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The problem of the estimation of multiple phases (or of commuting unitaries) is considered. This
is a sub-model of the estimation of a completely unknown unitary operation where it has been
shown in recent works that there are considerable improvements by using entangled input states
and entangled measurements. Here it is shown that when estimating commuting unitaries, there is
practically no advantage in using entangled input states or entangled measurements.

I. INTRODUCTION

A unitary operation is a map that transforms a density
operator ρ0 on Cd to another density operator ρ = Uρ0U

†

on Cd, where U ∈ SU(d) is a d× d special unitary matrix.
Suppose one is given a device that performs an unknown
U . One can learn something about U by learning about
how it transforms a known state ρ0. In order to completely
determine a unitary operation one would need to know how
it transforms a basis of Cd plus some linear combinations
thereof. This is known as quantum process tomography [1].
More precisely, to estimate U one prepares many copies of
the necessary input states and performs a measurement on
the output that they produce. As a result, some classical
data are obtained and from that one can estimate U . This
is shown schematically in Fig. 1.
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FIG. 1: Quantum process tomography.

Another approach (used in Refs. [2, 3, 4, 5]) is to prepare
a bipartite entangled input state ρ0 on Cd ⊗ Cd and then
use one of the parts as input for U , while nothing is done
to the other part, as shown in Fig. 2. The effect of the
operation is to transform the state ρ0 to (U⊗1)ρ0(U†⊗1).
This output state is then measured and estimated, and,
since in this case there is a one-to-one relation between the
output state and U , one gets an estimate for U as well. The
advantages of this method with respect to quantum process
tomography are that only one input state is needed, and
that there is potentially a better accuracy in the estimation
(if nonseparable measurements are used) [5].
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FIG. 2: Entanglement is used, Cd ⊗ Cd model.
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In this paper a relatively less difficult problem will be
studied, the estimation of unitary operations that commute
with one another, that is, only a maximal Abelian subgroup
of SU(d) is considered instead of the whole group. In this
case, the number of unknown parameters decreases from
d2 − 1 to d− 1. This problem has already been addressed
in Ref. [6] where it is given the name of “multiple phase
estimation” (MPE). One would like to know whether it is
also advantageous to use an entangled input in MPE. In
what follows the MPE model that uses entanglement (Fig.
2) will be referred to as MPEE and the one that does not
use it (Fig. 1) will be referred to as MPEU.

There are two things that need to be optimized here, the
input state and the measurement that is to be performed.
Therefore one needs a quantitative measure of how good
an input state is and of how good a measurement is.

II. PRELIMINARIES

In this section, the necessary concepts of quantum Fisher
information (QFI) and Fisher information (FI) will be in-
troduced, and the quantum Cramér-Rao bound (QCRB)
will be stated. The QFI and the FI will be used as mea-
sures of the performance of an input state and a measure-
ment, respectively. The QCRB relates these two quantities
in a nice way.

A. QFI

Suppose that the quantum state density matrix ρ on Cd

is parametrized by θ ∈ Θ ⊂ R
p where p is the number of

parameters. In our case ρ would be the output state and
p = d − 1. Define the symmetric logarithmic derivatives
(SLDs) λ1, . . . , λp as the self-adjoint operators that satisfy

ρ,i(θ) = ∂θi
ρ(θ) = 1

2 [ρ(θ)λi(θ) + λi(θ)ρ(θ)].

For pure states, ρ = |ψ〉〈ψ|, they simply are λi = 2ρ,i. The
QFI is defined as the p× p matrix with elements

Hij(θ) = Re tr [ρ(θ)λi(θ)λj(θ)]

which for pure states reduces to

Hij(θ) = Re〈li(θ)|lj(θ)〉

where |li(θ)〉 = λi(θ)|ψ(θ)〉.
The |l〉 vectors have a simple geometric interpretation.

