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Abstract. With respect to a wavelet basis, singular integral operators can
be well approximated by sparse matrices, and in [Found. Comput. Math., 2
(2002), pp. 203–245] and [SIAM J. Math. Anal., 35 (2004), pp. 1110–1132],
this property was used to prove certain optimal complexity results in the con-
text of adaptive wavelet methods. These results, however, were based upon the
assumption that, on average, each entry of the approximating sparse matrices
can be computed at unit cost. In this paper, we confirm this assumption by
carefully distributing computational costs over the matrix entries in combina-
tion with choosing efficient quadrature schemes.

1. Introduction

Boundary integral methods reduce elliptic boundary value problems in domains
to integral equations formulated on the boundary of the domain. Although the di-
mension of the underlying manifold decreases by one, the finite element discretiza-
tion of the resulting boundary integral equations gives densely populated stiffness
matrices, causing serious obstructions to accurate numerical solution processes. In
order to overcome this difficulty, various successful approaches for approximating
the stiffness matrix by sparse ones have been developed, such as multipole expan-
sions, panel clustering, and wavelet compression, see e.g. [Atk97, Hac95]. We will
restrict ourselves here to the latter approach.

In [BCR91], Beylkin, Coifman and Rokhlin first observed that wavelet bases give
rise to almost sparse stiffness matrices for the Galerkin discretization of singular
integral operators, meaning that the stiffness matrix has many small entries that
can be discarded without reducing the order of convergence of the resulting so-
lution. This result ignited the development of efficient compression techniques for
boundary integral equations based upon wavelets. In [vPS97, Sch98, DHS02] it was
shown that for a wide class of boundary integral operators a wavelet basis can be
chosen so that the full accuracy of the Galerkin discretization can be retained at
a computational work of the order N (possibly with a logarithmic factor in some
studies), where N is the number of degrees of freedom used in the discretization.
First nontrivial implementations of these algorithms and their performance tests
are reported in [LS99, Har01].
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The main reason why a stiffness matrix entry is small is that the kernel of the in-
volved integral operator is increasingly smooth away from its diagonal, and that the
wavelets have vanishing moments, i.e., wavelets are L2-orthogonal to polynomials
up to a certain degree. Another advantage of the Galerkin-wavelet discretization is
that the diagonally scaled stiffness matrices are well-conditioned uniformly in their
sizes, guaranteeing a uniform convergence rate of iterative methods for the linear
systems. Moreover, recent developments suggest a natural use of wavelets in adap-
tive discretization methods that approximate the solution using, up to a constant
factor, as few degrees of freedom as possible. In the following, we will consider the
adaptive wavelet method from [CDD02].

Let Ht(Γ) be the usual Sobolev space defined on a sufficiently smooth n-dimen-
sional manifold Γ ⊂ IRn+1, and let H−t(Γ) be its dual space. Then we consider the
problem of finding the solution u ∈ H t(Γ) of

Lu = g,

where L : Ht(Γ) → H−t(Γ) is a boundedly invertible linear operator, and g ∈
H−t(Γ). We will think of this problem as being the result of a variational formula-
tion of a strongly elliptic boundary integral equation of order 2t. With Ψ = {ψλ :
λ ∈ Λ} being a Riesz basis for H t(Γ), an equivalent infinite matrix-vector problem
reads as

(1.1) Mu = g,

where, with 〈 , 〉 denoting the duality product on H t(Γ)×H−t(Γ), M := 〈Ψ, LΨ〉 :
`2(Λ) → `2(Λ) is boundedly invertible, g := 〈Ψ, g〉 ∈ `2(Λ), and u = uTΨ.

Considering Ψ to be a wavelet basis, in [CDD02] an iterative adaptive method has
been developed for approximating the solution of this infinite dimensional problem
by a finitely supported vector within any given tolerance. Roughly speaking, the
method consists of the application of a simple iterative scheme to the infinite matrix-
vector problem, where each application of the infinite stiffness matrix M is replaced
by an inexact version. To assess the quality of the method, the `2(Λ)-error of the
obtained approximation after spending O(N) operations is compared with that of
a best N -term approximation for u, i.e., a vector uN with at most N non-zero
coefficients that has `2(Λ)-distance to u less or equal to that of any vector with a
support of that size.

