(τ) +
2iθ

T
h20(τ) −B(τ ; v(τ), v(τ)) = 0, τ ∈ [0, T ],

h20(T ) − h20(0) = 0.
(5.7)

The |ξ|2-terms give

ḣ11 −A(τ)h11 = B(τ ; v, v̄) − au̇0, (5.8)

where h11(T ) = h11(0). The differential operator d
dτ

− A(τ) has a nontrivial kernel

spanned by u̇0. The null-eigenfunction of the adjoint operator − d
dτ

− AT(τ) is ϕ∗

given by the equation







ϕ̇∗(τ) +AT(τ)ϕ∗(τ) = 0, τ ∈ [0, T ],
ϕ∗(T ) − ϕ∗(0) = 0,

∫ T

0 〈ϕ∗(τ), F (u0(τ))〉dτ − 1 = 0.

(5.9)
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Note that
∫ T

0
〈ϕ∗(τ), F (u0(τ))〉dτ 6= 0, since the trivial multiplier 1 is simple, due to

the spectral assumptions. The Fredholm solvability condition implies

a =

∫ T

0

〈ϕ∗(τ), B(τ ; v(τ), v̄(τ)〉 dτ. (5.10)

With a defined in this way, let h11 be the unique solution of (5.8) satisfying h11(T ) =
h11(0) and

∫ T

0

〈ϕ∗(τ), h11(τ)〉 dτ = 0,

i.e.,







ḣ11(τ) −A(τ)h11(τ) −B(τ ; v(τ), v̄(τ)) + aF (u0(τ)) = 0, τ ∈ [0, T ],
h11(T ) − h11(0) = 0,

∫ T

0
〈ϕ∗(τ), h11(τ)〉 dτ = 0.

(5.11)

Finally, the coefficients of the ξ2ξ̄-terms give the singular equation

ḣ21 −Ah21 +
iθ

T
h21 = 2B(τ ;h11, v) +B(τ ;h20, v̄) + C(τ ; v, v, v̄) − 2av̇ − 2dv.

If one takes into account (5.5), the Fredholm solvability condition implies

d =
1

2

∫ T

0

〈v∗(τ), B(τ ;h11(τ), v(τ)) +B(τ ;h20(τ), v̄(τ)) + C(τ ; v(τ), v(τ), v̄(τ))〉 dτ

− a

∫ T

0

〈v∗(τ), A(τ)v(τ)〉 dτ +
iaθ

T
, (5.12)

where a is defined by (5.10), h11 and h20 by (5.11) and (5.7), respectively, and v and
v∗ satisfy (5.3) and (5.5), respectively. Thus, the critical coefficient d in the periodic
normal form for the NS bifurcation has been computed. The critical cycle is stable
within the center manifold if Re d < 0 and is unstable if Re d > 0. In the former
case, the Neimark-Sacker bifurcation is supercritical, while in the latter case it is
subcritical.

6. Implementation issues. Numerical implementation of the formulas derived
in the preceding sections requires the evaluation of integrals of scalar functions over
[0, T ], and the solution of nonsingular linear BVPs with integral constraints. Such
tasks can be carried out with continuation software such as auto [8], content [25],
and matcont [6]. In these software packages, periodic solutions to (1.1) are com-
puted with the method of orthogonal collocation with piecewise polynomials applied
to properly formulated BVPs. The standard BVP for the periodic solutions is for-
mulated on the unit interval [0, 1], so that the period T becomes a parameter, and it
involves an integral phase condition:







ẋ(τ) − Tf(x(τ), α) = 0, τ ∈ [0, 1],
x(0) − x(1) = 0,

∫ 1

0
〈x(τ), ξ̇(τ)〉 dτ = 0,

(6.1)

where ξ is a previously calculated periodic solution, rescaled to [0, 1].
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In the orthogonal collocation method [2], the problem (6.1) is discretized as fol-
lows. First the interval [0, 1] is subdivided into N smaller intervals:

0 = τ0 < τ1 < · · · < τN = 1.

In each of these intervals the solution x(τ) is approximated by a degree m vector-
valued polynomial x(i)(τ), by introducing m + 1 equidistant mesh points on each
interval, namely,

τi,j = τi +
j

m
(τi+1 − τi) (j = 0, 1, . . . ,m),

and defining the polynomials x(i)(τ) as

x(i)(τ) =

m
∑

j=0

xi,j`i,j(τ).

Here xi,j is the discretization of x(τ) at τ = τi,j . (We note that xi,m = xi+1,0.) The
`i,j(τ)’s are the Lagrange basis polynomials

`i,j(τ) =

m
∏

k=0,k 6=j

τ − τi,k
τi,j − τi,k

.

In each interval [τi, τi+1] we require the polynomials x(i)(τ) to satisfy the BVP ex-
actly at m collocation points ζi,j (j = 1, . . . ,m). It is well-known that the best choice
for collocation points is Gauss points [5], i.e., the roots of the Legendre polynomial
of degree m, relative to the interval [τi, τi+1].