Suppose one has a pure state model parametrized by θ ∈
Θ ⊂ R. For simplicity, the parameter has been taken to
be one dimensional. Denote the set of all state vectors by
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H = {|ψ(θ)〉|θ ∈ Θ} and the set of all density operators by
M = {ρ(θ)|θ ∈ Θ}. State vectors and density operators
are related by the map π : |ψ〉 7→ |ψ〉〈ψ|, H → M. This
map is many to one since π(|ψ〉) = π(eiφ|ψ〉) where φ is an
arbitrary real phase. This means that π−1(ρ0) is a circle
in H and that a curve in M is mapped through π−1 to a
tube in H. Conversely, all curves that lie on the surface of
the tube, are mapped through π to the same curve in M.
Then out of all curves |ψ(θ)〉 ∈ H satisfying |ψ(0)〉 = |ψ0〉
and π(|ψ(θ)〉) = ρ(θ) (ρ(θ) is a given curve in M) there is
a minimal curve |ψ̃(θ)〉, defined as the one that at every θ
goes from the circle π−1[ρ(θ)] to the circle π−1[ρ(θ + δθ)]
using the shortest path. |l(θ)〉 is a vector pointing in the
direction of that shortest path. It can then be calculated
as |l(θ)〉 = 2∂θ|ψ̃(θ)〉.

B. FI

Take a positive operator values measure (POVM) with
elements M1, . . . ,Mn. This POVM induces a probability
distribution given by pξ(θ) = tr ρ(θ)Mξ, the probability to
obtain outcome ξ if the parameter has the value θ. The
Fisher information for this measurement is defined as the
p× p matrix with elements

Iij(M, θ) = EM,θ[∂θi ln pξ(θ)∂θj ln pξ(θ)].

For an estimator θ̂ and a measurement M , locally unbi-
ased at θ0,1 the (classical) Cramér-Rao bound is satisfied

V (M, θ0, θ̂) ≥ I(M, θ0)−1,

i.e., the FI is the smallest variance that a locally unbiased
estimator based on this measurement can have. This also
means that, if one of the eigenvalues of I is zero, then the
variance of the function of the parameters corresponding
to that eigenvalue is infinity and therefore cannot be esti-
mated.

If one has N copies of the quantum state and performs
the same measurement on each of the copies then the FI
of the N copies, IN , satisfies IN (M, θ) = NI(M, θ) where
I(M, θ) is the FI of one system. It follows that

V N (M, θ0, θ̂) ≥ IN (M, θ0)−1 = I(M, θ0)−1/N.

It is a well known fact in mathematical statistics that the
maximum likelihood estimator (MLE) in the limit of large
N is asymptotically unbiased and saturates the classical
Cramér-Rao bound. Moreover no other reasonable estima-
tor (unbiased or not) can do better.

C. QCRB

The QCRB states that for any measurement M

I(M, θ) ≤ H(θ). (1)

1 This means that the expectation of the estimator satisfies

EM,θ0 (θ̂i) = θ0i and ∂θj EM,θ(θ̂i)


θ=θ0
= δij .

In other words, H(θ) − I(M, θ) is a positive semidefinite
matrix.

This bound is not achievable in general. A theorem due
to Matsumoto [7] states that for pure states the bound is
achievable at θ = θ0 if and only if

Im〈li(θ0)|lj(θ0)〉 = 0. (2)

If a model satisfies the above condition, it is said to be
quasiclassical at θ0. Furthermore, if condition (2) holds,
there is a measurement with p + 2 elements that achieves
the bound. In fact, any measurement of the type

Mα = |bα〉〈bα|, α = 1, . . . , p+ 1,

Mp+2 = 1−
m+1∑
α=1

Mα,

|bα〉 =
p+1∑
β=1

oαβ |mβ〉,

|mk〉 =
∑

l

(H− 1
2 )kl|ll〉, |mp+1〉 = |φ〉,

(3)

with o a (p+ 1)× (p+ 1) real orthogonal matrix satisfying
oα,p+1 6= 0 achieves I(M, θ0) = H(θ0).

Now one can see why these quantities are a good mea-
sure of the performance of input states and measurements.
From V ≥ I−1/N ≥ H−1/N one can see that a good input
state is one that achieves an H as large as possible and
a good measurement is one that achieves an I as large as
possible. Since I and H are matrices the best input state
and best measurement cannot always be decided unam-
biguously. This ambiguity will not be completely resolved
in the case of choosing an input state. However, in the
case of choosing an optimal measurement there will be no
ambiguity. In the next section, it will be shown that for ev-
ery input state there is a measurement on the output state
that achieves equality in Eq. (1). Therefore, an optimal
measurement is one that achieves equality in the QCRB.

III. MPE IS A QUASICLASSICAL MODEL

It will be shown here that both MPEE and MPEU are
quasiclassical everywhere (for all θ ∈ R

d−1) and for any
input state. In particular, this means that only one in-
put state is necessary in MPEU also. In this respect MPE
is quite different from the estimation of a completely ar-
bitrary U . Actually, since MPEU can be considered as a
special case of MPEE, one needs to show quasiclassicality
only for MPEE.

