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Abstract. In [Found. Comput. Math., 2 (2002), pp. 203–245], Cohen, Dah-

men, and DeVore proposed an adaptive wavelet algorithm for solving general
operator equations. Assuming that the operator defines a boundedly invert-

ible mapping between a Hilbert space and its dual, and that a Riesz basis

of wavelet type for this Hilbert space is available, the operator equation is
transformed into an equivalent well-posed infinite matrix-vector system. This

system is solved by an iterative method, where each application of the infinite

stiffness matrix is replaced by an adaptive approximation. It was shown that
if the errors of best linear combinations from the wavelet basis with N terms

are O(N−s) for some s > 0, which is determined by the Besov regularity of
the solution and the order of the wavelet basis, then approximations yielded

by the adaptive method with N terms also have errors of O(N−s). Moreover,

their computation takes only O(N) operations, provided s < s∗, with s∗ being
a measure how well the infinite stiffness matrix with respect to the wavelet

basis can be approximated by computable sparse matrices. Under appropri-

ate conditions on the wavelet basis, for both differential- and singular integral
operators and for the relevant range of s, in [SIAM J. Math. Anal., 35(5)

(2004), pp. 1110–1132] we showed that s∗ > s, assuming that each entry of

the stiffness matrix is exactly available at unit cost.
Generally these entries have to be approximated using numerical quad-

rature. In this paper, restricting us to differential operators, we develop a

numerical integration scheme that computes these entries giving an additional
error that is consistent with the approximation error, whereas in each col-

umn the average computational cost per entry is O(1). As a consequence, we
can conclude that the adaptive wavelet algorithm has optimal computational

complexity.

1. Introduction

For a Hilbert space H with dual H′, a boundedly invertible linear operator
L : H → H′, and a g ∈ H′, we consider the problem of finding the solution u ∈ H
of

Lu = g.

In this paper, we will think of this problem as being the result of a variational
formulation of an elliptic boundary value problem of order 2t on a domain Ω ⊂
IRn, so that H will be the Sobolev space Ht(Ω), or a closed subspace of that
incorporating essential boundary conditions on (a part of) the boundary. With
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Ψ = {ψλ : λ ∈ Λ} being a Riesz basis for H, an equivalent infinite matrix-vector
problem reads as

(1.1) Mu = g,

where, with 〈 , 〉 denoting the duality product on H×H′, M := 〈Ψ, LΨ〉 : `2(Λ) →
`2(Λ) is boundedly invertible, g := 〈Ψ, g〉 ∈ `2(Λ), and u = uTΨ.

Considering Ψ to be a wavelet basis, in [CDD02] an iterative adaptive method has
been developed for approximating the solution of this infinite dimensional problem
by a finitely supported vector within any given tolerance. Roughly speaking, the
method consists of an inexact application of a simple iterative scheme to the infinite
matrix vector problem, like damped Richardson in case the infinite stiffness matrix
M is symmetric positive definite. Indeed, since generally the exact application of
M to a current iteration vector already after one iteration would result into an
infinitely supported vector, this matrix-vector product has to be approximated.
Any column of M that corresponds to a nonzero entry in the current iteration
vector is replaced by a finitely supported approximation within a tolerance that
decreases as a function of the size of this coefficient, in such a way that the total
error of the resulting approximate matrix product is sufficiently small to retain
convergence. Besides this adaptive, inexact matrix-vector multiplication, the other
crucial ingredient of the method is a clean-up step that is applied after every fixed
number of iterations to remove small coefficients from the current iteration vector in
order to control the vector length in relation to the accuracy. To assess the quality
of the method, the `2(Λ)-error of the obtained approximation after spending O(N)
operations is compared with that of a best N -term approximation for u, i.e., a
vector uN with at most N non-zero coefficients that has `2(Λ)-distance to u less or
equal to that of any vector with a support of that size.

In any case for wavelets that are sufficiently smooth, the theory of non-linear
approximation ([DeV98, Coh00]) shows that if both

0 < s < d−t
n ,

where d is the order of the wavelets, and the solution u is in the Besov space
Bsn+t
τ (Lτ (Ω)) with τ = ( 1

2 + s)−1, then u ∈ As, meaning that

(1.2) sup
N∈IN

Ns‖u− uN‖ <∞.

Here ‖ ‖ denotes the standard norm on `2(Λ), and later, on other occasions, the
standard norm on the space of linear operators from `2(Λ) to `2(Λ). Note that
for any v ∈ `2(Λ), ‖u − vTΨ‖Ht h ‖u − v‖. In order to avoid the repeated use
of generic but unspecified constants, in this paper by C . D we mean that C
can be bounded by a multiple of D, independently of parameters which C and
D may depend on. Obviously, C & D is defined as D . C, and C h D as
C . D and C & D. The attractive feature of these best N -term approximations
is the fact that the condition involving Besov regularity is much milder than the
corresponding condition u ∈ Hsn+t(Ω) involving Sobolev regularity that would be
needed to guarantee the same rate of convergence with approximation from the
fixed, i.e., non-adaptive spaces spanned by N wavelets on the coarsest scales.