Now let y(τ) be a function defined in [0, 1], and assume that we want to integrate it
over [0, 1]. The total number of mesh points is Nm+1. Each mesh point τi,j in a mesh
interval [τi, τi+1] has a particular weight wj+1, the Lagrange quadrature coefficient.
Some mesh points belong to two mesh intervals. We set ti = τi−τi−1, (i = 1, . . . , N).
The integration weight σi,j of τi,j is given by wj+1ti+1, for 0 ≤ i ≤ N − 1 and
0 < j < m. For i = 0, . . . , N−2, the integration weight of τi,m (τi,m = τi+1,0) is given
by σi,m = wm+1ti+1 + w1ti+2, and the integration weights of τ0 and τN are given by

w1t1 and wm+1tN , respectively. Thus, the integral
∫ 1

0 y(τ)dτ can be approximated

by
∑N−1

i=0

∑m−1
j=0 y(τi,j)σi,j + y(1)σN,0.

Using the above procedure, we obtain the discretized version of the BVP (6.1),
namely,







∑m

j=0 xi,j
˙̀
i,j(ζi,k) − Tf(

∑m

j=0 xi,j`i,j(ζi,k), α) = 0,

x0,0 − xN−1,m = 0,
∑N−1

i=0

∑m−1
j=0 σi,j〈xi,j , ξ̇i,j〉 + σN,0〈xN,0, ξ̇N,0〉 = 0.

(6.2)

The first equation actually represents Nm equations, one for each combination of
i = 0, 1, 2, ..., N − 1 and k = 1, 2, ...,m.

The numerical continuation of the solutions of the discretized BVP (6.2) leads to
structured, sparse linear systems, which in auto [8] and content [25] are solved by
an efficient, specially adapted elimination algorithm, that computes the multipliers as
a by-product, without explicitly using the Poincaré map. To detect codim 1 bifurca-
tions, one can specify test functions that are based on computing multipliers [11, 8]
or on solving appropriate bordered linear BVPs [9].
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Once a codim 1 bifurcation has been detected, one can compute the normal form
coefficients using the formulas derived in the previous sections. All BVPs are refor-
mulated on the unit interval [0, 1], and all integrals are scaled accordingly. Moreover,
if the bordering methods from [9] are used to continue LPC, PD, and NS bifurcations
of limit cycles, then the computation of the normal form coefficients requires little
extra effort, since all necessary eigenfunctions have already been computed, either
while evaluating the test functionals, or their gradients. These coefficients then serve
as test functions for detecting codim 2 singularities of limit cycles due to nonlinear
degeneracies of LPC, PD or NS bifurcations, i.e., the cusp (CPC), the degenerate
period-doubling (DP), and the Chenciner (CH) bifurcation. By-products of these
computations are test functions for detecting certain codim 2 singularities of limit
cycles due to linear degeneracies, namely, the strong 1:1 resonance (R1), the strong
1:2 resonance (R2), the fold-Neimark-Sacker bifurcation (FN), and the fold-flip bifur-
cation (FF).

6.1. Discretization symbols. All computed functions have to be discretized
using the same mesh as in (6.2). For a given vector function η ∈ C1([0, 1],Rn) we
consider three different discretizations:

• ηM ∈ R(Nm+1)n the vector of the function values at the mesh points;
• ηC ∈ RNmn the vector of the function values at the collocation points;

• ηW =

[

ηW1

ηW2

]

∈ RNmn × Rn where ηW1
is the vector of the function values

at the collocation points multiplied by the Gauss-Legendre weights and the
lengths of the corresponding mesh intervals, and ηW2

= η(0).

Formally we also introduce the structured sparse matrix LC×M that converts a vector
ηM of function values at the mesh points into a vector ηC of its values at the collocation
points, namely, ηC = LC×MηM . This matrix is never formed explicitly; its entries
are approximated by the `i,j(ζi,k)-coefficients in (6.2). We also need a matrix AC×M

such that AC×MηM = (A(t)η(t))C . Again this matrix need not be formed explicitly.
On the other hand, we do need the matrix (D − TA(t))C×M explicitly; it is defined
by (D−TA(t))C×MηM = (η̇(t)−TA(t)η(t))C . Finally, let the tensors BC×M×M and
CC×M×M×M be defined by BC×M×Mη1Mη2M = (B(t; η1(t), η2(t)))C and

CC×M×M×Mη1Mη2Mη3M = (C(t; η1(t), η2(t), η3(t)))C ,

for all ηi ∈ C1([0, 1],Rn). (These tensors are not formed explicitly.)