The MPEE model is

ρ(θ) = Uθρ0U
†
θ

(4)

where

Uθ = exp

(
i

d−1∑
m=1

θmTm

)
⊗ 1,

ρ0 on Cd ⊗ Cd is a pure state density matrix,2 and
T1, . . . , Td−1 are selfadjoint traceless matrices that com-

2 ρ0 can be taken to be pure since it was shown in [8] that the QFI
is convex.
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mute with one another. They are chosen so that they sat-
isfy an orthonormality condition

trTmTn = δnm. (5)

The SLDs are

λm = 2∂mρ(θ) = 2i[Tm ⊗ 1, ρ(θ)]

and

tr ρλmλn = 4{tr ρ0(TmTn⊗1)− tr[ρ0(Tm⊗1)ρ0(Tn⊗1)]}.

It is easy to see that due to the commutativity of the T ’s
this quantity is real and therefore the model is quasiclassi-
cal, i.e., it satisfies the condition (2). Therefore for every
θ there exists a measurement M (which may depend on θ)
such that I(M, θ) = H(θ). Furthermore, if one has a large
number N of copies, performs the same (optimal) measure-
ment on all N , and calculates the MLE, the mean square
error should behave as

V N (M, θ, θ̂MLE) = H(θ)−1/N + o(1/N). (6)

IV. OPTIMAL INPUT STATE

It is now clear from Eq. (6) that one needs to choose
the input state so that the QFI is “large.” Suppose there
is an input state that has a QFI that is larger than or
equal to the QFI of any other input state. In that case one
can unambiguously choose that state as the optimal one.
Unfortunately, in our case there is not such a state. Fur-
thermore, there are situations in which one has two input
states ρ1 and ρ2 with QFI H1 and H2, respectively, which
satisfy neither H1 ≤ H2 nor H1 ≥ H2. This is resolved
by maximizing a quantity like TrGH, with G a real posi-
tive semidefinite matrix. By doing this one assigns relative
weights to the mean square errors of the different param-
eters. Furthermore, achieving maximum TrGH ensures
that no other input state can have a larger QFI. In this
paper a particular choice is made: all parameters are given
the same importance, i.e., the input state will be chosen
so that it maximizes TrH. With this particular choice it
is possible to obtain nice analytic results and, since the
trace of the QFI is parametrization invariant, the results
obtained will not depend on the chosen parametrization.

A. MPEE

Since the self-adjoint matrices T1, . . . , Td−1 commute
with one another, there is a basis where all of them are di-
agonal {|1〉, . . . , |d〉} (this basis is considered to be known).
From this point, all calculations will be made in this basis.

The input state is ρ0 = |Ψ0〉〈Ψ0|, and |Ψ0〉 can be ex-
panded as |Ψ0〉 =

∑
kl Rkl|kl〉. The partial trace is then

trB |Ψ0〉〈Ψ0| = RR†, and since RR† is self-adjoint and has
trace 1, it can be written as

RR† =
1

d
+

d2−1∑
α=1

tαTα,

where, in general, the last sum includes all generators of
the Lie algebra su(d). Then the QFI is

Hmn = 4 [〈Ψ0|(TmTn ⊗ 1)|Ψ0〉
− 〈Ψ0|(Tm ⊗ 1)|Ψ0〉〈Ψ0|(Tn ⊗ 1)|Ψ0〉]
= 4

[
tr(RR†TmTn)− (trRR†Tm)(trRR†Tn)

]
= 4

[
tr(RR†TmTn)− tmtn

] (7)

and its trace is

TrH = 4

[
tr

(
RR†

d−1∑
m=1

T 2
m

)
−

d−1∑
m=1

t2m

]
.

The commuting T ’s can be written as Tm =∑d
k=1 cmk|k〉〈k|. The tracelessness condition implies∑d
k=1 cmk = 0, while the orthonormality condition (5) im-

plies
∑d

k=1 cmkcnk = δmn. These two together lead to

d−1∑
m=1

cmkcml = δkl −
1
d

and then to

d−1∑
m=1

T 2
m =

d∑
k=1

d−1∑
m=1

c2mk|k〉〈k| =
d− 1
d

1.

Substituting this in the equation for the trace, one gets

TrH = 4

[
d− 1
d

−
d−1∑
m=1

t2m

]
,

and one immediately sees that trH is maximal if and only
if tm = 0, m = 1, . . . , d − 1. Of course the rest of the t’s
can be anything (as long as RR† remains positive).