The efficiency of the adaptive method from [CDD02] hinges on the cost of the ap-
proximate matrix-vector product, which depends how well M can be approximated
by a computable sparse matrix. The fact that M can be expected to be close to
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a sparse matrix is a consequence of the properties of wavelets as being smooth
functions and having vanishing moments. We will use the following definition.

Definition 1.1. M is called s∗-computable, when for each j ∈ IN0, we can con-
struct an infinite matrix M∗

j having in each column O(2j) non-zero entries, whose
computation takes O(2j) operations, such that for any s < s∗, ‖M−M∗

j‖ . 2−js.

The main theorem from [CDD02] now says that if u ∈ As for some s, and M is
s∗-computable for an s∗ > s, then the number of arithmetic operations and storage
locations used by the adaptive wavelet algorithm for computing an approximation
for u within tolerance ε is of the order ε−1/s. Since in view of (1.2) the same order
of storage locations is generally needed to approximate u within this tolerance using
best N -term approximations, assuming these would be available, this result shows
that this solution method has optimal computational complexity.

Remark 1.2. Actually, instead of being s∗-computable, in [CDD02] it was assumed
that M is “s∗-compressible”. Apart from our addition that each column of M∗

j

should not only have O(2j) entries, but also that, on average, the computation
of each of these entries should take O(1) operations, it is easily seen that the
definition of “s∗-compressible” from [CDD02] is equivalent to our definition of s∗-
computable (cf. [Ste03, Remark 2.4]). In [CDD02] the average unit cost assumption
was mentioned separately afterwards (in Assumption 2).

To conclude optimality of the adaptive wavelet method, it is necessary to show
that M is s∗-computable for some s∗ ≥ d−t

n , since otherwise for a solution u that
has sufficient Besov regularity, the computability will be the limiting factor. On
the other hand, since, for wavelets of order d, by imposing whatever smoothness
conditions u ∈ As can only be guaranteed for s ≤ d−t

n , showing s∗-computability
for some s∗ > d−t

n is also a sufficient condition for optimality of the adaptive wavelet
method.

Assuming the average unit cost property, s∗-computability for some s∗ > d−t
n has

been demonstrated in [Ste03] for both differential and singular integral operators,
and piecewise polynomial wavelets that are sufficiently smooth and have sufficiently
many vanishing moments. More precisely, under such conditions it was proven that
for some s∗ > d−t

n , the infinite stiffness matrix M is s∗-compressible, a concept
that, different than in [CDD02], we define as follows.

Definition 1.3. M is called s∗-compressible, when for each j ∈ IN0, there exists
an infinite matrix Mj , constructed by dropping entries from M, such that in each
column it has O(2j) non-zero entries, and such that for any s < s∗, ‖M−Mj‖ .
2−js.

Only in the special case of a differential operator with constant coefficients,
entries of M can be computed exactly, inO(1) operations, so that s∗-compressibility
immediately implies s∗-computability. In general, numerical quadrature is required
to approximate the entries. In this paper, considering differential operators, we
will show that M is s∗-computable for the same value of s∗ as is was shown to
be s∗-compressible. The case of singular integral operators will be treated in a
forthcoming paper ([Gan04]). We split the task into two parts. First we derive
a criterion on the accuracy-work balance of a numerical quadrature scheme to
approximate any entry of M, such that, for a suitable choice of the work invested
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in approximating the entries of the compressed matrix Mj as function of both
wavelets involved, we obtain an approximation M∗

j of which the computation of
each column requires O(2j) operations, and ‖Mj − M∗

j‖ ≤ 2−js
∗
, meaning that

M is s∗-computable. Second, we show that we can fulfill above criterion by the
application of standard composite quadrature rules of a fixed, sufficiently high order.

This paper is organized as follows. We collect some error estimates for numerical
quadrature in Section 2. In Section 3, assumptions are formulated on the boundary
value problem and the wavelets, and the result concerning s∗-compressibility is
recalled from [Ste04a]. In Section 4, rules for the numerical approximation of the
entries of the stiffness matrix are derived, with which s∗-computability for some
s∗ > d−t

n will be demonstrated.
At the end of this introduction, we fix a few more notations. A monomial of n

variables is conveniently written using a multi-index α ∈ INn
0 as xα := xα1

1 . . . xαn
n .