Let f(t), g(t) ∈ C0([0, 1],R) be two scalar functions. Then the integral
∫ 1

0 f(t)dt

is represented by
∑N−1

i=0

∑m

j=1 ωj(fC)i,jti+1 =
∑N−1

i=0

∑m

j=1(fW1
)i,j , where (fC)i,j =

f(ζi,j) and ωj is the Gauss-Legendre quadrature coefficient. The integral
∫ 1

0
f(t)g(t)dt

is approximated with Gauss-Legendre by fT
W1
gC = fT

W1
LC×MgM . For vector functions

f(t), g(t) ∈ C0([0, 1],Rn), the integral
∫ 1

0
〈f(t), g(t)〉 dt is formally approximated by

the same expression: fT
W1
gC = fT

W1
LC×MgM .

We now consider the LPC, PD and NS cases separately.

6.2. LPC bifurcation. The first task is to rescale the computed functions to
the interval [0, 1]. We start by defining u1(t) = u0(T t) for t ∈ [0, 1]. The linear BVPs
(3.3) and (3.6) are replaced by







v̇1(t) − TA(t)v1(t) − TF (u1(t)) = 0, t ∈ [0, 1],
v1(0) − v1(1) = 0,

∫ 1

0 〈v1(t), F (u1(t))〉dt = 0,

(6.3)
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where v(τ) = v1(τ/T ), and







ϕ̇∗
1(t) + TAT(t)ϕ∗

1(t) = 0, t ∈ [0, 1],
ϕ∗

1(0) − ϕ∗
1(1) = 0,

∫ 1

0
〈ϕ∗

1(t), ϕ
∗
1(t)〉dt− 1 = 0,

(6.4)

respectively. We then compute I =
∫ 1

0 〈ϕ∗
1(t), v1(t)〉dt. If I = 0 then we have a strong

1:1 resonance (a limit cycle with two nontrivial multipliers equal to 1). If not, then
we rescale ϕ∗ so that I = 1. It then follows that ϕ∗(τ) = ϕ∗

1(τ/T )/T .
As an intermediate result, we obtain

b =
1

2

∫ 1

0

〈ϕ∗
1(t), B(t; v1(t), v1(t)) + 2A(t)v1(t)〉 dt. (6.5)

We compute v1M by solving the discretization of (6.3)





(D − TA(t))C×M

δ0 − δ1
(gW1

)TLC×M



 v1M =





TgC

0
0



 , (6.6)

where g(t) = F (u1(t)).
It is more efficient to compute ϕ∗

1W than ϕ∗
1M , since ϕ∗

1 will be used only to

compute integrals of the form
∫ 1

0
〈ϕ∗

1(t), ζ(t)〉dt. Moreover, ϕ∗
1W can be computed

with the same matrix used in (6.6), thus saving factorization costs. Formally, the
computation of ϕ∗

1W is based on Proposition A.1 from the Appendix. Instead of
approximating ϕ∗

1 by solving

[

(D + TAT(t))C×M

δ0 − δ1

]

ϕ∗
1M = 0,

we remark that

[

ϕ∗
1

ϕ∗
1(0)

]

is orthogonal to the range of

[

D − TA(t)
δ0 − δ1

]

. By dis-

cretization we obtain

(ϕ∗
1W )T

[

(D − TA(t))C×M

δ0 − δ1

]

= 0.

To normalize ϕ∗
1W1

, we require

N−1
∑

i=0

m
∑

j=1

∣

∣(ϕ∗
1W1

)i,j

∣

∣

1
= 1. (6.7)

Here |.|1 denotes the 1-norm (sum of absolute values) of a vector. This choice

if convenient for computational reasons. Then
∫ 1

0
〈ϕ∗

1(t), v1(t)〉dt is approximated
by (ϕ∗

1W1
)TLC×Mv1M and if this quantity is nonzero, ϕ∗

1W is rescaled to ensure
∫ 1

0
〈ϕ∗

1(t), v1(t)〉dt = 1.
The expression (6.5) for the normal form coefficient b finally reduces to

b =
1

2
(ϕ∗

1W1
)T(BC×M×Mv1Mv1M + 2AC×Mv1M ). (6.8)
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6.3. PD bifurcation. Again, we rescale the computed quantities to the interval
[0, 1]. The linear BVPs (4.4) and (4.5) are replaced by







v̇1(t) − TA(t)v1(t) = 0, t ∈ [0, 1],
v1(0) + v1(1) = 0,

∫ 1

0 〈v1(t), v1(t)〉dt− 1 = 0,

(6.9)

where v(τ) = v1(τ/T )/
√
T , and







v̇1
∗(t) + TAT(t)v∗1(t) = 0, t ∈ [0, 1],

v∗1(0) + v∗1(1) = 0,
∫ 1

0 〈v∗1(t), v∗1(t)〉dt − 1/2 = 0,

(6.10)

respectively. We note that the last equation in (6.10) differs from the last equation

in (4.5). We then compute I =
∫ 1

0
〈v∗1(t), v1(t)〉dt. If I = 0 then we have a strong

1:2 resonance (a limit cycle with two multipliers equal to −1). If not, then we rescale
v∗1 so that I = 1/2, which corresponds the normalization condition used in (6.10). It
then follows that v∗(τ) = v∗1(τ/T )/

√
T .