Concluding, any pure input state ρ0 satisfying

tr ρ0(Tm ⊗ 1) = 0, ∀ m = 1, . . . , d− 1,

achieves a QFI Hmn = 4 δmn/d which has the maximum
possible trace among all QFIs. In particular, maximally
entangled states satisfy this condition.

In the full SU(d) model one obtains a similar result, and
the maximum is attained at and only at the maximally
entangled state; this will be shown in appendix A.

B. MPEU

It will be shown here that for every entangled input state
|Ψ0〉 =

∑
kl Rkl|kl〉 ∈ Cd⊗Cd and every value of the (d−1)-

dimensional parameter θ there is an input state |ψ0〉 ∈ Cd

that achieves the same QFI everywhere. This means that
in this model, unlike in the full SU(d) model, there is no
improvement in the accuracy of the estimation by using
entangled inputs.

The model is now

ρ(θ) = Uθρ0U
†
θ

where

Uθ = exp

(
i

d−1∑
m=1

θmTm

)
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and ρ0 = |ψ0〉〈ψ0| is a pure state density matrix. Of course
this model is also quasiclassical and by a calculation iden-
tical to the one made in the Cd⊗Cd case one gets that the
QFI is

Hmn = 4 [〈ψ0|TmTn|ψ0〉 − 〈ψ0|Tm|ψ0〉〈ψ0|Tn|ψ0〉] .

It is not difficult to see that any input state of the form

|ψ0〉 =
d∑

k=1

√
〈k|RR†|k〉 eiφk |k〉

where the φ’s are arbitrary phases, achieves

Hmn = 4 [〈Ψ0|(TmTn ⊗ 1)|Ψ0〉
− 〈Ψ0|(Tm ⊗ 1)|Ψ0〉〈Ψ0|(Tn ⊗ 1)|Ψ0〉] ,

the QFI when the input is the entangled state |Ψ0〉.
In particular, any input state of the form

|ψ0〉 =
1√
d

d∑
k=1

eiφk |k〉 (8)

achieves the maximum trace of the QFI. A state of this
form (with all the φ’s set to zero) was used in Ref. [6].

V. OPTIMAL MEASUREMENT

A. MPEU

This model (and actually also the MPEE) has the prop-
erty that I(θ, UθMU†θ ) = I(0,M), which is easy to prove;
the only necessary ingredient is that U†θ∂θk

Uθ = ∂θk
Uθ|θ=0.

Therefore, if one has an optimal measurement M at θ = 0,
then the measurement UθMU†θ will be optimal at θ.

One can now use the recipe given by Eq. (3) to find an
optimal measurement at θ = 0. The optimal input state3

given by Eq. (8) is used. At the origin one has

|ln〉 =
2i√
d

d∑
k=1

cnk eiφk |k〉,

|ψ〉 =
1√
d

d∑
k=1

eiφk |k〉.

From these vectors one can form an orthonormal set

|mn〉 = i
d∑

k=1

cnk eiφk |k〉, n = 1, . . . , d− 1,

|md〉 =
1√
d

d∑
k=1

eiφk |k〉

and with the choice okl = δkl − 2/d one gets the set of or-
thonormalized states onto which the measurement elements
will project,

|bk〉 = |mk〉 −
2
d

d∑
l=1

|ml〉, k = 1, . . . , d. (9)

3 i.e. the one that achieves maximum trace of the QFI

The optimal measurement at θ = 0 has elements Mk =
|bk〉〈bk| and since the above vectors form an orthonormal
basis of Cd, they satisfy

∑d
k=1Mk = 1. The optimal mea-

surement at θ has elements Uθ|bk〉〈bk|U†θ .
Note that the above choice of the orthogonal matrix o

works for d ≥ 3; for d = 2 another matrix must be chosen.
The d = 2 case will be treated in the following example.

Example V.1 (d = 2) The orthonormal set formed from
the input state and |l〉 is

|m1〉 =
i√
2
(|0〉 − |1〉)

|m2〉 =
1√
2
(|0〉+ |1〉).