Likewise we write partial differentiation operators, that is, ∂α := ∂α1
1 . . . ∂αn

n . We
set |α| := α1 + . . .+αn, and the relation α ≤ β is defined as αi ≤ βi for all i ∈ 1, n.
We have |α± β| = |α| ± |β| provided that α− β ∈ INn

0 in case of subtraction.

2. Error estimates for numerical quadrature

We start with deriving an error bound in L∞-norm for polynomial approxima-
tion, which improves upon available results (e.g. in [DL04, Theorem 1.1]) in the
sense that our upper bound does not contain an unspecified constant that may
vary as function of the polynomial order p. This latter fact will be particularly
important for analyzing the errors of quadrature schemes with varying orders as we
will apply in [Gan04]. We define the radius of a star-shaped domain Ω by

(2.1) rad(Ω) := min
y∈S(Ω)

max
x∈∂Ω

|x− y|,

where S(Ω) := clos {y ∈ Ω : Ω is star-shaped w.r.t. y}. Apparently, we always
have rad(Ω) ≤ diam(Ω), and the radius of a convex domain equals the radius of its
smallest circumscribed sphere.

Lemma 2.1. Let Ω ⊂ IRn be a star-shaped domain and let f ∈ W p
∞(Ω), p ∈ IN .

Then there exists a polynomial g ∈ Pp−1 on Ω for which

(2.2) ‖f − g‖L∞(Ω) ≤
np

p!
· rad(Ω)p · |f |Wp

∞(Ω).

Proof. We first assume that f ∈ C∞(Ω) ∩W p
∞(Ω). Let a point y ∈ S(Ω) be such

that maxx∈∂Ω |x − y| = rad(Ω). Let g be the Taylor polynomial of order p at the
point y, i.e.,

(2.3) g(x) =
∑
|α|<p

(x− y)α

α!
(∂αf)(y).

Then the Taylor remainder is given by

f(x)− g(x) = p
∑
|α|=p

(x− y)α

α!

∫ 1

0

sp−1(∂αf)(x+ (y − x)s)ds.

Using∣∣∣∣∫ 1

0

sp−1(∂αf)(x+ (y − x)s)ds
∣∣∣∣ ≤ ∫ 1

0

sp−1ds · |f |Wp
∞(Ω) =

1
p
· |f |Wp

∞(Ω),
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and
|(x− y)α| = |x1 − y1|α1 . . . |xn − yn|αn ≤ rad(Ω)p,

we have

|f(x)− g(x)| ≤
∑
|α|=p

1
α!
· rad(Ω)p · |f |Wp

∞(Ω).

Then by applying the identity ∑
|α|=p

1
α!

=
np

p!

we get (2.2) for f ∈ C∞(Ω) ∩W p
∞(Ω).

To complete the proof we use a density argument that was proven in [Bur98].
For any f∈W p

∞(Ω), there exist functions fk ∈ C∞(Ω) ∩W p
∞(Ω), k ∈ IN , such that

fk→f in W p−1
∞ (Ω), and ‖fk‖Wp

∞(Ω) → ‖f‖Wp
∞(Ω) as k → ∞. With this result, for

each k ∈ IN let us denote by gk∈Pp−1 the Taylor polynomial (2.3) corresponding
to fk. Then, since for any k, j ∈ IN and |α| < p we have

|(∂αfk)(y)− (∂αfj)(y)| ≤ ‖∂αfk − ∂αfj‖L∞(Ω)

≤ ‖∂αfk − ∂αf‖L∞(Ω) + ‖∂αfj − ∂αf‖L∞(Ω),

where the right-hand side tends to zero as j, k →∞, we infer that there is a g∈Pp−1

such that gk→g in L∞(Ω). Writing

‖f − g‖L∞(Ω) ≤ ‖f − fk‖L∞(Ω) + ‖g − gk‖L∞(Ω) + ‖fk − gk‖L∞(Ω),

and by taking the limit k →∞, the proof is completed. �

On a star-shaped domain Ω, let us now consider quadrature rules of the form
Q : f 7→

∑
j wjf(xj) to approximate I : f 7→

∫
Ω
f . We will only consider rules

that are internal meaning that all xj ∈ clos Ω. The quadrature error functional is
defined as E := I −Q.

Proposition 2.2. For a rule Q of order p, meaning that E(f) = 0 for all f ∈
Pp−1(Ω), and any f ∈W p

∞(Ω) we have

(2.4) |E(f)| ≤
(

1 +

∑
j |wj |

vol(Ω)

)
· n

p

p!
· rad(Ω)p · vol(Ω) · |f |Wp

∞(Ω).

Proof. Taking g as in Lemma 2.1, the proof is an easy consequence of that lemma
and the estimate

|I(f)−Q(f)| = |I(f)−Q(f) +Q(g)− I(g)| ≤ |I(f − g)|+ |Q(g − f)| .