We also replace (4.9) by







ψ̇∗
1(t) + TAT(t)ψ∗

1(t) = 0, t ∈ [0, 1],
ψ∗

1(0) − ψ∗
1(1) = 0,

∫ 1

0 〈ψ∗
1(t), ψ∗

1(t)〉 dt− 1 = 0.

(6.11)

Again, the last equation in (6.11) differs from the last equation in (4.9). We then

compute I =
∫ 1

0 〈ψ∗
1(t), F (u1(t))〉dt. If I = 0 then we have a fold-flip bifurcation. If

not, then we rescale ψ∗
1 so that I = 1. It then follows that ψ∗(τ) = ψ∗

1(τ/T )/T .
This leads to the expression

a1 =

∫ 1

0

〈ψ∗
1(t), B(t; v1(t), v1(t)〉 dt , (6.12)

where a1 = aT .
With a1 defined this way, let h2,1 be the unique solution of the BVP







ḣ2,1(t) − TA(t)h2,1(t) −B(t; v1(t), v1(t)) + 2a1F (u1(t)) = 0, t ∈ [0, 1],
h2,1(0) − h2,1(1) = 0,

∫ 1

0
〈ψ∗

1(t), h2,1(t)〉 dt = 0,
(6.13)

where h2(τ) = h2,1(τ/T ).
Therefore we obtain

c =
1

3

∫ 1

0

〈v∗1(t),
1

T
C(t; v1(t), v1(t), v1(t)) + 3B(t; v1(t), h2,1(t))〉 dt

−2a1

T

∫ 1

0

〈v∗1(t), A(t)v1(t)〉 dt.
(6.14)

We compute v1M by solving

[

(D − TA(t))C×M

δ0 + δ1

]

v1M = 0. (6.15)
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We normalize v1M by requiring
∑N−1

i=0

∑m

j=0 σj〈(v1M )i,j , (v1M )i,j〉 = 1, where σj is
the Lagrange quadrature coefficient.

As in the LPC-case, it is more efficient to compute v∗1W , rather than v∗M , since

v∗1 will be used only to compute integrals of the form
∫ 1

0
〈v∗1(t), ζ(t)〉dt. Moreover,

v∗1W can be computed with the same matrix in (6.15), thus saving factorization costs.
Formally, the computation of v∗1W is based on Proposition A.2 (see the Appendix).
Instead of approximating v∗1 by solving

[

(D + TAT(t))C×M

δ0 + δ1

]

v∗1M = 0,

we observe that

[

v∗1
v∗1(0)

]

is orthogonal to the range of

[

D − TA(t)
δ0 + δ1

]

. By dis-

cretization we obtain

(v∗1W )T
[

(D − TA(t))C×M

δ0 + δ1

]

= 0.

To normalize v∗1W1
, we require

∑N−1
i=0

∑m

j=1

∣

∣(v∗1W1
)i,j

∣

∣

1
= 1. Then

∫ 1

0 〈v∗1(t), v1(t)〉dt
is approximated by (v∗1W1

)TLC×Mv1M . If this quantity is nonzero then v∗1W is rescaled

so that
∫ 1

0 〈v∗1(t), v1(t)〉dt = 1/2.
From Proposition A.1 it follows that we can approximate ψ∗

1 like v∗1 . Namely, we
compute ψ∗

1W by solving

(ψ∗
1W )T

[

(D − TA(t))C×M

δ0 − δ1

]

= 0

and normalize ψ∗
1W1

by requiring

N−1
∑

i=0

m
∑

j=1

∣

∣(ψ∗
1W1

)i,j

∣

∣

1
= 1.

Then
∫ 1

0
〈ψ∗

1(t), F (u1(t))〉dt is approximated by (ψ∗
1W1

)T(F (u1(t)))C and if this quan-

tity is nonzero, ψ∗
1W is rescaled so that

∫ 1

0 〈ψ∗
1(t), F (u1(t))〉dt = 1.

Having found v1M and ψ∗
1W , a1 can be computed using (6.12) as

a1 = (ψ∗
1W1

)TBC×M×Mv1Mv1M .

Next, (h2,1)M is found by solving the discretization of (6.13), namely,





(D − TA(t))C×M

δ0 − δ1
(ψ∗

W1
)TLC×M



 (h2,1)M =





BC×M×Mv1Mv1M + 2a1gC

0
0



 ,

where gC = (F (u1(t)))C .
Finally, the expression (6.14) for the normal form coefficient c becomes

c =
1

3T
(v∗1W1

)T (CC×M×M×M v1Mv1Mv1M + 3TBC×M×Mv1M (h2,1)M )

