
FIELDS OF DEFINITION OF RATIONAL POINTS ON VARIETIES

JORDAN RIZOV

Abstract. Let X be a scheme over a field K and let MX be the intersection of all
subfields L of K̄ such that X has a L-valued point. In this note we prove that for a
variety X over a field K finitely generated over its prime field one has that MX = K.

Let K be a field and fix an algebraic closure K ⊂ K̄. For a scheme X over K
denote by CX the collection of all fields K ⊂ L ⊂ K̄ such that X has a L-valued point
x : Spec(L) → X. Define the field MX as

MX =
⋂

L∈CX

L

where the intersection takes place in K̄. We will be interested in how big MX can be
and in particular in some cases in which it is K itself.

If the set of K-rational points X(K) is non-empty, then obviously MX is K. In
general, if K is a perfect field and X is a scheme of finite type over K then MX is
a finite Galois extension of K. Indeed, let x : Spec(L) → X be a L-valued point on
X corresponding to a point x on the topological space X and an inclusion κ(x) → L
where κ(x) = Ox/mx is the residue field of x (see [Har77, Ch. II, §2, Exercise 2.7] and
[Mum88, Ch. II, §4, Prop. 3]). For any σ ∈ Gal(Q̄/K) one has the conjugate xσ of x
which is a σ(L)-valued point on X. Hence for any field L ∈ CX and any σ ∈ Gal(Q̄/K)
the field σ(L) is also in CX which implies that MX/K is a Galois extension.

Remark 1. Suppose given two schemes X1 and X2 defined over K and a morphism
f : X1 → X2 over K. Then one has that CX1

⊂ CX2
and therefore MX2

⊂ MX1
. In

particular if MX1
= K, then the field MX2

is K, as well.

Before going on let us consider some illuminating examples under different conditions
imposed on X and K.

Example 2. If we take X to be Spec(K), then clearly MX = K.

Example 3. Consider the curve X : x2 +y2 +z2 = 0 in P2 over Q (i.e. K = Q). One can
take P1 = [i : 0 : 1] which has field of definition Q(i) and the point P2 = [

√
−2 : 1 : 1]

giving the field Q(
√
−2). Clearly, the intersection of those two fields is Q, so MX = Q.

This is an example where X is a non-singular, projective curve of genus 0 over Q with
no Q-rational point.

I thank Ben Moonen, Frans Oort, Andrea Giacobbe, Ivan Chipchakov and Grigor Grigorov for
stimulating discussions.
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Example 4. Let K = Fq be a finite field and let X be a non-singular, quasi-projective
curve over K. We may assume that X is contained in its complete, non-singular model
X ′ over K. Let X = X ′ \ {P1, . . . , Pr} (the complete case is treated in the same way)
and denote the genus of X ′ by g. If n ∈ N and Nqn denote the number of Fqn rational
points on X ′ then by the Weil bound we have that

Nqn ≥ 1 + qn − 2g
√

qn.

Therefore, if n is sufficiently large one has that Nqn ≥ r + 1 and hence X(Fqn) is not
empty. Choose two natural numbers n1 and n2 which are sufficiently large so that
X(Fqni ) is not empty for i = 1, 2 and gcd(n1, n2) = 1. Then we have that

MX ⊂ Fqn1 ∩ Fqn2 = Fq

and hence MX = K.

Example 5. Consider again the curve X : x2 + y2 + z2 = 0 in P2 but take this time K
to be R. Then we have that MX is C since X has no R-valued points.

Example 6. Take K = Q and consider the polynomial f(x) = x3 − 7x + 7. It is
irreducible over Q since it has no rational zeros. Let α = α1, α2 and α3 be its roots.
Since the discriminant of f(x) is 72 its Galois group is isomorphic to Z/3Z and the
field M = Q(α) is a Galois extension of Q of degree 3. Let Pi = (αi, α

2
i ) for i = 1, 2, 3

be three points in A2
Q̄

and consider the three lines passing through them:

l1 = y − (α1 + α2)x + α1α2 = 0 passing through P1 and P2;
l2 = y − (α1 + α3)x + α1α3 = 0 passing through P1 and P3;
l3 = y − (α2 + α3)x + α2α3 = 0 passing through P2 and P3.