�

Note that for a rule that is positive, meaning that all wj > 0, and that has order

p > 0, we have
∑

j |wj |
vol(Ω) = 1.

Let us now consider a collection O of disjoint star-shaped Lipschitz subdo-
mains Ω′ ⊂ Ω, the latter not necessarily being star-shaped, such that clos Ω =
∪Ω′∈Oclos Ω′, which collection we will refer to as being a quadrature mesh. Writ-
ing I(f) as

∑
Ω′∈O

∫
Ω′
f , on each subdomain Ω′ we employ a quadrature rule

QΩ′(f) =
∑
j w

Ω′

j f(xΩ′

j ) of order p, defining a composite quadrature rule Q of
rank N := #O (and order p) by Q(f) :=

∑
Ω′∈O QΩ′(f).
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Proposition 2.3. For the error functional E = I−Q of this composite quadrature
rule, and f ∈W p

∞(Ω) we have

|E(f)| ≤

(
1 + sup

Ω′∈O

∑
j |wΩ′

j |
vol(Ω′)

)
· sup
Ω′∈O

(
N1/nrad(Ω′)

rad(Ω)

)p
×N−p/n · n

p

p!
· rad(Ω)p · vol(Ω) · |f |Wp

∞(Ω).

Proof. Writing rad(Ω′) = N1/nrad(Ω′)
rad(Ω) N−1/nrad(Ω), and using that

∑
Ω′∈O vol(Ω′) =

vol(Ω), the result follows from Proposition 2.2. �

In view of above estimate, as well as to control the number of function evalu-
ations that are required, in this paper we will consider families (O`)`∈IN of quad-
rature meshes and corresponding families of composite quadrature rules Q` : f 7→∑
Q′∈O`

∑
j w

Ω′

j f(xΩ′

j ) of rank N` := #O` and fixed order p that are admissible
meaning that they satisfy

sup
`∈IN,Ω′∈O`

max

{∑
j |wΩ′

j |
vol(Ω′)

,
N

1/n
` rad(Ω′)
rad(Ω)

,#xΩ′

j

}
<∞.

Note that the bound on the number of abscissae in each subdomain is reasonable
because the space of polynomials of total degree p−1 has

(
p−1+n
n

)
≤ pn . 1 degrees

of freedom.
Finally in this section, we consider product quadrature rules which are generally

applied on Cartesian product domains. LetA andB be domains of possibly different
dimensions, equipped with the quadrature rules Q(A) : g 7→

∑
j wjg(xj) and Q(B) :

h 7→
∑
k vkh(yk) to approximate I(A) : g 7→

∫
A
g and I(B) : h 7→

∫
B
h, respectively.

For simplicity, in this setting we will always assume that these rules are positive
and have strictly positive orders. Now with the product rule Q(A) ×Q(B) we mean
the mapping f 7→

∑
jk wjvkf(xj , yk) to approximate I : f 7→

∫
A×B f .

Lemma 2.4. With error functionals E(A) := I(A)−Q(A) and E(B) := I(B)−Q(B),
the product rule Q := Q(A) ×Q(B) satisfies

(2.5) |I(f)−Q(f)| ≤ vol(A) sup
x∈A

|E(B)(f(x, ·))|+ vol(B) sup
y∈B

|E(A)(f(·, y))|,

as long as both E(A)(f(·, y)) and E(B)(f(x, ·)) make sense for all y ∈ B and x ∈ A,
respectively.

Proof. We have

I(f)−Q(f) =
∫
A×B

f(x, y)dxdy −
∑
j,k

wjvkf(xj , yk)

=
∫
B

∫
A

f(x, y)dx−
∑
j

wjf(xj , y)

 dy

+
∑
j

wj

(∫
B

f(xj , y)dy −
∑
k

vkf(xj , yk)

)
.

The proof is completed by taking absolute values and using that
∑
j wj = vol(A).

�
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As an application of this lemma, we have the following result for product quad-
rature rules on rectangular domains.

Proposition 2.5. Consider the rectangular domain � := (0, l1)× . . .× (0, ln). For
the i-th coordinate direction, let Q(i)

Ni
be a composite quadrature rule of order p with

respect to a quadrature mesh on (0, li) of Ni equally sized subintervals. Then for
the product quadrature rule Q := Q

(1)
N1

× . . . × Q
(n)
Nn

to approximate I : f 7→
∫

� f ,
and f such that ∂pi f ∈ L∞(�), i ∈ 1, n, we have

(2.6) |I(f)−Q(f)| ≤ 21−p

p!
vol(�) ·

n∑
i=1

lpiN
−p
i · max

i∈1,n
‖∂pi f‖L∞(�).