−2a1

T
(v∗1W1

)TAC×Mv1M .
(6.16)
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6.4. Torus bifurcation. As before, we first rescale the time variable to the unit
time-interval. The linear BVPs (5.3) and (5.5) are replaced by







v̇1(t) − TA(t)v1(t) + iθv1(t) = 0, t ∈ [0, 1],
v1(0) − v1(1) = 0,

∫ 1

0 〈v1(t), v1(t)〉dt− 1 = 0,

(6.17)

where v(τ) = v1(τ/T )/
√
T , and







v̇1
∗(t) + TAT(t)v∗1(t) − iθv∗1(t) = 0, t ∈ [0, 1],

v∗1(0) − v∗1(1) = 0,
∫ 1

0
〈v∗1(t), v∗1(t)〉dt − 1 = 0,

(6.18)

respectively. Note that the last equation in (6.18) differs from the last equation in

(5.5). To rescale v∗1 we first compute I =
∫ 1

0
〈v∗1(t), v1(t)〉dt. If I 6= 0 then we rescale

v∗1 so that I = 1. (The case I = 0 corresponds to a bifurcation of codimension three
or higher.) It then follows that v∗(τ) = v∗1(τ/T )/

√
T .

We also replace (5.9) by







ϕ̇1
∗(t) + TAT(t)ϕ∗

1(τ) = 0, t ∈ [0, 1],
ϕ∗

1(0) − ϕ∗
1(1) = 0,

∫ 1

0 〈ϕ∗
1(t), ϕ

∗
1(t)〉dt− 1 = 0.

(6.19)

Again, note that the last equation in (6.19) differs from the last equation in (5.9).

Now compute I =
∫ 1

0 〈ϕ∗
1(t), F (u1(t))〉dt. If I = 0 then we have a fold–Neimark-

Sacker bifurcation. If I 6= 0 then we rescale ϕ∗
1 so that I = 1. It follows that

ϕ∗(τ) = ϕ∗
1(τ/T )/T . (5.7) is replaced by

{

ḣ20,1(t) −A(t)h20,1(t) + 2iθh20,1(t) −B(t; v1(t), v1(t)) = 0, t ∈ [0, 1],
h20,1(0) − h20,1(1) = 0.

(6.20)

where h20(τ) = h20,1(τ/T ). This leads to the expression

a1 =

∫ 1

0

〈ϕ∗
1(τ), B(t; v1(t), v̄1(t))〉 dt, (6.21)

where a = a1/T .
With a1 defined in this way, let h11,1 be the unique solution of the BVP







ḣ11,1(t) −A(t)h11,1(t) −B(t; v1(t), v̄1(t)) + a1F (u1(t)) = 0, t ∈ [0, 1],
h11,1(0) − h11,1(1) = 0,

∫ 1

0
〈ϕ∗

1(t), h11,1(t)〉 dt = 0,
(6.22)

where h11(τ) = h11,1(τ/T ).
Finally we obtain

d =
1

2

∫ 1

0

〈v∗1(t), B(t;h11,1(t), v1(t)) +B(t;h20,1(t), v̄1(t))〉 dt

+
1

2T

∫ 1

0

〈v∗1(t), C(t; v1(t), v1(t), v̄1(t))〉 dt−
a1

T

∫ 1

0

〈v∗1(t), A(t)v1(t)〉 dt+
ia1θ

T 2

(6.23)
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We compute v1M by solving
[

(D − TA(t) + iθIn)C×M

δ0 − δ1

]

v1M = 0, (6.24)

where (D − TA(t) + iθIn)C×M is defined like (D − TA(t))C×M . We normalize v1M

by requiring that
∑N−1

i=0

∑m

j=0 σj〈(v1M )i,j , (v1M )i,j〉 = 1, where σj is the Lagrange
quadrature coefficient. Again, it is more efficient to compute v∗1W than v∗M , since v∗1
will be used only to compute integrals of the form

∫ 1

0 〈v∗1(t), ζ(t)〉dt. Moreover, v∗1W

can be computed with the same matrix in (6.23). Formally, the computation of v∗1W is
based on Proposition A.3 from the Appendix. Instead of approximating v∗1 by solving

[

(D + TAT(t) − iθIn)C×M

δ0 + δ1

]

v∗1M = 0,

we remark that

[

v∗1
v∗1(0)

]

is orthogonal to the range of

[

D − TA(t) + iθ
δ0 + δ1

]

. By

discretization we obtain

(v∗1W )H
[

(D − TA(t) + iθIn)C×M

δ0 + δ1

]

= 0.

To normalize v∗1W1
we require that

∑N−1
i=0

∑m

j=1

∣

∣(v∗1W1
)i,j

∣

∣

1
= 1. Then

∫ 1

0
〈v∗1(t), v1(t)〉dt

is approximated by (v∗1W1
)TLC×Mv1M . If this quantity is nonzero then v∗1W is rescaled

so that
∫ 1

0 〈v∗1(t), v1(t)〉dt = 1.
From Proposition A.1 it follows that we can approximate ϕ∗

1 like v∗1 . To be precise,
we compute ϕ∗

1W by solving

(ϕ∗
1W )T

[

(D − TA(t))C×M

δ0 − δ1

]

= 0 ,

and we normalize ϕ∗
1W1

by requiring that
∑N−1

i=0

∑m

j=1

∣

∣(ϕ∗
1W1

)i,j

∣

∣

1
= 1. Then the

integral
∫ 1

0 〈ϕ∗
1(t), F (u1(t))〉dt is approximated by (ϕ∗

1W1
)T(F (u1(t)))C . If this quan-

tity is nonzero then ϕ∗
1W is rescaled, so that

∫ 1

0
〈ϕ∗

1(t), F (u1(t))〉dt = 1. We compute
(h20,1)M by solving

[

(D − TA(t) + 2iθIn)C×M

δ0 − δ1

]

(h20,1)M =

[

BC×M×Mv1Mv1M

0

]

.