(10)

These vectors are then rotated to obtain

|b1〉 = cos η|m1〉 − sin η|m2〉 =
i√
2
(eiη|0〉 − e−iη|1〉)

|b2〉 = sin η|m1〉+ cos η|m2〉 =
1√
2
(eiη|0〉+ e−iη|1〉),

(11)

where η must satisfy sin η 6= 0 and cos η 6= 0. The mea-
surement elements are |b1〉〈b1| and |b2〉〈b2|. The FI of this
measurement at the origin is equal to the QFI (equal to 2)
as expected. Furthermore, this equality happens to hold ev-
erywhere and not only at the origin. This feature is very
useful in practice, it means that the optimal measurement
does not depend on the actual (unknown) value of the pa-
rameter and therefore an adaptive scheme is not necessary.
Whether it is possible to find measurements with this char-
acteristic for d > 2 is an open problem.

B. MPEE

An optimal measurement in this case can also be de-
rived using the recipe given by Eq. (3). In general, such
a measurement is a joint measurement on the two output
systems. One could ask whether it is possible to achieve
the bound with local measurements and classical communi-
cation. In what follows, it will be shown that this is indeed
possible.

The input state is taken to be the maximally entangled
state

∑d
k=1 |kk〉/

√
d. Alice measures the system coming

out of U and Bob measures the other one. The strategy
is the following. Bob performs the von Neumann measure-
ment Bk = |wk〉〈wk| with

∑
k Bk = 1 on his system where

|wk〉 =
1√
d

d∑
l=1

exp
(

2πkl
d

i

)
|l〉, k = 1, . . . , d.

He obtains outcome k with probability 1/d; he then phones
Alice and tells her the outcome of his measurement. The
net result of this is that Bob prepares the state

1√
d

d∑
l=1

exp
(
−2πkl

d
i

)
|l〉

at the input of U . It is easy to recognize this state as one
of the optimal states in the Cd case. Now Alice can per-
form the measurement Akl with

∑
lAkl = 1, which is the

optimal measurement described above for the Cd case, and
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where the arbitrary phases are now fixed to φl = 2πk/d.
It is not difficult to check that this measurement indeed
achieves equality in the QCRB at θ = 0. The measure-
ment on Cd ⊗ Cd is then

∑
kl Akl ⊗ Bk = 1 ⊗ 1 and the

measurement
∑

kl UθAklU
†
θ ⊗Bk = 1⊗ 1 is optimal at θ.

If this is applied to the d = 2 case and one uses the θ-
independent optimal measurement derived for MPEU, a θ-
independent optimal measurement is obtained for MPEE.

VI. ASYMPTOTIC FIDELITY

From the results obtained previously, one can infer the
asymptotic behavior of the average fidelity. Indeed, in
Ref. [9], it was established that the fidelity between nearby
states is given by4

F(θ, θ + δθ) =
(

tr
√√

ρ(θ)ρ(θ + δθ)
√
ρ(θ)

)2

=1−
p∑

α,β=1

H(θ)αβ

4
δθαδθβ + o(δθ2),

(12)

where p is the number of parameters and H is the QFI. In
the case studied here, this fidelity would be between output
states.

Denote by θ̂ξ the guess for θ if the outcome of the mea-
surement was ξ, then the fidelity, averaged over all possible
outcomes, is

F (θ, θ̂) =
∑

ξ

tr[ρ(θ)Mξ] F(θ, θ̂ξ)

= 1− trH(θ)V (M, θ, θ̂)
4

+ o(δθ2),

(13)

where V (M, θ, θ̂)αβ =
∑

ξ tr[ρ(θ)Mξ] (θ̂ξα − θα)(θ̂ξβ − θβ)
is the mean square error of measurement M and estimator
θ̂.

Therefore, using Eq. (6) one gets

lim
N→∞

N [1− F (θ, θ̂)N )] =
TrH(θ)H(θ)−1

4
=
d− 1

4
. (14)

This result can be compared with the optimal fidelities ob-
tained in Ref. [6]. These optimal fidelites were also av-
eraged with respect to a uniform prior distribution on θ.
However since the result obtained here does not depend on
θ, its average with respect to any prior will be itself. The
comparison is shown in Fig. 3.

One can easily see that for large N the optimal fidelity
of Ref. [6] agrees with the result obtained here. Actually,
this can also be proved analytically but the proof will not
be shown here.

VII. CONCLUSIONS

Two models have been compared, the model of estimat-
ing commuting unitaries with and without the use of en-
tangled inputs (MPEE and MPEU, respectively).

4 Actually, this fidelity is the square of the fidelity used in Ref. [9].
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FIG. 3: The points are N(1 − F N ) as a function of N for d =
2, . . . , 5, where F N is the optimal fidelity obtained in Ref. [6].
The continuous lines are at the value (d− 1)/4 for d = 2, . . . , 5,
(0.25, 0.5, 0.75, and 1, respectively.)