In any case for wavelets that are sufficiently smooth, the theory of non-linear
approximation ([DeV98]) shows that if both

0 < s < d−t
n ,

where d is the order of the wavelets, and the solution u is in the Besov space
Bsn+t
τ (Lτ (Γ)) with 1

τ = 1
2 + s, then u ∈ As, meaning that

(1.2) sup
N∈IN

Ns‖u− uN‖ <∞.

Here ‖ ‖ denotes the standard norm on `2(Λ), and later, on other occasions, the
standard norm on the space of linear operators from `2(Λ) to `2(Λ). Note that
for any v ∈ `2(Λ), ‖u − vTΨ‖Ht(Γ) h ‖u − v‖. In order to avoid the repeated
use of generic but unspecified constants, in this paper by C . D we mean that
C can be bounded by a multiple of D, independently of parameters which C and
D may depend on. Obviously, C & D is defined as D . C, and C h D as
C . D and C & D. The attractive feature of these best N -term approximations
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is the fact that the condition involving Besov regularity is much milder than the
corresponding condition u ∈ Hsn+t(Γ) involving Sobolev regularity that would be
needed to guarantee the same rate of convergence with approximation from the
fixed, i.e., non-adaptive spaces spanned by N wavelets on the coarsest scales. Note
that with wavelets of order d, the maximal rate that can be expected is d−t

n .
The efficiency of the adaptive method from [CDD02] hinges on the cost of the ap-

proximate matrix-vector product, which depends how well M can be approximated
by a computable sparse matrix. We will use the following definition.

Definition 1.1. M is called s∗-computable, when for each j ∈ IN 0, we can con-
struct an infinite matrix M∗

j having in each column O(2j) non-zero entries, whose

computation takes O(2j) operations, such that for any s < s∗, ‖M−M∗
j‖ . 2−js.

The main theorem from [CDD02] now says that if u ∈ As for some s, and M is
s∗-computable for an s∗ > s, then the number of arithmetic operations and storage
locations used by the adaptive wavelet algorithm for computing an approximation
for u within tolerance ε is of the order ε−1/s. Since in view of (1.2) the same order
of storage locations is generally needed to approximate u within this tolerance using
best N -term approximations, assuming these would be available, this result shows
that this solution method has optimal computational complexity.

Remark 1.2. Actually, instead of being s∗-computable, in [CDD02] it was assumed
that M is “s∗-compressible”. Apart from our addition that each column of M∗

j

should not only have O(2j) entries, but also that, on average, the computation of
each of these entries should take O(1) operations, it is easily seen that the definition
of “s∗-compressible” from [CDD02] is equivalent to our definition of s∗-computable
(cf. [Ste04a, Remark 2.4]). In [CDD02] the average unit cost assumption was
mentioned separately afterwards (in Assumption 2).

Remark 1.3. In Definition 1.1, we may allow the computational cost and the number
of non-zeroes in each column of M∗

j to be O(jc2j) with any fixed constant c ∈ IR.
Indeed, in the spirit of Remark 2.4 of [Ste04a], one can show that this results in an
equivalent definition.

To conclude optimality of the adaptive wavelet method, it is necessary to show
that M is s∗-computable for some s∗ ≥ d−t

n , since otherwise for a solution u that
has sufficient Besov regularity, the computability will be the limiting factor. On
the other hand, since, for wavelets of order d, by imposing whatever smoothness
conditions u ∈ As can only be guaranteed for s < d−t

n , showing s∗-computability

for some s∗ ≥ d−t
n is also a sufficient condition for optimality of the adaptive wavelet

method.
Assuming the average unit cost property, s∗-computability for some s∗ ≥ d−t

n has
been demonstrated in [Ste04a] for both differential and singular integral operators,
and piecewise polynomial wavelets that are sufficiently smooth and have sufficiently
many vanishing moments. More precisely, under such conditions it was proven that
for some s∗ ≥ d−t

n , the infinite stiffness matrix M is s∗-compressible, a concept
that, different than in [CDD02], we define as follows.