In particular, this quadrature rule is exact on Qp−1(�) := Pp−1(0, l1) × . . . ×
Pp−1(0, ln).

Proof. Using that rad(0, li) = li/2, Proposition 2.3 shows that for each i,

|
∫ li

0

g −Q
(i)
Ni

(g)| ≤ 21−p

p!
N−p
i lp+1

i |g|Wp
∞(0,li).

Using Lemma 2.4 we arrive at the claim by induction. �

Corollary 2.6. For the special case N1 = . . . = Nn = N1/n, with l := maxi li we
have

(2.7) |I(f)−Q(f)| ≤ n
21−p

p!
N−p/n · ln+p · max

i∈1,n
‖∂pi f‖L∞(�).

3. Compressibility

For some domain Ω ⊂ IRn, t ∈ IN0 and ΓD ⊂ ∂Ω, possibly with ΓD = ∅, let

Ht
0,ΓD (Ω) = closHt(Ω){u ∈ Ht(Ω) ∩ C∞(Ω) : suppu ∩ ΓD = ∅},

and let L : Ht
0,ΓD (Ω) → (Ht

0,ΓD (Ω))′ be defined by

〈u, Lv〉 =
∑

|α|,|β|≤t

〈∂αu, aαβ∂βv〉,

where aαβ ∈ L∞(Ω) so that L is bounded. Obviously L has an extension, that
we will also denote by L, as a bounded operator from Ht(Ω) → H−t(Ω). For
completeness, Hs(Ω) for s < 0 denotes the dual of H−s(Ω).

We assume that there exists a σ > 0, such that

(3.1) L,L′ : Ht+σ(Ω) → H−t+σ(Ω) are bounded.

Sufficient is that for arbitrary ε > 0, and all α, β with min{|α|, |β|} > t−σ, it holds
that

aαβ ∈
{

W
σ−t+min{|α|,|β|}
∞ (Ω) when σ ∈ IN,

Cσ−t+min{|α|,|β|}+ε(Ω) when σ 6∈ IN.
In addition, we assume that the coefficients aαβ are piecewise smooth, in the sense
that there exist M disjoint Lipschitz domains Ωq, q ∈ 1,M , such that aαβ is smooth
on each Ωq, and clos Ω = ∪qclos Ωq.

Let
Ψ = {ψλ : λ ∈ Λ}
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be a Riesz basis for Ht
0,ΓD (Ω) of wavelet type. The index λ encodes both the level,

denoted by |λ| ∈ IN0, and the location of the wavelet ψλ. We will assume that the
wavelets are local and piecewise smooth with respect to nested subdivisions in the
following sense: We assume that there exists a sequence (O`)`∈IN0 of collections
O` = {Ω`i : i ∈ J`} of disjoint “uniformly” (in i and `) Lipschitz domains Ω`i , with
clos Ω = ∪i∈J`clos Ω`i and

(3.2) diam(Ω`i) h 2−`,

and where each Ω`i is contained in some Ωq, and its closure is the union of the
closures of a uniformly bounded number of subdomains from O`+1. We assume
that for each λ ∈ Λ there exists a Jλ ⊂ J |λ| with #Jλ . 1, such that suppψλ =
∪i∈Jλ

clos Ω|λ|
i , being a connected set, and that on each Ω|λ|

i , ψλ is smooth with

(3.3) sup
x∈Ω

|λ|
i

|∂βψλ(x)| . 2(|β|+ n
2−t)|λ| for β ∈ INn

0 .

For a precise definition of a collection of sets to be a collection of uniformly Lipschitz
domains, we refer to [Ste04a, Remark 2.1].

Examples of such wavelets are (the images under smooth mappings of) tensor
products of univariate spline wavelets, or finite element wavelets subordinate to a
subdivision of the domain into n-simplices.

Furthermore, we assume that there exist γ > t, d̃ > −t such that for r ∈ [−d̃, γ),
s < γ,

(3.4) ‖ · ‖Hr(Ω) . 2`(r−s)‖ · ‖Hs(Ω), on W` := span{ψλ : |λ| = `}.

For r > s, this is the well-known inverse inequality. For r < s, (3.4) is a conse-
quence of the property of wavelets of having vanishing moments, or, more generally,
cancellation properties.

Remark 3.1. It is known that the above wavelet assumptions are satisfied by
biorthogonal wavelets when the primal and dual spaces have regularity indices
γ > t, γ̃ > 0 and orders d > γ, d̃ > γ̃ respectively (cf. [Dah96, DS99c]), the primal
spaces consist of “piecewise” smooth functions, and finally, no boundary conditions
are imposed on the dual spaces (cf. [DS98]). In particular, (3.4) for r ∈ [−d̃,−γ̃] can
be deduced from the lines following (A.2) in [DS99c]. In case homogeneous bound-
ary conditions are incorporated in the dual spaces, slightly weaker statements can
be proven, see [Ste04a, Remark 2.5].