It has been shown that the quantum Crámer-Rao bound
is achievable in both MPEE and MPEU. It has also been
shown that any quantum Fisher information matrix that
can be attained in MPEE can also be achieved in MPEU.
These two facts imply that an entangled input state is un-
necessary. A condition for attaining maximal trace of the
QFI has been derived.

In the MPEE it has also been shown that there is a sep-
arable measurement that achieves equality in the QCRB.

In the d = 2 case, measurements that are optimal every-
where have been found in both MPEU and MPEE. This is
a useful feature in practice since this means that an adap-
tive scheme would not be necessary in this case. However,
it is unclear whether it is possible to find measurements
with this characteristic in general. It is also an open ques-
tion whether entanglement could prove itself useful in this
respect (for d > 2).

These facts show that entanglement is, at best, not as
useful in estimating commuting unitaries as in the estima-
tion of a completely unknown unitary.
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APPENDIX A: GENERALIZATION OF THE
RESULT IN SECTION IV TO THE FULL MODEL

In this appendix, a result similar to that of Sec. IV will be
proved in the model that includes the whole of SU(d) and
not only a commuting subgroup, i.e., the model considered
in Ref. [5].

Denote by Hρ0(θ) the QFI at θ if the input state is ρ0,
and by H̃ the QFI when the input state is a maximally
entangled state; in what follows the dependence on θ will
be omitted. Then the following inequality holds for any
input state ρ0:

Tr(H̃−1Hρ0) ≤ d2 − 1, (A1)
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and equality is attained if and only if ρ0 is a maximally
entangled state. This will be proved in what follows.

Notice that this trace is parametrization invariant, and
not just TrHρ as in Sect. IV, in that case H̃ was propor-
tional to the identity so there is no contradiction.

The model is again described by Eq. (4) but now U is

Uθ = Vθ ⊗ 1

where Vθ = exp
(
i
∑d2−1

α=1 θαTα

)
. As before, the T ’s are

traceless self-adjoint matrices chosen so that tr(TαTβ) =
δαβ . The input state ρ0 is chosen to be pure because of the
convexity of the QFI [8]. The SLDs are λα(θ) = 2ρ,α(θ),
where ρ,α(θ) means the partial derivative of ρ(θ) with re-
spect to θα. The matrix elements of Hρ0 are

Hρ0
αβ = Re tr[ρλαλβ ] = 4 Re tr[ρρ,αρ,β ].

Since ρ0 is pure it can be written as ρ0 = |ψ0〉〈ψ0| and
|ψ0〉 =

∑
kl Rkl|kl〉. Hρ0

αβ(θ) can then be calculated to be

Hρ0
αβ = 4Re

[
tr(RR†V †,αV,β)

+ tr(RR†V †V,α) tr(RR†V †V,β)
]
.

Denote Sα = −iV †V,α; then

Hρ0
αβ = 4Re

[
tr(RR†SαSβ)− tr(RR†Sα) tr(RR†Sβ)

]
.

Note that Sα ∈ su(d). Substituting RR† = 1/d in the
expression for Hρ0 ; one gets

H̃αβ =
4
d

tr(SαSβ).

The matrices S1, . . . , Sd2−1 can be orthonormalized,

tr

[(
2√
d

∑
µ

H̃−1/2
αµ Sµ

)(
2√
d

∑
ν

H̃
−1/2
βν Sν

)]
= δαβ .

The operator

∑
α

(
2√
d

∑
µ

H̃−1/2
αµ Sµ

)(
2√
d

∑
ν

H̃−1/2
αν Sν

)

=
4
d

∑
µν

H̃−1
µν SµSν

is a Casimir operator and therefore proportional to the
identity. The proportionality factor can be found by taking
the trace, and finally one gets

∑
µν

H̃−1
µν SµSν =

d2 − 1
4

1.

The wanted trace is

Tr(H̃−1Hρ0) = d2 − 1−
∑
αβ

H̃−1
αβ tr(RR†Sα) tr(RR†Sβ).

This quantity is always less than or equal to d2−1 and, fur-
thermore, this value is attained if and only if tr(RR†Sα) =
0 for all α = 1, . . . , d2 − 1, which implies that RR† = 1/d,
i.e., ρ0 is maximally entangled. In particular, this implies
that there is no input state ρ0 for which Hρ0 ≥ H̃.
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