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Abstract. In this paper, the Almeida-Molino obstruction to developability

of transversely complete foliations is extended to Lie groupoids.

Introduction

In this paper we continue our study – begun in [13] – of some of the most basic
properties of Lie subgroups and subalgebras, in the wider context of Lie groupoids
and Lie algebroids. These objects occur naturally in many contexts, such as Poisson
geometry, group actions, quantization and foliation theory [2, 3, 4, 6, 10, 16]. One of
the main features which makes the basic theory of Lie algebroids and Lie groupoids
so much more involved than that of Lie algebras and groups is that Lie algebroids
may not be integrable. In other words, any Lie groupoid has a Lie algebroid as its
infinitesimal part, but not every Lie algebroid arises in this way.

An obstruction to integrability was first observed by Almeida and Molino, in the
context of foliations on compact manifolds. Recall that a foliation on a manifold
M is called developable if its lift to the universal covering space M̃ of M is given
by the fibers of a submersion into another manifold. Given any transversely com-
plete foliation F of a compact manifold M , Almeida and Molino [1] discovered an
associated Lie algebroid b(M,F), and proved that

(1) F is developable if and only if b(M,F) is integrable.

One way to construct a developable foliation is as the kernel of a Maurer-Cartan
form on M with coefficients in a Lie algebra. One can view the Almeida-Molino
result as stating that any transversely complete foliation on a compact manifold is
the kernel of a Maurer-Cartan form with coefficients in a Lie algebroid, and that
this Lie algebroid is integrable if and only if the foliation is developable.

Our goal is to extend this result to Lie groupoids, in the following way: Consider
a Lie groupoid G over a manifold M , and a subalgebroid h of the Lie algebroid
g = L(G) of G. We say that h is developable if it can be integrated to a closed

subgroupoid of the universal covering groupoid G̃ of G. Under conditions of source-
compactness and transverse completeness (as in the Almeida-Molino case) we will
construct another Lie algebroid b(G, h), and prove an equivalence

(2) h is developable if and only if b(G, h) is integrable.

(see Theorem 1.8 for a precise statement). This is formally similar to the Almeida-
Molino result (1), and in fact includes the latter. To explain the relation, recall
that any manifold M defines a pair groupoid G = M ×M , whose universal covering
groupoid G̃ is the fundamental groupoid Π(M) given by homotopy classes of paths
in M . Any transversely complete foliation F on M can be viewed as a subalgebroid
of the Lie algebroid of G, and we will show (Corollary 3.4) that F is a developable
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foliation if and only if it can be integrated by a closed subgroupoid of Π(M). This
shows that (1) is a special case of (2).

In Section 1, we discuss Lie algebroid valued Maurer-Cartan forms, and state
our main result (Theorem 1.8). For its proof, we observe that for a Lie groupoid
G over a manifold M , any subalgebroid h of the Lie algebroid L(G) of G defines
a foliation F(h) of G, whose leaves are contained in the fibers of the source map
s: G → M . In Section 2 we will show that if the foliation F(h) is locally transversely
parallelizable and the fibers of s are compact, then F(h) makes s : G → M into a
locally trivial bundle of transversely complete foliations. This fact is independent
of the groupoid structure on G, and we will prove it in the general context of a
submersion s : N → M with suitably foliated fibers, see Theorem 2.3. Next, we
will give various characterizations of the fiberwise developability of a locally trivial
bundle N → M of foliated manifolds, and prove that this property is equivalent to
the integrability of a specific algebroid (Theorem 3.9). Finally, we will apply our
results on bundles of foliated manifold to groupoids, and prove Theorem 1.8.

1. Developable subgroupoids and Maurer-Cartan forms

We begin by introducing the notion of developability for subalgebroids, which is
motivated by the well-known notion of developability for foliations.

For a Lie groupoid G over a manifold M , we shall denote by s : G → M the
source map of G, and by t : G → M the target map of G. Recall that G is said
to be source-connected, if the fibers of the source map of G are connected, and
source-simply connected if the fibers of the source map of G are simply connected.
In this paper, we shall assume that all Lie groupoid are source-connected.

Let G be a (source-connected) Lie groupoid over a manifold M . Denote by

g = L(G) the Lie algebroid associated to G. We denote by G̃ the source-simply
connected covering groupoid of G which has the same Lie algebroid as G.

We shall consider subalgebroids of g over the same base M . Recall from [13] that
such a subalgebroid h of g corresponds to a right-invariant foliation F(h) of G which
refines the foliation F(s) of G given by the fibers of the source map, F(h) ⊂ F(s).
Any (injectively immersed source-connected) Lie subgroupoid H of G over the same
base M gives rise to a Lie subalgebroid h of g, and in turn the leaves of F(h) are
precisely the right cosets of H in G. In this case we write F(H) = F(h), and we
say that H integrates h, or more precisely, that the inclusion H → G integrates the
inclusion h → g. We denote by G/H the space of leaves of the associated foliation
F(H).

We say that a subalgebroid h of g is developable if h can be integrated to a closed
subgroupoid of the source-simply connected cover G̃ of G. A subgroupoid H of G
is developable if the associated Lie subalgebroid of g is.

Recall that a foliation F of a manifold N is simple if it is given by the components
of the fibers of a submersion into a Hausdorff manifold. It is called strictly simple
if there exists a smooth structure of a Hausdorff manifold on the space of leaves
N/F such that the quotient map N → N/F is a submersion. The results of [13]
provide the following equivalent formulation of developability:

Proposition 1.1. Let G be an source-connected Lie groupoid with Lie algebroid g,
and let h be a subalgebroid of g. The following two statements are equivalent:

(i) The Lie algebroid h is developable.
(ii) The pull-back of the foliation F(h) to the source-simply connected cover of

G is strictly simple.

Proof. This equivalence follows directly from [13, Proposition 3.1], [13, Proposi-
tion 3.2 (ii)] and the fact that pull-back of the foliation F(h) to the source-simply
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connected cover G̃ of G is the foliation of G̃ given by the same subalgebroid
h ⊂ g = L(G̃). �

Example 1.2. Recall that a foliation F of a manifold N is called developable
if its pull-back to the universal covering space of the manifold is strictly simple.
Such a foliation F can be viewed as a subalgebroid of the Lie algebroid T (M).
The Lie algebroid T (M) is integrated by the pair groupoid M × M , but also by
the source-simply connected fundamental groupoid Π(M) of M . By Corollary 3.4
below, the foliation F is developable if and only if F , viewed as a subalgebroid of
T (M), is integrable by a closed subgroupoid of Π(M). In this way, our definition
of developability of subalgebroids extends the usual one for foliations.

An important class of examples are the subalgebroids which arise as kernels of
Maurer-Cartan forms, which we now discuss.