Define the scheme X ⊂ A2
Q̄

to be given by the equation l1l2l3 = 0. The Galois group

Gal(Q̄/Q) permutes the three points P1, P2 and P3 and respectively the three lines l1, l2
and l3 in A2

Q̄
. Hence X is defined over Q and it is irreducible over Q.

Let P : Spec(L) → X be a L-valued point on X for some field L ⊂ Q̄. If σ ∈
Gal(Q̄/L), then it fixes the point P on XQ̄. Since an automorphism in Gal(Q̄/Q),
acting on A2

Q̄
, permutes the three lines we see that, acting on XQ̄, it has fixed points if

and only if it acts as the trivial permutation on {l1, l2, l3}. Hence σ must leave the points
Pi, i = 1, 2, 3 fixed and therefore M , as well. Thus we conclude that M ⊂ L. Since X
has M -valued points (the points Pi for i = 1, 2, 3) we have that MX = M = Q(α).

In this example one can take f(x) to be any irreducible polynomial over Q with
Galois group isomorphic to Z/3Z.

The last two examples suggest that if the field of definition K is ‘too big’ or the
scheme X is somehow ‘too bad’ then the field MX is a non-trivial extension of K. On
the other hand the argument given in example 3 can be easily generalized to number
fields and other curves.

Before stating the main result let us make the following convention: In this note a
variety X over a field K will mean a separated, geometrically integral scheme X of
finite type over K. In particular, X is geometrically irreducible. Also from now on
we will assume that K is a finitely generated field over its prime field. We know that
for those fields Faltings’ finiteness theorem holds (see [Lan91, Ch. I, §2]). Further, if
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char(K)= 0 or if char(K)= p and tr.degFp
K ≥ 1, then Hilbert’s irreducibility theorem

holds for the field K. We refer to [Lan83, Ch. 9] and more precisely to Theorem 4.2
and the remark following it.

Theorem 7. Let K be a finitely generated field over its prime field and let X be a

variety over K. Then one has that MX = K.

Proof. Step 1. We will first show that it is enough to consider non-singular, quasi-
projective varieties. If X is not complete, then by Nagata’s compactification the-
orem one can find a complete variety X̄ and an open immersion i : X ↪→ X̄. By
Chow’s Lemma there exits a projective variety Y ′ over K and a birational isomor-
phism π′ : Y ′ → X̄. Let Y be an alteration of Y ′ (see [dJ96, §1 and §4, Thm. 4.1]), let
π : Y → X̄ be the composition morphism and let X ′ = π−1(i(X)). Then by Remark
1 we have that MX ⊂ MX′ . Hence it is enough to show the validity of the theorem
assuming that X is a non-singular, quasi-projective variety over K.

We may assume that X ⊂ PN for some N . In the next two steps we will show here
that it is enough to prove the theorem assuming that dim X = 1.

Step 2. Suppose that K is an infinite field. If dim X = 1 then the result follows
from Proposition 8 below. Suppose that dim X = m ≥ 2. Then by Bertini’s Theorem
([Har77, Ch. II, §8, Thm. 8.18)]) we know that the set U of points u in the dual pro-
jective space P̌N corresponding to hyperplanes H ⊂ PN

κ(u) such that H ∩ X is smooth

of dimension m − 1 over the residue field κ(u) of u contains a dense open subset of
P̌N . Since K is infinite the intersection U ∩ P̌N(K) is non-empty. Hence one can find
a hyperplane H defined over K satisfying Bertini’s Theorem. Further, by [Har77, Ch.
III, §11, Exercise 11.3] the intersection H ∩ X is geometrically connected and hence
it is geometrically irreducible or in other words it is a quasi-projective variety of di-
mension m − 1 over K. Repeating this dim X − 1 times one can find a non-singular,
quasi-projective curve Y ⊂ X defined over K. By Remark 1 one has that MX ⊂ MY .
Now the claim follows from Proposition 8 below.