The coefficient a1 can be computed using (6.21) as

a1 = (ϕ∗
W1

)TBC×M×Mv1M v̄1M ,

while (h11,1)M is found by solving the discretization of (6.22),




(D − TA(t))C×M

δ0 − δ1
(ϕ∗

W1
)TLC×M



 (h11,1)M =





BC×M×Mv1M v̄1M − a1(F (u1(t)))C

0
0



 .

The expression (6.23) for the normal form coefficient d becomes

d =
1

2
(v∗1W1

)T(BC×M×M (h11,1)Mv1M +BC×M×M (h20,1)M v̄1M )

+
1

2T
(v∗1W1

)TCC×M×M×Mv1Mv1M v̄1M − a1

T
(v∗1W1

)TAC×Mv1M +
ia1θ

T 2
.

(6.25)



22 YU.A. KUZNETSOV et al.

7. Examples.

7.1. The LPC normal form coefficient in the ABC-reaction. We have
computed the normal form coefficient b of (2.6) in a model of a continuously stirred
tank reactor, with consecutive A → B → C reactions, as studied by Doedel & Heine-
mann [10]. It has three state variables, u1, u2, u3, and five parameters, p1, p2, p3, p4,
and p5 :







u̇1 = −u1 + p1(1 − u1)e
u3 ,

u̇2 = −u2 + p1e
u3(1 − u1 − p5u2),

u̇3 = −u3 − p3u3 + p1p4e
u3(1 − u1 + p2p5u2).

(7.1)

This model is used as a demo in the auto manual [8]. In the notation of [10], we have
u1 = y, where 1 − y is the concentration of reactant A, u2 = z, the concentration of
reactant B, u3 = θ, the temperature, p1 = D, the Damkohler number, p2 = α, the
ratio of reaction heats, p3 = β, the heat transfer coefficient, p4 = B, the adiabatic
temperature rise, and p5 = σ, the selectivity ratio.

In Fig. 7.1 the equilibrium curve computed with matcont is represented. The
parameter values are p2 = 1, p3 = 1.5, p4 = 8, p5 = 0.04, with free parameter p1,
starting from the equilibrium at p1 = 0.1, for which u1 = 0.13304, u2 = 0.13223,
u3 = 0.42833. The curve of equilibria contains four Hopf points, denoted, from left
to right, H1, H2, H3, H4, respectively. As shown in [10], in the case p2 = 1, the Hopf

0.15 0.2 0.25 0.3
0

0.2

0.4
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H 

Fig. 7.1. Equilibrium curve of the A → B → C reaction for p2 = 1.

points H1 and H4 are connected by a family of periodic solutions, and H2 and H3 are
similarly connected. The family of solutions that connects H1 to H4, contains three
fold bifurcations of periodic solutions, as also observed in [10]. We continue the first
fold bifurcation of periodic solutions numerically in two parameters p1 and p2. This
family contains a cusp point of periodic orbits (CPC) detected in matcont as a zero
of the coefficient b computed with (6.8). In Fig. 7.2(a)-(c) we present the normal form
coefficient b, the first component u1 of the state variables vector, and p2, respectively,
as functions of p1.

7.2. The PD normal form coefficient in a feedback control system. We
have used (6.16) to compute the PD normal form coefficient c of (2.7) in a feedback
control system, described in [14], [15] and further used in [23] (Example 5.4, p. 178):







ẋ = y,
ẏ = z,
ż = −αz − βy − x+ x2.

(7.2)
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Due to special structure of this system, a good approximation to the PD curve
can be found by the harmonic balance method, cf. [28], [29].

We have computed a family of periodic orbits numerically, as described in the
Cl Matcont manual and in [7], starting from the Hopf point for α = 1 and β = 1
at (0, 0, 0). We used N = 20 (mesh intervals) and m = 4 (collocation points) for
the discretization. We detected two period doubling points with period 6.36407 at
α = ±0.6303020, respectively. The noncritical multipliers at the first PD point are
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(a) The behavior of b near a CPC point on a LPC curve in the A → B → C reaction.
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(b) LPC curve in the (p1, u1)-space.
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(c) LPC curve in the (p1, p2)-space.

Fig. 7.2.
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for α = 0.
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(b) The family in the (α, β)-space.