Let g be a Lie algebroid over M . Let k be a finite dimensional Lie algebra. Then
k pulls back to an algebroid kM = k × M over M , with zero anchor. Suppose that
we are given a (left) action ∇ of g on kM along the identity map of M . Recall from
[9, 11] that such an action assigns to each section X ∈ Γ(g) a derivation ∇X on the
Lie algebra C∞(M, k) of smooth k-valued functions, C∞(M)-linear and flat in X,

∇[X,Y ] = ∇X∇Y −∇Y ∇X ,

which moreover satisfies the Leibniz law

∇X(fα) = f∇X(α) + an(X)(f)α

for any f ∈ C∞(M) and any α ∈ C∞(M, k).
A Maurer-Cartan form on g with coefficients in k is a map ω : g → kM of vector

bundles over M satisfying the Maurer-Cartan equation

dω +
1

2
[ω, ω] = 0 .

Here d is the differential of the Lie algebroid cohomology of g with coefficients in k,

2dω(X,Y ) = ∇X(ω(Y )) −∇Y (ω(X)) − ω([X,Y ]) ,

while the bracket on maps ω, λ : g → kM of vector bundles over M is given by

2[ω, λ](X,Y ) = [ω(X), λ(Y )] − [ω(Y ), λ(X)] .

Example 1.3. Let k be a finite dimensional Lie algebra, and let g be a Lie algebroid
over M . The trivial action ∇triv of g on k×M = kM , along the identity map of M ,
is given by the derivative along the anchor,

∇triv
X (α) = an(X)(α) .

For g = T (M), a Maurer-Cartan form on T (M) with values in k with respect to
the trivial action is a usual Maurer-Cartan form on the manifold M .

Lemma 1.4. Let g be a Lie algebroid over M , let k be a finite dimensional Lie
algebra, and suppose that kM is equipped with an action ∇ of g along the identity
map. For a map ω : g → kM of vector bundles over M , the following conditions are
equivalent:

(i) ω is a Maurer-Cartan form on g with respect to the action ∇.
(ii) ω([X,Y ]) = [ω(X), ω(Y )] + ∇X(ω(Y )) −∇Y (ω(X)) for any X,Y ∈ Γ(g).
(iii) (id, ω) : g → g n kM is a morphism of Lie algebroids over M .

In (iii), the semi-direct product gnkM is the bundle g⊕kM , with bracket defined
by

[(X,α), (Y, β)] = ([X,Y ], [α, β] + ∇X(β) −∇Y (α))

for any X,Y ∈ Γ(g) and α, β ∈ C∞(M, k). The equivalence of conditions (i)-(iii) is
a trivial calculation.
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Proposition 1.5. Let k be a finite-dimensional Lie algebra, let G be a source-
connected Lie groupoid with Lie algebroid g acting on the Lie algebroid kM = k×M ,
and let ω : g → kM be a non-degenerated Maurer-Cartan form on g. Then Ker(ω)
is a developable subalgebroid of g.

Proof. Let G̃ be the source-simply connected Lie groupoid covering G, and let K
be the simply connected Lie group with Lie algebra k. Write KM = K ×M for the
trivial bundle of Lie groups over M with fiber K, which integrates the Lie algebroid
kM . By [11], the action of g on kM integrates to an action of G̃ on K (more precisely,

an action on KM ), and we can form the semi-direct product G̃ n KM over M . (Its

arrows are pairs (g̃, k), where g̃ : x → y is an arrow in G̃ and k ∈ K; composition

is given by (h̃, l)(g̃, k) = (h̃g̃, l(h̃k)).) By Lemma 1.4 and [11, Proposition 3.5],
the morphism of Lie algebroids (id, ω) integrates to a morphism of Lie groupoids

(id,Ω): G̃ → G̃ n KM . Then Ω: G̃ → KM is a ‘twisted’ homomorphism,

Ω(h̃g̃) = Ω(h̃)(h̃Ω(g̃)) ,

whose kernel is a closed subgroupoid of G̃. This closed subgroupoid integrates the
Lie algebroid Ker(ω), hence the latter is developable. �

Let F be a foliation of a manifold N . Recall that a vector field Y on N is
projectable with respect to F if its (local) flow preserves the foliation, or equivalently,
if the Lie derivative of Y in the direction of a vector field tangent to F is again
tangent to F . A foliation F of N is transversely complete if any tangent vector on
N can be extended to a complete projectable vector field on N (see also Remarks
2.2 below).

A subgroupoid H of a Lie groupoid G is transversely complete if the associ-
ated foliation F(H) of G is transversely complete. For example, any transitive
subgroupoid H of G is automatically transversely complete [13, Proposition 3.5].

Our aim is to prove that for any transversely complete subgroupoid H of a
source-compact groupoid G (i.e. G is Hausdorff and its source map is proper), its
Lie algebra h is the kernel of a Maurer-Cartan form. This result can be interpreted
as a generalization of Molino’s theorem for transversely complete foliations. As in
Molino’s case, it requires the Maurer-Cartan form to take values in a Lie algebroid
(see Example 1.7 (2)).

Let G be a Lie groupoid over M with Lie algebroid g. Let k be a Lie algebroid
over W equipped with an action of g along a submersion f : W → M . Recall
from [11] that this means in particular that k → W is a bundle of Lie algebroids
over M , and that g acts on W and k, via suitable maps R : Γ(g) → X(W ) and ∇
assigning to each X ∈ Γ(g) a derivation (∇X , R(X)) on k. A Maurer-Cartan form
on g with values in k is a section of the projection map of Lie algebroids g n k → g

over f : W → M . Such a section is given by a map ω : g → k of vector bundles over
a section α : M → W of f , with the property that

((α, id), ω) : g −→ f∗(g) ⊕ k

defines a morphism of Lie algebroids g → g n k over α : M → W .

Remark 1.6. It is of course possible to spell out the last condition in detail: First
of all, compatibility with the anchor maps of g and gnk means that ω should satisfy
the identity

(3) an(ω(v)) = (dα)x(an(v)) − Rα(x)(v)

for any x ∈ M and any v ∈ gx; next, compatibility of the brackets can be expressed
by the equation

(4) ω ◦ [X,Y ] = ([ω(X), ω(Y )] + ∇X(ω(Y )) −∇Y (ω(X))) ◦ α .
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Here X and Y are sections of g, while ω(X) and ω(Y ) denote arbitrary sections
of k which extend ω ◦ X : M → k respectively ω ◦ Y : M → k along the embedding
α : M → W . It follows from (3) that the right hand side of (4) is independent of
the choice of these extensions.

Examples 1.7. (1) A Maurer-Cartan form with values in a Lie algebra k (as
discussed above) can be seen as a special case of a Maurer-Cartan form with values
in the Lie algebroid kM = k×M , where the action is taken along the identity map
of the base manifold M .