Step 3. Let K be a finite field. The case dim X = 1 was considered in example
4. Assume that dim X ≥ 2. We will find again a quasi-projective curve defined over K
contained in X by intersecting X with hypersurfaces. By Theorem 3.3 and Remarks
(1) and (2) in [Poo] there exists a geometrically integral, smooth hypersyrface H ⊂ PN

defined over K such that the intersection X ∩ H is a smooth variety of dimension
dim X−1. Repeating this dim X−1 times we can find a non-singular, quasi-projective
curve Y in X defined over K. Then just like in Step 2 we conclude the claim from
Remark 1 and example 4. �

Proposition 8. Let K be an infinite field which is finitely generated over its prime

field. If X is a quasi-projective curve defined over K, then MX = K.

Proof. We will split up the proof into three steps.

Step 1. Assume that X is a complete, non-singular curve of genus at least 2 and
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there is a morphism f : X → P1 over K of prime degree p. Hilbert’s irreducibility
theorem assures that there are infinitely many points P ∈ P1(K) such that the fiber
f−1(P ) = {Q1, . . . , Qr} consists of points which are defined over extensions K(Qi) of
K of degree p. If among all those fields (for all points P ∈ P1(K) as above), there
are two which are different, then their intersection will be K (as they do not have
non-trivial subfields). Hence we would have that MX = K. Assume that all fields
K(Qi) for all P ∈ P1(K) as before are the same. Then we have infinitely many points
on X defined over a fixed extension L = K(Qi) of K. As X is of genus at least 2 we
get a contradiction with Faltings’ finiteness theorem. Thus we conclude that MX is K
in this case.

Step 2. Now assume that X is complete and non-singular. In general, one should
not expect to be able to find a morphism as in Step 1. Instead, we will construct a
covering π : X ′ → X over K for some curve X ′ satisfying the assumptions of Step 1.
Then we could conclude the claim of the proposition using Remark 1. Such a curve
can be viewed as a divisor on X × P1 so we will look at special divisors on this ruled
surface.

Let a be a natural number which we will fix later and consider the divisor D(a) =
2X+aP1 on X×P1. Following the notations of [Har77, Ch V, §2] we put (X, X)X×P1 =
−e. Then using Proposition 2.3, Lemma 2.10 and Corollary 2.11 of [Har77, Ch. 5, §2],
one sees that

(D(a), X) = (2X + aP1, X) = a − 2e

and the ‘adjunction formula’ for the divisor D(a) has the form

(D(a), D(a) + KX×P1) = 2a + 2(2gX − 2 − e)

where KX×P1 is the canonical class of X × P1. Let us choose a so that

a > 2e
a − 2e is a prime number

a + (2gX − 2 − e) ≥ 1.

The first condition ensures that the linear system |D(a)| contains a non-singular, ge-
ometrically irreducible curve X ′ defined over K. Indeed, one uses [Har77, Ch. V, §5,
Cor. 2.18]. Hartshorne assumes that K is algebraically closed. Since the proof only
deals with very ample line bundles and uses Bertini’s Theorem [Har77, Ch. II, §8,
Thm. 8.18] and [Har77, Ch. III, §11, Exercise 11.3] it remains valid over K, as K is
an infinite field.

The degree of the morphism f : X ′ ↪→ X×P1 → P1 is exactly (X ′, X) = a−2e which
is a prime number and by the adjunction formula the genus of X ′ is a+(2gX −2−e)+1
which is at least 2 by our choice. Hence X ′ satisfies the conditions of Step 1. Therefore
by Remark 1 we conclude that MX = MX′ = K.