We recall here the main result on compressibility for differential operators from
[Ste04a].

Theorem 3.2. Let M = 〈Ψ, LΨ〉. Choose κ satisfying

κ =
1

n− 1
when n > 1,(3.5)

κ >
min{t+ d̃, σ}

γ − t
and κ ≥ 1 when n = 1.
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For j ∈ IN , define the infinite matrix Mj by replacing all entries Mλλ′ = 〈ψλ, Lψλ′〉
by zeros when

∣∣|λ| − |λ′|
∣∣ > jκ, or

(3.6)

∣∣|λ| − |λ′|
∣∣ > j/n and

{
∃i′ ∈ Jλ′ , suppψλ ⊆ clos Ω|λ′|

i′ when |λ| > |λ′|,
∃i ∈ Jλ, suppψλ′ ⊆ clos Ω|λ|

i when |λ| < |λ′|.

(3.7)

Then the number of non-zero entries in each column of Mj is of order 2j, and for
any

s ≤ min{ t+d̃n , σn}, with s < γ−t
n−1 when n > 1,

it holds that ‖M−Mj‖ . 2−js. We conclude that M is s∗-compressible, as defined
in Definition 1.3, with s∗ = min{ t+d̃n , σn ,

γ−t
n−1} when n > 1, and s∗ = min{t+ d̃, σ}

when n = 1.

From this theorem we infer that if d̃ > d − 2t, σ > d − t and, when n > 1,
γ−t
n−1 > d−t

n , then s∗ > d−t
n as required. For n > 1, the condition involving γ is

satisfied for instance for spline wavelets, where γ = d− 1
2 , in case d−t

n > 1
2 .

If each entry of M can be exactly computed in O(1) operations, then s∗-com-
pressibility implies s∗-computability, as defined in Definition 1.1, and so, when
indeed s∗ > d−t

n , it implies the optimal computational complexity of the adap-
tive wavelet scheme from [CDD02]. This assumption on the computation of the
entries is realistic when both the coefficients aαβ of the differential operator and
the wavelets are piecewise polynomials. In general, however, numerical quadrature
will be needed to approximate the entries of Mj . Then the question arises how
to realize a sufficient accuracy of these approximations such that the additional
error has, qualitatively, the same upper bound as ‖M − Mj‖, where in each col-
umn the average work per entry is O(1), in which case s∗-compressibility implies
s∗-computability. In the next section, additionally assuming that the wavelets are
essentially piecewise polynomials, we will see that it is possible to select quadrature
rules with which this is realized.

4. Computability

Let us denote by M∗
j the matrix, with elements M∗

j,λλ′ , obtained by approx-
imating the entries of Mj using some numerical scheme dependent on j. The
following theorem defines a criterion on the computational cost in relation to the
accuracy for computing individual entries of M so that s∗-compressibility implies
s∗-computability.

Theorem 4.1. Let M, Mj and s∗ be as in Theorem 3.2. Assume that for some
d∗ ∈ IR and p with

(4.1) p > s∗n+ d∗ and p ≥ s∗n,

an approximation M∗
λλ′ of Mλλ′ can be computed in O(N) operations, having an

error

(4.2) |Mλλ′ −M∗
λλ′ | . N−p/n2−||λ|−|λ

′||(n/2+p−d∗).



10 T. GANTUMUR AND R.P. STEVENSON

Then for parameters θ and % with

(4.3) θ ≤ 1 and s∗n/p ≤ θ ≤ % < 1− d∗/p,

by spending the number of

(4.4) Nj,λλ′ h max{1, 2jθ−||λ|−|λ
′||n%}

arithmetical operations to the computation of M∗
j,λλ′ , one has ‖Mj−M∗

j‖ . 2−js
∗
,

and the work for computing each column of M∗
j is of order 2j.

Since the conditions (4.1) and (4.3) define a nonempty set in the θ − % plane,
we conclude that M is s∗-computable.

The proof will use Schur’s lemma that we recall here for the reader’s convenience.

Lemma 4.2 (Schur’s lemma). If for a matrix A = (aλ,λ′)λ,λ′∈Λ, there is a sequence
ωλ > 0, λ ∈ Λ, and a constant C such that∑

λ′∈Λ

ω′λ|aλλ′ | ≤ ωλC, (λ ∈ Λ), and
∑
λ∈Λ

ωλ|aλλ′ | ≤ ω′λC, (λ′ ∈ Λ),

then ‖A‖ ≤ C.