(2) (Molino) Let M be a compact manifold equipped with a transversely complete
foliation F . The closures of the leaves of such a foliation are the fibers of a locally
trivial fiber bundle M → W of foliations [14]. There is the associated Lie algebroid
b(M,F) over W such that F is the kernel of a map of Lie algebroids over the
projection M → W [12, 15].

(5) T (M)

��

// b(M,F)

��

M // W

To see this as a Maurer-Cartan form, consider the Lie algebroid b(M,F) × M
over W × M . This is a bundle of Lie algebroids over M , and has the canonical
action of the pair groupoid M ×M (just by acting on the second component only).
This action differentiates to an action of T (M) on b(M,F)×M . The morphism of
algebroids in (5) induces a section of the projection T (M)n(b(M,F)×M) → T (M).

Recall from [13, Theorem 3.7] that if H is a transversely complete subgroupoid
of a Hausdorff Lie groupoid G, then its closure H̄ in G is a closed Lie subgroupoid
of G, and the space of right cosets G/H̄ has the natural structure of a Hausdorff
manifold such that the projection G → G/H̄ is a locally trivial fiber bundle.

We can now state our main theorem, which we shall prove in Section 4.

Theorem 1.8. Let G be an source-compact Lie groupoid with Lie algebroid g, and
let H be a transversely complete subgroupoid of G with Lie algebroid h ⊂ g.

(i) There exists a regular Lie algebroid b(G, h) over G/H̄ such that the projection
G → G/H̄ lifts to a natural surjective morphism of Lie algebroids F(s) → b(G, h)
with kernel F(h).

(ii) The natural action of g on G/H̄ lifts to an action of g on b(G, h).
(iii) The Lie algebroid h is the kernel of a Maurer-Cartan form on g with values

in b(G, h).
(iv) The Lie algebroid h is developable if and only if b(G, h) is integrable.

The assumption that G is source-compact is used to ensure that the source map
of G is a locally trivial bundle of transversely complete foliations (Theorem 2.3),
and can in fact be replaced by this weaker condition.

Part (ii) of Theorem 1.8 states in particular that b(G, h) is in fact a bundle of
Lie algebroids over the base space M of G; more precisely, its anchor is annihilated
by the map T (G/H̄) → T (M) induced by the differential of the source map. Thus,
b(G, h) is a bundle of Lie algebras in case the map G/H̄ → M , induced by the
source, is a diffeomorphism. The result of Douady and Lazard [7] thus gives the
following corollary:

Corollary 1.9. Let G be an source-compact Lie groupoid with Lie algebroid g, and
let H be a transversely complete subgroupoid of G with Lie algebroid h ⊂ g. Then
H is developable whenever the cosets of H are dense in the source-fibers of G.
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Example 1.10. Let l be the Lie algebra of a compact connected Lie group L,
and let ω be a non-singular Maurer-Cartan form with values in l on a connected
compact manifold M . Then ω defines a transitive (hence transversely complete)
subgroupoid H of the groupoid M × L × M whose source-fibers are the holonomy
covers of ω, see [13, Example 3.8]. If the holonomy group of ω is dense in L, then
the cosets of H are dense in M × L, hence H is developable by Corollary 1.9.

2. Bundles of transversely complete foliations

First, we recall some standard definitions. Let F be a foliation of a manifold N .
Write X(F) for the Lie algebra of vector fields on N which are tangent to F , and
let L(N,F) be the normalizer of X(F) in the Lie algebra X(N) of vector fields on
N . Vector fields in L(N,F) are called projectable vector fields on (N,F), and the
quotient

l(N,F) = L(N,F)/X(F)

is the Lie algebra of transverse vector fields on (N,F). The transverse vector fields
on (N,F) can be identified with the holonomy invariant sections of the normal
bundle ν(F) = T (N)/T (F). Both L(N,F) and l(N,F) are modules over the
algebra Ω0

bas(N,F) of basic functions on (N,F), and the quotient projection

L(N,F) −→ l(N,F) , Y 7→ Ȳ ,

is Ω0
bas(N,F)-linear.

A foliation F of N is transversely parallelizable [5, 15] if there exists a global
frame of ν(F) consisting of transverse vector fields on (N,F). Such a frame of
ν(F) is referred to as transverse parallelism on (N,F).

A foliation F of N is locally transversely parallelizable if for any y ∈ N and any
tangent vector ξ ∈ Ty(N), there exists a projectable vector field Y on (N,F) such
that Yy = ξ. A foliation F of N is transversely complete [14, 15] if for any y ∈ N
and any tangent vector ξ ∈ Ty(N) there exists a complete projectable vector field
Y on (N,F) such that Yy = ξ.

Example 2.1. Consider a Maurer-Cartan form ω as in Proposition 1.5. Let kG be
the trivial bundle of Lie algebras over G, and let F(s) be the foliation on G by the
fibers of the source map. Then ω defines a flat F(s)-partial connection on kG, and
hence a ‘monodromy’ map

Πs(G) −→ Aut(k) .

If this map is trivial, i.e. if ω has trivial monodromy, then the invariant foliation
corresponding to Ker(ω) is transversely parallelizable. In particular, if G is source-
compact and ω has finite monodromy, then there exists an source-compact covering
groupoid G′ of G with the same algebroid g, on which Ker(ω) defines a transversely
parallelizable foliation.

Remarks 2.2. (1) Note that a foliation F of N is locally transversely parallelizable
if and only if the evaluation map l(N,F) → νy(N,F) is surjective for any y ∈ N .
Equivalently, a foliation F of N is locally transversely parallelizable if for any
y ∈ N there exist projectable vector fields Y1, . . . , Yq such that ((Ȳ1)y, . . . , (Ȳq)y) is
a basis of νy(N,F). In particular, any transversely parallelizable foliation is locally
transversely parallelizable.

Any locally transversely parallelizable foliation of a compact manifold is trans-
versely complete. Examples of transversely complete foliations also include folia-
tions given by the fibers of locally trivial fiber bundles, and Lie foliations on compact
manifolds [8].

(2) Let F be a foliation on N , and let Ȳ1, . . . , Ȳq be transverse vector fields on
(N,F). We say that y ∈ N is a regular point of (Ȳ1, . . . , Ȳq) if the normal vectors
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(Ȳ1)y, . . . , (Ȳk)y ∈ νy(N,F) form a basis of νy(F). The regular set of (Ȳ1, . . . , Ȳq)
is the set of all regular points of (Ȳ1, . . . , Ȳq), and will be denoted by

reg(Ȳ1, . . . , Ȳq) ⊂ N .

This set is open in N , and also F-saturated because of the holonomy invariance of
the transverse vector fields. We say that (Ȳ1, . . . , Ȳq) is a local transverse parallelism
on (N,F) with regular set reg(Ȳ1, . . . , Ȳq).