Step 3. Let X be as in the proposition. If it is not complete one can find a comple-
tion X ′ of X which is also defined over K. Take the normalization X ′′ of X ′ and let
X̃ ⊂ X ′′ be the preimage of X. The curve X ′′ is non-singular, projective and defined
over K. One can now apply Step 1 and 2 above to X ′′. Clearly those proofs, and more
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precisely the one of Step 1, can be carried over excluding a finite number of points
(which of course should not change the field of definition K). In other words one sees
that MX̃ = K. Hence by Remark 1 we have that MX ⊂ MX̃ = K and therefore
MX = K. �

Remark 9. Note that thought we distinguished the two cases K is finite and K is
infinite the two proofs go exactly in the same lines. One tries to find finite extensions
L1 and L2 of K which are ‘different’ as subfields of K̄, such that X(Li) is not empty for
i = 1, 2 and so that one can control the intermediate fields K ⊂ M ⊂ Li. In the case
K is finite this is easily achievable using the Weil bound. If K is infinite one makes
use of Hilbert’s irreducibility theorem instead. Below we shall present a proof based
on a completely different idea. Namely, in the case K is a number field one tries to
find sufficiently many prime ideals of K splitting completely in MX . This proof was
suggested to us by Grigor Grigorov.

Let K be a number field and let OK be the ring of integers in K. For a prime ideal
p of K denote by kp the residue field OK/p. Let qp be the number of elements in kp.
Then by definition one has that the norm N(p) of p is qp. Denote by Kp the completion
of K at p and let OKp

be ring of integers in Kp.

Proof of Proposition 8 assuming that K is a number field. We already saw that one can
assume that X is non-singular and it is contained in its complete non-singular model
X ′ defined over K. We have that X = X ′ \ {P1, . . . , Pm} for some m ∈ N (the proof
in the complete case is the same). Take a projective embedding of X ′ over K in to
PN

K for some N and its flat closure X ′ over OK in PN
OK

. Let X be the complement
X ′ \ {P1, . . . ,Pm} where Pi, i = 1, . . . , m, is the flat closure of Pi over OK . Then there
is a finite set of primes Σ such that X ′ is smooth over U = Spec(OK) \Σ. For a prime
ideal p 6∈ Σ let Np be the number of points in X ′(kp). The Weil bound reads

Np ≥ 1 + qp − 2g
√

qp.

where g is the genus of X ′. Hence if qp = N(p) is sufficiently large one has that
Np ≥ m + 1. So enlarging Σ, if needed, we may assume that X (kp) is not empty for
all p 6∈ Σ.

Fix a prime ideal p 6∈ Σ. Since X is smooth over U and X (kp) is non-empty one
can apply Hensel’s lemma (see [BLR90, §2.3, Prop. 5]) to conclude that X(Kp) is non-
empty. Therefore by Theorem 1.3 in [MB89] one can find a finite extension L of K such
that p splits completely in L and X has a L-valued point. Hence p splits completely
in MX . Thus all but finitely many ideals (at most those in Σ) split completely in MX .
By Corollary 6.6 in [Neu86, Ch. V, §6] we have that MX = K. �

Remark 10. Theorem 7 could be viewed as a variant of Theorem 5.1 in [Del71, §5]
where Deligne proves that for a Shimura datum (G, X) and any finite extension L of
the reflex field E(G, X) of the Shimura variety Sh(G, X) there exists a special point x
on X such that its reflex field E(x) is linearly disjoint from L. This result is used in
proving the uniqueness of the canonical model of Sh(G, X) over E(G, X). We came
across the main result of this note considering a similar descent problem.



6 JORDAN RIZOV

How big can MX be in general? We already saw in examples 5 and 6 that depending
on X and K the field MX can be a non-trivial extension of K. Using the construction
in example 6 one can find X over Q such that [MX : Q] is arbitrary large. On the other
hand if X is a non-singular, projective curve defined over a field K, then l(KX) = g,
where g is the genus of X and KX is its canonical class. If g ≥ 2 then there is a
non-constant K-rational function f in L(KX). It gives a morphism f : X → P1 of
degree at most deg KX = 2g − 2. Hence there is a L-valued point for some extension
L/K with [L : K] ≤ 2g − 2. Therefore we have that [MX : K] ≤ 2g − 2.
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