Proof of Theorem 4.1. Denoting the (λ, λ′)-th entry of the error matrix Mj −M∗
j

by εj,λλ′ , from (4.2) and (4.4) we have

(4.5) εj,λλ′ . N
−p/n
j,λλ′ 2−||λ|−|λ

′||(n/2+p−d∗) . 2−||λ|−|λ
′||(n/2+p−%p−d∗)2−jθp/n.

We have σ := n/2 + p− %p− d∗ = n/2 + p(1− %− d∗/p) > n/2 from (4.3). Let λ
be some given index. The locality assumptions on the wavelets show that for fixed
λ ∈ Λ, the number of indices λ′ with fixed |λ′| with vol(suppψλ′ ∩ suppψλ) > 0 is
of order max{1, 2(|λ′|−|λ|)n}. With weights ωλ′ = 2−|λ

′|n/2, we find

ω−1
λ

∑
λ′

ωλ′ |εj,λλ′ | . 2|λ|n/2
∑

0≤|λ′|≤|λ|

2−|λ
′|n/22−(|λ|−|λ′|)σ2−jθp/n · 1

+2|λ|n/2
∑

|λ′|>|λ|

2−|λ
′|n/22−(|λ′|−|λ|)σ2−jθp/n · 2(|λ′|−|λ|)n

. 2−jθp/n.

By the symmetry of the estimate (4.5) in λ and λ′, from Schur’s lemma we conclude
that

‖Mj −M∗
j‖ . 2−jθp/n ≤ 2−js

∗
,

because θ ≥ s∗n/p.
Denoting by Λj,λ the set of row-indices of nonzero entries in the λ-th column of

Mj , the computational work Wj,λ for this column is

Wj,λ =
∑

λ′∈Λj,λ

Nj,λλ′ .
∑

λ′∈Λj,λ

max{1, 2jθ−||λ|−|λ
′||n%}

. 2j +
∑

{λ′∈Λj,λ:||λ|−|λ′||≤j/n}

2jθ−||λ|−|λ
′||n%,

where we used the fact that, since % ≥ θ, 2jθ−||λ|−|λ
′||n% < 1 for ||λ| − |λ′|| > j/n,

and that the number of nonzero entries in each column of Mj is O(2j). The second
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term can be bounded by a constant multiple of∑
−j/n≤|λ′|−|λ|≤0

2jθ−(|λ|−|λ′|)n% · 1 +
∑

0<|λ′|−|λ|≤j/n

2jθ−(|λ′|−|λ|)n% · 2(|λ′|−|λ|)n

. 2jθ2jmax{0,1−%}.

From (4.3) we have θ ≤ 1 and θ ≤ %, and so 1− %+ θ ≤ 1, from which we conclude
that Wj,λ = O(2j). �

By applying the error estimates from Section 2, we will now show how numerical
quadrature schemes satisfying (4.2) can be realized. An entry of the matrix can be
rewritten as

Mλλ′ =
∑

|α|,|β|≤t

∫
suppψλ∩suppψλ′

aαβ∂
αψλ∂

βψλ′ .

Without loss of generality, in the remainder of this section we assume that

|λ| ≥ |λ′|.

Then, it is clear that the intersection suppψλ ∩ suppψλ′ is the union of sets Ω|λ|
i ,

i ∈ Jλλ′ , for some Jλλ′ ⊆ Jλ. Therefore we can expand the integral into integrals
of smooth functions

(4.6) Mλλ′ =
∑
i∈Jλλ′

Iλλ′,i,

where

(4.7) Iλλ′,i :=
∑

|α|,|β|≤t

∫
Ω
|λ|
i

aαβ∂
αψλ∂

βψλ′ .

Recall that for each ` ∈ IN0, i ∈ J`, there is a q = q(`, i) ∈ 1,M with Ω`i ⊂ Ωq,
and furthermore that all aαβ are smooth on any Ωq. In the following, we assume
that there is a constant e ∈ IN , and that there are smooth regular mappings
κq : Rn → Rn, such that for each λ ∈ Λ, i ∈ Jλ, and q = q(|λ|, i),
(4.8) (ψλ ◦ κq)|κ−1

q (Ω
|λ|
i )

∈ Pe−1.

With the commonly used approaches to constructed wavelets on non-trivial ge-
ometries via domain decomposition techniques ([DS99a, CTU99, CM00, DS99b,
Ste04b]), above assumption is valid when one starts from a piecewise polynomial
multiresolution analysis on the corresponding reference domain. Note that the
smallest e for which (4.8) holds satisfies e ≥ d (≥ t+ 1).