Fig. 7.3.

inside the unit circle, so the periodic orbit could be stable. At the second PD point
there is one multiplier outside the unit circle, and therefore the orbit is unstable. At
the PD points the normal form coefficient c were computed. At the first PD point we
find that c = −0.04267737 < 0. Therefore, the critical periodic orbit at the first PD
point is stable, and a stable limit cycle with approximately double period exists for
nearby parameter values. This was confirmed by computing the periodic orbit and its
multipliers. At the second PD point the normal form coefficient is c = 0.04268605> 0.
Hence the periodic orbit with double period is unstable in the center manifold. By
computing the orbit with doubled period and monitoring the multipliers near this
second PD point, we found that it has indeed two multipliers outside the unit circle.
From the first PD point we computed the branch of PD-cycles. The normal form

coefficient is used as a test function. We also use I =
∫ 1

0
〈v∗1(t), v1(t)〉dt as another

test function. We detected two strong 1:2 resonances on this curve, for α = 0. By
monitoring the multipliers at those R2 points, we found that in both cases there are
two multipliers equal to −1. This family is represented in Fig. 7.3.
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7.3. The NS normal form coefficient in a chemical model. The following
model of the peroxidase-oxidase reaction was studied by Steinmetz and Larter [27]:















Ȧ = −k1ABX − k3ABY + k7 − k−7A,

Ḃ = −k1ABX − k3ABY + k8,

Ẋ = k1ABX − 2k2X
2 + 2k3ABY − k4X + k6,

Ẏ = −k3ABY + 2k2X
2 − k5Y,

(7.3)

where A,B,X, Y are state variables and k1, k2, k3, k4, k5, k6, k7, k8, and k−7 are
parameters. The following values correspond to an unstable equilibrium in (7.3):
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Fig. 7.5.
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Variable Value Parameter Value
A 31.78997 k1 0.1631021
B 1.45468 k2 1250
X 0.01524586 k3 0.046875
Y 0.1776113 k4 20

k5 1.104
k6 0.001
k7 4.235322
k8 0.5
k−7 0.1175

We continued this equilibrium with decreasing k7, keeping all other parameters
fixed. We found a Hopf point at k7 ≈ 0.712475, where the first Lyapunov coefficient is
negative. We then computed the family of stable limit cycles that bifurcates from the
Hopf point. At k7 ≈ 0.716434 a torus (NS) bifurcation occurs. The real part of normal
form coefficient d of (2.8) at this point is Re d = −1.405999 · 10−6, and therefore
the emanating tori would be stable, locally. If we start a time integration from a
point on the critical limit cycle, with a slightly increased parameter value, namely
k7 = 0.7167, then after a transient period the orbit exhibits modulated oscillations
with two frequencies near the limit cycle (see Fig. 7.4). This is a motion on a stable
two-dimensional torus that arises from the Neimark-Sacker bifurcation. The NS point
can be used as a starting point for the 2-parameter continuation of the corresponding
codim 1 bifurcation, using k7 and k8 as control parameters. We monitored Re d of the
normal form coefficient d, computed with (6.25), during this continuation; it vanishes
in a Chenciner bifurcation point (CH). The computed bifurcation curve is presented in
Fig. 7.5(a) and Fig. 7.5(b), in the (A,B)-plane and in the (k7, k8)-plane, respectively.
The NS curve contains two additional codim 2 points, where a triple multiplier µ = 1
is present (also counting the trivial multiplier). These are 1:1 strong resonance points
[23]. Between the 1:1 points, the NS curve is a neutral saddle cycle curve. Near such
codim 2 points complicated homoclinic structures exist.

It should be noted that the algorithm for the NS continuation, as implemented
in matcont, is sufficiently robust to pass through the 1:1 resonance points (within a
10−3 parameter-range).

8. Discussion. The formulas for the normal form coefficients derived in this
paper allow numerical verification of the nondegeneracy conditions (see [23]) for all
codim 1 limit cycle bifurcations. In particular, the coefficients for the period-doubling
and torus bifurcations allow one to distinguish between sub- and supercritical cases.
These coefficients serve as test functions for detecting codim 2 bifurcations of limit
cycles.

The new algorithms fit very well into the BVP-framework (see [3, 9]) of auto [8],
content [25], and, particularly, matcont [6], which contains our current proto-type
implementation.

The underlying technique can also be used to derive the coefficients of the periodic
normal forms for codim 2 singularities of limit cycles. Although periodic normal forms
are known in most of these codim 2 cases (see [1, 4]), substantial work remains to be
done on the derivation and implementation of formulas for their coefficients. When
implemented, such formulas will allow one to verify the nondegeneracy conditions for
the codim 2 bifurcations.

A comparison of the numerical periodic normalization in the current paper to the
computation of normal form coefficients of the Poincaré map via automatic differen-
tiation, is also a task in future work.
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Appendix A. Kernels of some differential-difference operators.