Note that F is locally transversely parallelizable if and only if the regular sets of
local transverse parallelisms on (N,F) cover N . If F is a locally transversely par-
allelizable foliation of a manifold N , then any leaf L of F has an open F-saturated
neighbourhood U ⊂ N on which the foliation F|U is transversely parallelizable.

(3) Any locally transversely parallelizable foliation has trivial holonomy. Fur-
thermore, any transversely complete foliation F of a connected manifold M is
homogeneous, i.e. the group Aut(M,F) of its foliation automorphisms acts transi-
tively on M . This is a direct consequence of the fact that a vector field is projectable
if and only if its (local) flow preserves the foliation.

Any strictly simple foliation (M,F) is simple; if the foliation is homogeneous,
then these two notions coincide [12, Theorem 4.3 (vi)]. Note that simple foliations
are preserved under the pull-back along a covering projection, while strictly simple
are not. Since the homogeneity is also preserved under the pull-back along a cov-
ering projection, a homogeneous foliation is developable if and only if its pull-back
to a covering space of the manifold is simple.

(4) Recall that a homogeneous foliation F of N admits an associated basic foli-
ation Fbas, given by

X(Fbas) = {X ∈ X(N) |X(Ω0
bas(N,F)) = 0} ⊃ X(F) .

The foliation Fbas is again homogeneous, and satisfies Ω0
bas(N,Fbas) = Ω0

bas(N,F)
and L(N,F) ⊂ L(N,Fbas). Furthermore, the space of basic leaves N/Fbas has a
natural structure of a Hausdorff manifold such that the basic projection πbas : N →
N/F is a submersion, and Ω0

bas(N,F) = C∞(N/Fbas).
(5) Suppose that F is a transversely complete foliation of a manifold N . By

Molino’s structure theorem [14], the closures of the leaves of a transversely complete
foliation F of M are the fibers of the associated basic fibration N → N/Fbas, which
is in fact a locally trivial fiber bundle of (Lie) foliations. In particular, this implies
that if two transversal vector fields on (N,F) agree at a point of N , they also agree
along the basic leaf through that point. Furthermore, the regular set of any local
transverse parallelism on (N,F) is Fbas-saturated.

Let F be a locally transversely parallelizable foliation of a connected manifold
N , and let s : N → M be a surjective submersion with connected compact F-
saturated fibers. Since the image of the homomorphism s∗ : C∞(M) → C∞(N)
is a subalgebra of Ω0

bas(N,F) and the fibers of s are compact, it follows that F
is transversely complete and therefore homogeneous. It is clear that the compact
fibers of s are also Fbas-saturated. Furthermore, the submersion s factors through
the associated basic fibration πbas : N → N/Fbas as a surjective submersion s̄ :
N/Fbas → M with compact connected fibers.

The aim of this section is to prove the following theorem, which says that any
such surjective submersion s : (N,F) → M with connected compact F-saturated
fibers is actually a locally trivial bundle of foliated manifolds.

Theorem 2.3. Let F be a locally transversely parallelizable foliation of codimension
q of a connected manifold N , and let s : N → M be a surjective submersion with
connected compact F-saturated fibers. Put m = dim(M) and q̄ = codim(Fbas).
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Then for any y ∈ N there exist vector fields Y1, . . . , Yq ∈ L(N,F) ∩ L(N,F(s))
such that

(i) (Ȳ1, . . . , Ȳq) is a local transverse parallelism on (N,F), regular on a neigh-
bourhood of y,

(ii) ds(Yi) = 0 for i = m + 1, . . . , q, and
(iii) dπbas(Yi) = 0 for i = q̄ + 1, . . . , q.

In particular, the restriction of F to any fiber Nx of s over x ∈ M is a transversely
complete foliation, and the submersion s : (N,F) → M is a locally trivial fiber
bundle of foliated compact manifolds.

As we shall show, this theorem is a consequence of Proposition 2.5 below, which
we formulate and prove first.

Suppose that φ : N → M is a surjective submersion, and write F(φ) for the
foliation of N given by the connected components of the fibers of φ. Let C be a
subspace of L(N,F(φ)) and D a subspace of X(M) such that dφ(C) ⊂ D. Then
we say that the linear map dφ : D → C has the lifting property if for any vector
field X ∈ C and any ξ ∈ Ty(N) such that dφ(ξ) = Xφ(y) there exists a vector field
Y ∈ D such that Yy = ξ and dφ(Y ) = X. Thus the lifting property of dφ : D → C
in particular implies that dφ(D) = C.

Example 2.4. Let φ : N → M be a surjective submersion, and denote by F(φ) =
Ker(dφ) the foliation of N with the connected components of the fibers of φ as
leaves. Then the Lie algebra homomorphism dφ : L(N,F(φ)) → X(M) has the lift-
ing property. In particular, the foliation F(φ) is locally transversely parallelizable.

To see this, take any vector field X ∈ X(M) and any ξ ∈ Ty(N) with dφ(ξ) =
Xφ(y). Note that we can choose an open cover (Uα) of N and vector fields Y α ∈
L(Uα,F(φ)|Uα) such that dφ(Y α) = X|Uα . Furthermore, we can assume that
y ∈ Uα0 , Y α0

y = ξ and y 6∈ Uα for α 6= α0. Let (ηα) be a partition of unity
subordinated to (Uα), and define

Y =
∑

α

ηαY α .

Then Yy = Y α0
y = ξ and dφ(Yz) = Xφ(z) for any z ∈ N . Thus Y ∈ L(N,F(φ)) and

dφ(Y ) = X.

Proposition 2.5. Let F be a locally transversely parallelizable foliation of a con-
nected manifold N , let s : N → M be a surjective submersion with connected
compact F-saturated fibers, and let s̄ : N/Fbas → M be the submersion induced by
s. Then the homomorphisms of Lie algebras

dπbas : L(N,F) ∩ L(N,F(s)) −→ L(N/Fbas,F(s̄)) ,

ds̄ : L(N/Fbas,F(s̄)) −→ X(M)

and

ds : L(N,F) ∩ L(N,F(s)) −→ X(M)

have the lifting property.

Proof. Example 2.4 implies that ds̄ : L(N/Fbas,F(s̄)) → X(M) has the lifting
property. Because ds = ds̄ ◦ dπbas and L(N,F) ⊂ L(N,Fbas), we have

dπbas(L(N,F) ∩ L(N,F(s))) ⊂ L(N/Fbas,F(s̄)) ,

and it is sufficient to show that dπbas : L(N,F) ∩ L(N,F(s)) → L(N/Fbas,F(s̄))
has the lifting property.

Write W = N/Fbas. Take any projectable vector field Z ∈ L(W,F(s̄)), and
choose ξ ∈ Ty(N) such that dπbas(ξ) = Zπbas(y). Put w = πbas(y).
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First we shall show that there exists an open neighbourhood V of w in W and
a vector field Y V ∈ L(π−1

bas(V ),F|π−1
bas(V )) such that Y V

y = ξ and dπbas(Y
V ) = Z|V .