Since by a transformation of coordinates,
∑

|α|,|β|≤t
∫
Ω
|λ|
i
aαβ∂

αψλ∂
βψλ′ can be

written as
∑

|α|,|β|≤t
∫
κ−1

q (Ω
|λ|
i )

ãαβ∂
α(ψλ ◦ κq)∂β(ψλ′ ◦ κq), where, as aαβ , ãαβ is a

function that is smooth, in the following without loss of generality we may assume
that κq = id.

Proposition 4.3. Consider a composite quadrature rule from an admissible family
(uniformly in λ ∈ Λ and i ∈ Jλ) of fixed order p and rank N to approximate each
of the integrals from (4.7), where ψλ|Ω|λ|i

∈ Pe−1. Then, with

(4.9) d∗ := e− 1− t,

the error of this numerical integration is bounded by

(4.10) |Mλλ′ −M∗
λλ′ | . N−p/n2−||λ|−|λ

′||(n/2+p−d∗),
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Taking p > s∗n + d∗, we conclude that the criterion for s∗-compressibility from
Theorem 4.1 is satisfied.

Proof. In view of Proposition 2.3 we have to bound ∂ζ(aαβ∂αψλ∂βψλ′) for |ζ| = p,
or ∂ηaαβ∂α+θψλ∂

β+ξψλ′ for |η + θ + ξ| = p. Since aαβ is smooth, |λ| ≥ |λ′|, and
∂α+θψλ vanishes when |α + θ| ≥ e, by invoking (3.3) we see that the worst case
occurs when η = 0, |α + θ| = r := min{e − 1, |α| + p}, and thus |ξ| = p − r + |α|,
yielding

|aαβ∂αψλ∂βψλ′ |Wp
∞(Ω

|λ|
i )

. 2(r+n/2−t)|λ|2(p−r+|α|+|β|+n/2−t)|λ′|

≤ 2(e−1+n/2−t)|λ|2(p−e+1+|α|+|β|+n/2−t)|λ′|.

Now using that diam(Ω|λ|
i ) h 2−|λ| and |α|, |β| ≤ t, Proposition 2.3 shows that

|Mλλ′ −M∗
λλ′ | . N−p/n2−|λ|(n+p)2(e−1+n/2−t)|λ|2(p−e+1+t+n/2)|λ′|

= N−p/n2−||λ|−|λ
′||(n/2+p−d∗).

�

In the case of tensor product constructions yielding wavelets that are piecewise
in Qd−1, the (piecewise) polynomial order e is n(d− 1) + 1, so that d∗ from Propo-
sition 4.3 is equal to n(d − 1) − t (≥ (n − 1)d). In the next proposition, we will
see that for such wavelets the application of product quadrature rules gives rise to
smaller d∗, and so allows for smaller quadrature orders p.

Proposition 4.4. Suppose that Ω|λ|
i is a n-rectangle, ψλ|Ω|λ|i

∈ Qd−1(Ω
|λ|
i ), and

that a product composite quadrature rule of order p and rank N as in Corollary 2.6
is applied to approximate each of the integrals from (4.7). Then, with

(4.11) d∗ := d− 1,

the error of the numerical integration is bounded by

(4.12) |Mλλ′ −M∗
λλ′ | . N−p/n2−||λ|−|λ

′||(n/2+p−d∗).

Taking p > s∗n + d∗, we conclude that the criterion for s∗-compressibility from
Theorem 4.1 is satisfied.

Proof. Without loss of generality, we may assume that the n-rectangle Ω|λ|
i ⊂ IRn

is aligned with the Cartesian coordinates. In view of Corollary 2.6, for any i ∈ 1, n
we have to bound ∂pi (aαβ∂

αψλ∂
βψλ′), or ∂ki aαβ∂

l
i∂
αψλ∂

m
i ∂

βψλ′ for k+ l+m = p.
Since aαβ is smooth, |λ| ≥ |λ′|, and ∂li∂

αψλ vanishes when αi + l ≥ d, by invoking
(3.3) we see that the worst case occurs when k = 0, αi+ l = r := min{d−1, αi+p},
and thus m = p− r + αi, yielding∣∣∂pi (aαβ∂αψλ∂βψλ′)∣∣ . 2(|α|−αi+r+n/2−t)|λ|2(p−r+αi+|β|+n/2−t)|λ′|

. 2(|α|+d−1+n/2−t)|λ|2(p−d+1+|β|+n/2−t)|λ′|.

Since diam(Ω|λ|
i ) h 2−|λ| and |α|, |β| ≤ t, an application of Corollary 2.6 shows that

|Mλλ′ −M∗
λλ′ | . N−p/n2−|λ|(n+p)2(d−1+n/2)|λ|2(p−d+1+n/2)|λ′|

= N−p/n2−||λ|−|λ
′||(n/2+p−d∗).

�
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