In Section 6 we used the following inner product: If ζ1, ζ2 ∈ C0([0, 1],Cn) and
η1, η2 ∈ Cn, then

〈
[

ζ1
η1

]

,

[

ζ2
η2

]

〉 =

∫ 1

0

〈ζ1(t), ζ2(t)〉 dt+ 〈η1, η2〉 =

∫ 1

0

ζH
1 (t)ζ2(t)dt+ ηH

1 η2.

If this inner product vanishes then we write
[

ζ1
η1

]

⊥
[

ζ2
η2

]

.

In Section 6 we also used the following Propositions:
Proposition A.1. Consider two differential-difference operators

φ1,2 : C1([0, 1],Rn) → C0([0, 1],Rn) × R
n,

where

φ1(ζ) =

[

ζ̇ − TAζ
ζ(0) − ζ(1)

]

, φ2(ζ) =

[

ζ̇ + TATζ
ζ(0) − ζ(1)

]

.

If ζ ∈ C1([0, 1],Rn), then ζ ∈ Ker(φ1) if and only if
[

ζ
ζ(0)

]

⊥ φ2(C1([0, 1],Rn)),

and ζ ∈ Ker(φ2) if and only if
[

ζ
ζ(0)

]

⊥ φ1(C1([0, 1],Rn)).

Proof.
If ζ is in the kernel of φ1 then ζ̇ − TA(t)ζ = 0 and ζ(0) − ζ(1) = 0.
For all g ∈ C1([0, 1],Rn) we have

∫ 1

0 g(t)
Tζ̇(t)dt−

∫ 1

0 Tg(t)
TA(t)ζ(t)dt = 0,

⇒ g(t)Tζ(t)|10 −
∫ 1

0
ġ(t)Tζ(t)dt −

∫ 1

0
Tg(t)TA(t)ζ(t)dt = 0,

⇒ g(1)Tζ(1) − g(0)Tζ(0) −
∫ 1

0
(ġ(t) + TA(t)Tg(t))Tζ(t)dt = 0,

⇒ −(g(0) − g(1))Tζ(0) −
∫ 1

0 (ġ(t) + TA(t)Tg(t))Tζ(t)dt = 0,

⇒ 〈
[

ġ + TATg
g(0) − g(1)

]

,

[

ζ
ζ(0)

]

〉 = 0.

Conversely, assume that 〈
[

ζ
ζ(0)

]

,

[

ġ + TATg
g(0) − g(1)

]

〉 = 0 for all g ∈ C1([0, 1],Rn).

⇒
∫ 1

0 ζ
T(t)(ġ(t) + TA(t)Tg(t))dt+ ζT(0)(g(0) − g(1)) = 0,

⇒ ζ(1)Tg(1) − ζ(0)Tg(0) + ζ(0)T(g(0) − g(1)) −
∫ 1

0 (ζ̇(t) − TA(t)ζ(t))Tg(t)dt = 0,

⇒ −(ζ(0) − ζ(1))Tg(1) −
∫ 1

0
(ζ̇(t) − TA(t)ζ(t))Tg(t)dt = 0.

If ζ̇(t) − TA(t)ζ(t) 6= 0, then there exists a g(t) with g(1) = 0 such that

∫ 1

0

(ζ̇(t) − TA(t)ζ(t))Tg(t)dt 6= 0.
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This is impossible, so ζ̇(t) + TA(t)Tζ(t) = 0. Hence (ζ(0) − ζ(1))Tg(1) = 0 for all
g, hence ζ(0) − ζ(1) = 0. From ζ̇(t) − TA(t)ζ(t) = 0 and ζ(0) = ζ(1) follows that
ζ ∈ Ker(φ1).

The proof of the second part is similar.

Proposition A.2. Consider φ1,2 : C1([0, 1],Rn) → C0([0, 1],Rn) × R
n, where

φ1(ζ) =

[

ζ̇ − TAζ
ζ(0) + ζ(1)

]

, φ2(ζ) =

[

ζ̇ + TATζ
ζ(0) + ζ(1)

]

.

If ζ ∈ C1([0, 1],Rn), then ζ ∈ Ker(φ1) if and only if

[

ζ
ζ(0)

]

⊥ φ2(C1([0, 1],Rn)),

and ζ ∈ Ker(φ2) if and only if

[

ζ
ζ(0)

]

⊥ φ1(C1([0, 1],Rn)).

Proof. As in Proposition A.1.
Proposition A.3. Consider φ1,2 : C1([0, 1],Cn) → C0([0, 1],Cn) × Cn, where

φ1(ζ) =

[

ζ̇ − TAζ + iθIn
ζ(0) − ζ(1)

]

, φ2(ζ) =

[

ζ̇ + TATζ − iθIn
ζ(0) − ζ(1)

]

.

If ζ ∈ C1([0, 1],Cn), then ζ ∈ Ker(φ1) if and only if

[

ζ
ζ(0)

]

⊥ φ2(C1([0, 1],Cn)),

and ζ ∈ Ker(φ2) if and only if

[

ζ
ζ(0)

]

⊥ φ1(C1([0, 1],Cn)).

Proof. As in Proposition A.1.
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