To see this, choose projectable vector fields Y1, . . . , Yq ∈ L(N,F) such that y is a
regular point of the associated local transverse parallelism (Ȳ1, . . . , Ȳq) on (N,F).
Furthermore, we can choose these projectable vector fields so that ξ =

∑q
i=1 ci(Yi)y

for some constants c1, . . . , cq. Indeed, we can replace Y1 by the vector field Y1 +Y ′,
for a suitable vector field Y ′ ∈ X(F), so that ξ is in the span of tangent vectors
(Y1)y, . . . , (Yq)y.

Denote Xi = πbas(Yi), for i = 1, . . . , q. We can reorder Y1, . . . , Yq, so that
((X1)w, . . . , (Xq̄)w) is a basis of Tw(W ). Therefore we can choose an open neigh-
bourhood V of w in W such that ((X1)v, . . . , (Xq̄)v) is a basis of Tv(W ) for any
v ∈ V . By Example 2.4 there exists a vector field Z ′ ∈ L(W,F(s̄)) such that

Z ′
w =

∑q̄
i=1 ci(Xi)w. Write

Z|V − Z ′|V −

q
∑

j=q̄+1

cjXj |V =

q̄
∑

i=1

hiXi|V

and

Z ′|V =

q̄
∑

i=1

h′
iXi|V ,

so hi, h
′
i ∈ C∞(V ), hi(w) = 0 and h′

i(w) = ci, for i = 1, . . . , q̄.
Let gi = hi + h′

i for i = 1, . . . , q̄, and put gi = ci for i = q̄ + 1, . . . , q. Thus for
any i = 1, . . . , q we have gi ∈ C∞(V ), gi(w) = ci and Z|V =

∑q
i=1 giXi|V . Now we

define Y V ∈ L(π−1
bas(V ),F|π−1

bas(V )) by

Y V =

q
∑

i=1

(gi ◦ πbas)Yi|π−1
bas(V ) .

We have Y V
y =

∑q
i=1 gi(w)(Yi)y = ξ and dπbas(Y

V ) =
∑q

i=1 giXi|V = Z|V .
From this, we can conclude that there exist an open cover (V α) of W and pro-

jectable vector fields Y α = Y V α

∈ L(π−1
bas(V

α),F|π−1
bas(V

α)) such that dπbas(Y
α) =

Z|V α . Furthermore, we can assume that w ∈ V α0 , Y α0
y = ξ and y 6∈ V α for α 6= α0.

Let (ηα) be a partition of unity subordinated to (V α), and define

Y =
∑

α

(ηα
◦ πbas)Y

α .

Observe that Y ∈ L(N,F) because the functions ηα
◦πbas are basic, and that Yy =

Y α0
y = ξ. Furthermore, dπbas(Yz) =

∑

α ηα(πbas(z))Zπbas(z)) = Zπbas(z) for any
z ∈ N . Finally, we have Y ∈ L(N,F(s)) because dπbas(Y ) = Z ∈ L(W,F(s̄)). �

Proof of Theorem 2.3. Since Ty(F) ⊂ Ty(Fbas) ⊂ Ker(ds)y ⊂ Ty(N), we can
choose tangent vectors ξ1, . . . , ξq ∈ Ty(N) such that their projections to νy(F) form
a basis of νy(F), ds(ξm+1) = . . . = ds(ξq) = 0 and dπbas(ξq̄+1) = . . . = dπbas(ξq) =
0. By Proposition 2.5 we can choose vector fields Z1, . . . , Zq̄ ∈ L(N/Fbas,F(s̄))
such that

(Zi)πbas(y) = dπbas(ξi) , i = 1, . . . , q̄ .

Set
Zi = 0 , i = q̄ + 1, . . . , q .

Again by Proposition 2.5, we can find Y1, . . . , Yq ∈ L(N,F)∩L(N,F(s)) such that
(Yi)y = ξi and dπbas(Yi) = Zi. We can use the flows of the vector fields Y1, . . . , Yq

to obtain a local trivialization of s as a bundle of foliated manifolds, while the
restrictions of Ym+1, . . . , Yq to a fiber Ns(y) provide a local transverse parallelism
on (Ns(y),F|Ns(y)

) for which y is a regular point. �
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Theorem 2.3 motivates the following definition. Let M be a connected mani-
fold. A bundle of transversely complete foliations s : (N,F) → M with connected
compact fibers over M is a manifold N , equipped with a locally transversely par-
allelizable foliation F and a surjective submersion s : N → M with connected
compact F-saturated fibers. In particular, any such bundle is a locally trivial fiber
bundle of foliations.

For such a bundle s : (N,F) → M we shall write

Ls(N,F) = L(N,F) ∩ X(F(s))

for the Lie algebra of s-vertical projectable vector fields on (N,F), which is the
normalizer of X(F) in the Lie algebra X(F(s)). Let

ls(N,F) = Ls(N,F)/X(F)

be the associated quotient Lie algebra of s-vertical transverse vector fields on
(N,F). It is a subalgebra of the Lie algebra l(N,F).

The subbundle Ker(ds) ⊂ T (N) of s-vertical tangent vectors, which is the tan-
gent bundle of the foliation F(s), will also be denoted by T s(N). We shall write
νs(F) = T s(N)/T (F) for the corresponding subbundle of the normal bundle ν(F).
Note that ds : T (N) → T (M) induces a map of vector bundles ν(F) → T (M)
(which we denote again by ds) with kernel νs(F). A transversal vector field on
(N,F) is s-vertical if and only if it is a section of νs(F).

3. Developability of bundles of transversely complete foliations

Let s : (N,F) → M be a locally trivial fiber bundle of foliations with connected
fibers. We shall denote by Fx the restriction of F to the fiber Nx = s−1(x) over a
point x ∈ M . We say that such a bundle of foliations s : (N,F) → M is developable
if the foliation (Nx,Fx) is developable for any x ∈ M .

Our aim in this section is to provide some characterization of this notion of devel-
opability, first in terms of the fiberwise fundamental groupoid of s (Theorem 3.3),
and second in terms of the integrability of an associated Lie algebroid constructed
in Subsection 3.2 (Theorem 3.9).

3.1. The fiberwise fundamental groupoid. Let s : (N,F) → M be a locally
trivial fiber bundle of foliations with connected fibers. For any open subset U of M ,
we shall write N |U = s−1(U) and F|U = F|s−1(U). Note that s|U : (N |U ,F|U ) → U
is again a locally trivial fiber bundle of foliations.

Denote by Πs(N) the monodromy groupoid of (N,F(s)). This groupoid can be
viewed as the fiberwise fundamental groupoid of the bundle s. The space Πs(N) is
in fact a locally trivial fiber bundle over M , and the map (t, s) : Πs(N) → N ×M N
is a covering projection. We define the pull-back foliation Πs(F) = (t, s)∗(F × 0),
which is a right invariant foliation of the groupoid Πs(N). If M is a one-point
space, the Lie groupoid Πs(N) is simply the fundamental groupoid Π(N); the
corresponding foliation Πs(F) will in this case be denoted by Π(F).

For a local section σ : U → N of s, defined on an open subset U of M , we define
Πs

σ(N) by the following pull-back:

Πs
σ(N)

τ

��

// Πs(N)

s

��

t
// N

U
σ

// N

The elements of Πs
σ(N) are the homotopy classes of paths in s-fibers starting at a

point in σ(U). In particular, the restriction of the target map of Πs(N) to the fiber
Πs

σ(x)(N) = Πs(N)(σ(x), - ) over a point x ∈ U is the universal covering projection
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onto Nx, and the restriction of Πs(F) to Πs
σ(x)(N) is the pull-back of Fx along the

covering projection t : Πs
σ(x)(N) → Nx.

Since s is a locally trivial fiber bundle of foliations, it follows that the map

s ◦ s = s ◦ t : (Πs(N),Πs(F)) −→ M

is a locally trivial fiber bundle of foliated Lie groupoids, i.e. for any x0, x ∈ M
there is an open neighbourhood U of x in M , and an isomorphism of Lie groupoids

Πs(N)|s−1(U) −→ Π(Nx0
) × U

over U , which maps the restriction of the foliation Πs(F) to the foliation Π(Fx0
)×0.

In particular, the map s : (Πs(N),Πs(F)) → N is a locally trivial fiber bundle of
foliations with connected fibers.

Lemma 3.1. Let s : (N,F) → M be a locally trivial fiber bundle of foliations with
connected fibers. If σ : U → N is a local section of s, defined on an open subset U
of M , then t : Πs

σ(N) → N |U is a covering projection, and

(Πs
σ(N), t∗(F|U )) −→ U

is a locally trivial fiber bundle of foliated manifolds.

Proof. Take any x0, x1 ∈ U , and choose an open simply connected neighbourhood
V of x1 in U such that (N |V ,F|V ) is a trivial bundle of foliated manifolds, with a
trivialization

µ= (δ, s) : N |V −→ Nx0
× V

which maps the F|V to the foliation Fx0
×0. Choose y0 ∈ Nx0

. Since t : Πs
y0

(N) →
Nx0

is a covering projection and V is simply connected, we can lift δ ◦σ|V to a map
τ : V → Πs

y0
(N), so τ(x) : y0 → δ(σ(x)) for any x ∈ V .

Define a map µ̃ : Πs
σ|V

(N) → Πs
y0

(N) × V by

µ̃(α) = (δ∗(α)τ(x), x) ,

for any α : σ(x) → y in Πs
σ|V

(N). This map is clearly a diffeomorphism, and the

diagram

Πs
σ|V

(N)
µ̃

//

t

��

Πs
y0

(N) × V

t×id

��

N |V
µ

//

s

��

Nx0
× V

pr2
wwoo

o
o
o
o
o
o
o
o
o
o

V

commutes. This shows that t : Πs
σ(N) → N |U is a covering projection. Since the

map µ trivializes the bundle (N |V ,F|V ) → V of foliated manifolds, it follows that
(Πs

σ(N), t∗(F|U )) → U is also a locally trivial fiber bundle of foliated manifolds. �

We first observe that strict simplicity is a fiberwise property:

Proposition 3.2. Let s : (N,F) → M be a locally trivial fiber bundle of foliations
with connected fibers. Then the foliation F is strictly simple if and only if for each
x ∈ M the foliation Fx is strictly simple.

Proof. Suppose that F is strictly simple, thus given by a submersion f : N → T
with connected fibers. Since the fibers of s are saturated, the map f induces a
surjective submersion f̄ : T → M . In particular, the fiber Tx = f̄−1(x) is a closed
submanifold of T . Moreover, the restriction

f |Nx
: Nx −→ Tx
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is a submersion with connected fibers and defines the foliation Fx.
Conversely, suppose that Fx is strictly simple for any x ∈ M . Equivalently,

there is a structure of a Hausdorff manifold on the space of leaves Nx/Fx such that
the quotient projection Nx → Nx/Fx is a submersion. Since N is a locally trivial
fiber bundle of foliated manifolds, N/F can also be given a structure of a Hausdorff
manifold such that the quotient projection N → N/F is a submersion. It follows
that F is strictly simple. �

Theorem 3.3. Let s : (N,F) → M be a locally trivial fiber bundle of foliations
with connected fibers. The following conditions are equivalent.

(i) The bundle s : (N,F) → M is developable.
(ii) The foliation Πs(F) of Πs(N) is strictly simple.
(iii) For any open subset U of M with a section σ : U → M of s, the restriction

of the foliation Πs(F) to Πs
σ(N) is strictly simple.

Proof. (i)⇔(ii) Recall that s : (Πs(N),Πs(F)) → N is a locally trivial fiber bundle
of foliations with connected fibers. If we apply Proposition 3.2 to this bundle, we see
that Πs(F) is strictly simple if and only if the restriction of Πs(F) to Πs(N)(y, - )
is strictly simple, for any y ∈ N . But

t : Πs(N)(y, - ) −→ Ns(y)

is the universal cover of Ns(y), and the restriction of Πs(F) to Πs(N)(y, - ) is the
pull-back of Fs(y) along this covering.

(i)⇔(iii) By definition, the bundle s : (N,F) → M is developable if and only if
the pull-back of the foliation (Nx,Fx) to the universal cover of Nx is strictly simple,
for any x ∈ M . This is true if and only if the foliation (Πs

σ(x)(N), t∗(Fx)) is strictly

simple, for any section σ : U → N of s, because Πs
σ(x)(N) is the universal cover of

Nx. In turn, this holds true if and only if the foliation (Πs
σ(N), t∗(F|U )) is strictly

simple. Indeed, to see this, apply Proposition 3.2 to the map

s ◦ t : (Πs
σ(N), t∗(F|U )) −→ U ,

which is a locally trivial fiber bundle of foliated manifolds. Since Πs
σ(N) is a covering

space of N |U by Lemma 3.1, this completes the proof. �

Corollary 3.4. For a foliation F on a manifold M , the following two statements
are equivalent:

(i) The foliation F is developable.
(ii) The foliation F , viewed as a subalgebroid of T (M), is integrable by a closed

subgroupoid of the fundamental groupoid Π(M).

Proof. The groupoid Π(M) integrates the algebroid T (M), so the subalgebroid
F ⊂ T (M) correspond to an invariant foliation of Π(M) by [13, Lemma 2.1], which
is readily identified to the foliation Π(F). Thus by Theorem 3.3, F is developable
if and only if Π(F) is strictly simple, and by [13, Proposition 3.2 (ii)] this is the
case if and only if F can be integrated by a closed subgroupoid of Π(M). �

3.2. The basic Lie algebroid. As the main result of this section, we shall now
construct a Lie algebroid associated to a bundle s : (N,F) → M of transversely
complete foliations, and show that integrability of this algebroid is equivalent to
developability of the bundle s.

Lemma 3.5. Let s : (N,F) → M be a bundle of transversely complete foliations
with compact connected fibers, and let πbas : N → N/Fbas = W be the associated
basic fibration. The groupoid N ×W N naturally acts linearly both on the normal
bundle ν(F) and its subbundle νs(F) along πbas.
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Proof. For any (z, y) ∈ N ×W N and ξ ∈ νz(F), put

Θ(ξ, z, y) = Ȳy ,

where Ȳ is any transverse vector field on (N,F) such that Ȳz = ξ. This defini-
tion is independent of the choice of Ȳ by Remark 2.2 (5). Using local transverse
parallelisms and the corresponding local trivializations of the normal bundle, it is
straightforward to check that Θ is indeed a smooth linear action.

This action restricts to an action of N ×W N on νs(F) by Proposition 2.5.
Indeed, for any (z, y) ∈ N ×W N and any ξ ∈ νs

z(F), we can find Ȳ ∈ Ls(N,F)
with Ȳz = ξ. �

Remark 3.6. Note that if y and z lie on the same leaf of F , the corresponding
linear map Θ( - , z, y) : νz(F) → νy(F) is simply the linear holonomy isomorphism
of an arbitrary path in the leaf of F from z to y.

Let s : (N,F) → M be a bundle of transversely complete foliations with compact
connected fibers over a connected manifold M , and write W = N/Fbas. We shall
denote by

bs(N,F) = νs(F)/(N ×W N)

the space of orbits of the natural action of the groupoid N ×W N on νs(F) (Lemma
3.5). In the next lemma, we show that the natural projection bs(N,F) → W is a
vector bundle.

Lemma 3.7. Let s : (N,F) → M be a bundle of transversely complete foliations
with compact connected fibers, and let πbas : N → N/Fbas = W be the associated
basic fibration. Then the orbit space bs(N,F) has the structure of a vector bundle
over W such that

(i) the quotient projection θ : νs(F) → bs(N,F) is a (N ×W N)-principal bundle,
and

(ii) the diagram

νs(F)

��

θ
// bs(N,F)

��

N
πbas

// W

is a fibered product of vector bundles.

Proof. Since N is a principal N ×W N -bundle over W and the map νs(F) → N
is N ×W N -equivariant, it follows that there is a structure of smooth Hausdorff
manifold on bs(N,F) such that the quotient projection θ is a N ×W N -principal
bundle. Since the action on νs(F) is given by linear isomorphisms, the fibers of
bs(N,F) → W have vector space structures such that the restriction θy : νs

y(F) →
bs(N,F)πbas(y) of θ is a linear isomorphism, for any y ∈ N . Indeed, if z ∈ N is
another point on the same basic leaf as y, then θy ◦Θ( - , z, y) = θz, where Θ denotes
the natural action of N ×W N on ν(F).

Take any local transverse parallelism (Ȳ1, . . . , Ȳq) with regular set U , which is of
the form given by Theorem 2.3. It gives us a local trivialization of bs(N,F)

α : πbas(U) × R
q−m −→ bs(N,F)|πbas(U)

over πbas(U) by

α(πbas(y), tm+1, . . . , tq) = θy





q
∑

j=m+1

tj(Ȳj)y



 .
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This is well-defined because for another point z ∈ U with πbas(y) = πbas(z) we
have Θ((Ȳj)z, z, y) = (Ȳj)y. Thus we can conclude that bs(N,F) is indeed a vec-
tor bundle over W . The diagram in (ii) is a pull-back because θ restricts to the
isomorphism θy on each fiber νs

y(F). �

Proposition 3.8. Let s : (N,F) → M be a bundle of transversely complete folia-
tions with compact connected fibers. The bundle bs(N,F) has a natural structure
of a regular Lie algebroid over N/Fbas such that

(i) the quotient projection νs(F) → bs(N,F) over the basic fibration induces an
isomorphism of Lie algebras

Γ(bs(N,F)) −→ ls(N,F) ,

(ii) the foliation of N/Fbas corresponding to this regular algebroid is the simple
foliation given by the submersion N/Fbas → M induced by s, and

(iii) the natural projection T s(N) → bs(N,F) is a surjective morphism of Lie
algebroids.

Proof. The fact that the diagram in Lemma 3.7 (ii) is a fibered product implies
that any section X of bs(N,F) induces a section π∗

basX of νs(F), so we get a map

π∗
bas : Γ(bs(N,F)) −→ Γ(νs(F)) ,

which is clearly Ω0
bas(N,F)-linear (recall that the composition with the basic pro-

jection πbas : N → N/Fbas = W gives us the identification Ω0
bas(N,F) = C∞(W )).

Note that a section σ of the bundle νs(F) is a transverse vector field if and only
if it is holonomy invariant, i.e. if and only if

(6) Θ(σz, z, y) = σy

for any two points y, z on the same leaf of F . Furthermore, Remark 2.2 (5) implies
that for a transverse vector field the condition (6) in fact automatically holds for
any y, z on the same leaf of Fbas. Thus, by the definition of bs(N,F) and by Lemma
3.7, the s-vertical transverse vector fields on (N,F) are exactly those sections of
νs(F) which can be projected along πbas to a section of bs(N,F). We can therefore
conclude that

π∗
bas : Γ(bs(N,F)) −→ ls(N,F)

is an Ω0
bas(N,F)-linear isomorphism. We therefore define a Lie algebra structure

on Γ(bs(N,F)) so that π∗
bas is also a Lie algebra isomorphism.

To give bs(N,F) a Lie algebroid structure, we have to define its anchor, which
is a morphism of vector bundles an: bs(N,F) −→ T (W ) over W . We define it by

an(θy(ζ + Ty(F))) = (dπbas)y(ζ)

for any ζ ∈ T s
y (N). It is straightforward to check that bs(N,F) is a Lie algebroid

over W and that T s(N) → bs(N,F) is a surjective morphism of Lie algebroids. �

The Lie algebroid

bs(N,F)

over N/Fbas will be called the basic Lie algebroid associated to the bundle of
transversally complete foliations s : (N,F) → M .

Theorem 3.9. Suppose that s : (N,F) → M is a bundle of transversely complete
foliations with compact connected fibers. Then s : (N,F) → M is developable if and
only if the associated basic Lie algebroid bs(N,F) is integrable.
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Proof. Recall from Theorem 2.3 that the restriction Fx of F to the fiber Nx over
x ∈ M is a transversely complete (and therefore homogeneous) foliation. Theorem
2.3 also implies (Fx)bas = Fbas|Nx

, so the fiber Wx = s̄−1(x) over x is the space of
leaves Nx/(Fx)bas.

Since bs(N,F) is a locally trivial bundle of transitive Lie algebroids over M ,
its integrability is equivalent to the integrability of each fiber. The restriction of
bs(N,F) to the fiber Wx is exactly the basic algebroid b(Nx,Fx) of the transversely
complete foliation Fx of the compact fiber Nx (see also [15]). On the other hand,
developability of s : (N,F) → M is also given fiberwise. Therefore we may assume
without loss of generality that M is a one-point space. In this case, the statement
follows from the Almeida-Molino theorem for transversely complete foliations of
compact manifolds [15] (see also [12]). �

4. Proof of the main theorem

In this final section, we return to the setting of Section 1, and use the results
of Sections 2 and 3 to prove Theorem 1.8. In the proof of this theorem, we use
the following simple observations on the universal covering groupoid G̃ and the
fiberwise fundamental groupoid Πs(G).

Lemma 4.1. Let G be a source-connected Lie groupoid with Lie algebroid g.
(i) There is a natural action of G on Πs(G) which differentiates to an action ∇

by g on the Lie algebroid T s(G) → G along the source map s : G → M . For any
X ∈ Γ(g), the corresponding derivation ∇(X) = (∇X , R(X)) is given by

R(X) = X̃−1

and

∇X(Y ) = [R(X), Y ]

for any Y ∈ Xs(G), where X̃−1 the image of the right invariant extension X̃ of X
along the inverse map of G.

(ii) The universal covering groupoid G̃ of G embeds into G n Πs(G) as the full
subgroupoid on the space of units u : M → G, and this inclusion differentiates to
the diagonal embedding g → g n T s(G) of Lie algebroids.

Proof. Note that Πs(G) is a bundle of groupoids over M whose fiber over x ∈ M
is the fundamental groupoid Π(s−1(x)) of s−1(x). The natural left action of an
arrow g : x → y of G is the map of fundamental groupoids Π(s−1(x)) → Π(s−1(y))
induced by the right translation Rg−1 . The semi-direct product G n Πs(G) can be
described explicitly as the groupoid over G whose arrows g → g′ are pairs (h, α),
where h : s(g) → s(g′) is an arrow in G and α : g → g′h is an arrow in Πs(G). From
this description it is clear that the restriction of G n Πs(G) to the units is precisely

G̃. The rest follows by straightforward inspection. �

Proof of Theorem 1.8. Before proving (i)-(iv), let us observe that since the source
map of G has compact fibers and the foliation F(h) ⊂ F(s) is transversely complete,
the map s : (G,F(h)) → M is a bundle of transversely complete foliations with
connected compact fibers. Moreover, the foliations F(h) and F(s), as well as the
basic foliation F(h)bas associated to F(h), are all right invariant.

The closure H̄ of H in G is a closed subgroupoid of G which corresponds to the
basic foliation F(h)bas, and the space of cosets G/H̄ is the associated space of basic
leaves [13, Theorem 3.7]. Furthermore, the quotient projection π = πbas : G → G/H̄
is a locally trivial fiber bundle.

(i) We take b(G, h) to be the basic Lie algebroid bs(G,F(h)) associated to the
bundle s : (G,F(h)) → M . Proposition 3.8 (iii) implies that we have a natural
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surjective morphism of Lie algebroids ω : T s(G) → b(G, h) with kernel F(h).

(7) T s(G)

��

ω
// b(G, h)

��

G
π

// G/H̄

(ii) Note that the construction of b(G, h) in Section 3 is invariant under the
right G-action, so G acts on the Lie algebroids T s(G) and b(G, h), and the map
ω is invariant under this action. This action, formally inverted to a left action,
differentiates to an action of g on b(G, h).

(iii) We claim that the restriction of ω to g ⊂ T s(G) provides a Maurer-Cartan
form with kernel F(h). By the action of g on b(G, h), diagram (7) gives us a map
of Lie algebroids over G,

g n ω : g n T s(G) −→ g n b(G, h) ,

with kernel g n F(h). Precomposing this map with the natural diagonal section
g → g n T s(G) over the unit section u : M → G, Lemma 4.1 provides a morphism
of Lie algebroids

g −→ g n b(G, h)

over π ◦ u: M → G/H̄, which gives us the required Maurer-Cartan form.
(iv) The foliation F(h) of G by cosets of H is locally transversely parallelizable,

and by Theorem 2.3 the source map s: (G,F(h)) → M is a locally trivial bundle of
transversely complete foliations with compact connected fibers. By Theorem 3.9 the
basic Lie algebroid b(G, h) is integrable if and only if the bundle s : (G,F(h)) → M
is developable, and by Theorem 3.3 this is true if and only if the corresponding
foliation Πs

u(F(h)) of G̃ = Πs
u(G) is strictly simple (here u is the unit section of

the source map). By Proposition 1.1 this is equivalent to developability of the Lie
algebroid h. �

Remark 4.2. The vector bundle b(G, h) is a locally trivial bundle of Lie algebroids
over M , the fiber over x ∈ M being a transitive algebroid over s−1(x) ⊂ G/H̄. If
b(G, h) is integrable, write B for its source-simply connected integral. Then B is
a locally trivial bundle of transitive Lie groupoids over M . It follows that B is
Hausdorff. The action of G on b(G, h) integrates to an action of G on B (see [11]),

and the Maurer-Cartan form integrates to a twisted homomorphism F : G̃ → B,
whose kernel is the closed subgroupoid integrating h.

References

[1] R. Almeida and P. Molino. Suites d’Atiyah et feuilletages transversalement complets. C. R.

Acad. Sci. Paris Sér. I Math., 300(1):13–15, 1985.

[2] H. Bursztyn and A. Weinstein. Poisson geometry and Morita equivalence. London Math. Soc.

Lecture Note Ser., to appear, preprint arXiv:math.SG/0402347, 2004.

[3] A. Cannas da Silva and A. Weinstein. Geometric models for noncommutative algebras, vol-
ume 10 of Berkeley Mathematics Lecture Notes. American Mathematical Society, Providence,

RI, 1999.
[4] A. S. Cattaneo and G. Felder. A path integral approach to the Kontsevich quantization

formula. Comm. Math. Phys., 212(3):591–611, 2000.
[5] L. Conlon. Transversally parallelizable foliations of codimension two. Trans. Amer. Math.

Soc., 194:79–102, 1974.

[6] A. Connes. Noncommutative geometry. Academic Press Inc., San Diego, CA, 1994.

[7] A. Douady and M. Lazard. Espaces fibrés en algèbres de Lie et en groupes. Invent. Math.,
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