Definition 1.4. M is called s∗-compressible, when for each j ∈ IN 0, there exists
an infinite matrix Mj , constructed by dropping entries from M, such that in each
column it has O(2j) non-zero entries, and that for any s < s∗, ‖M−Mj‖ . 2−js.
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Only in the special case of a differential operator with constant coefficients, en-
tries of M can be computed exactly, in O(1) operations, so that s∗-compressibility
immediately implies s∗-computability. In general, numerical quadrature is required
to approximate the entries. In this paper, considering singular integral operators
resulting from the boundary integral method, we will show that M is s∗-computable
for the same value of s∗ as is was shown to be s∗-compressible. The case of differ-
ential operators is treated in the paper [GS04]. We split the task into two parts.
First we derive a criterion on the accuracy-work balance of a numerical quadrature
scheme to approximate any entry of M, such that, for a suitable choice of the work
invested in approximating the entries of the compressed matrix Mj as function of
both wavelets involved, we obtain an approximation M∗

j of which the computation

of each column requires O(jc2j) operations with a fixed constant c (cf. Remark

1.3), and ‖Mj−M∗
j‖ ≤ 2−js

∗

, meaning that M is s∗-computable. Second, we show
that we can fulfill the above criterion by the application of certain quadrature rules
of variable order.

This paper is organized as follows. We collect some error estimates for numerical
quadrature in Section 2. In Section 3, assumptions are formulated on the singular
integral operator and the wavelets, and the result concerning s∗-compressibility is
recalled from [Ste04a]. Then in Section 4, rules for the numerical approximation
of the entries of the stiffness matrix are derived, with which s∗-computability for
some s∗ ≥ d−t

n will be demonstrated.
At the end of this introduction, we fix a few more notations. A monomial of n

variables is conveniently written using a multi-index α ∈ INn
0 as xα := xα1

1 . . . xαn
n .

Likewise we write partial differentiation operators, that is, ∂α := ∂α1

1 . . . ∂αn
n . We

set |α| := α1 + . . .+αn, and the relation α ≤ β is defined as αi ≤ βi for all i ∈ 1, n.
We have |α ± β| = |α| ± |β| provided that α − β ∈ INn

0 in case of subtraction.
Binomial coefficients are naturally defined as

(

α
β

)

:=
(

α1

β1

)

. . .
(

αn

βn

)

.

2. Error estimates for numerical quadrature

In this section, we recall some quadrature error estimates, referring to e.g. [GS04]
for detailed proofs. We define the radius of a star-shaped domain Ω by

(2.1) rad(Ω) := min
y∈S(Ω)

max
x∈∂Ω

|x− y|,

where S(Ω) := clos{y ∈ Ω : Ω is star-shaped w.r.t. y}. Apparently, we always have
rad(Ω) ≤ diam(Ω), and the radius of a convex domain equals the radius of its
smallest circumscribed sphere.

On a star-shaped domain Ω, let us now consider quadrature rules of the form
Q : f 7→

∑

j wjf(xj) to approximate I : f 7→
∫

Ω
f . We will only consider rules

that are internal meaning that all xj ∈ closΩ. The quadrature error functional is
defined as E := I −Q.

Proposition 2.1. For a rule Q of order p, meaning that E(f) = 0 for all f ∈
Pp−1(Ω), and any f ∈W p

∞(Ω) we have

(2.2) |E(f)| ≤

(

1 +

∑

j |wj |

vol(Ω)

)

·
np

p!
· rad(Ω)p · vol(Ω) · |f |Wp

∞(Ω).

Note that for a rule that is positive, meaning that all wj > 0, and that has order

p > 0, we have
∑

j
|wj |

vol(Ω) = 1.
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Let us now consider a collection O of disjoint star-shaped Lipschitz subdo-
mains Ω′ ⊂ Ω, the latter not necessarily being star-shaped, such that closΩ =
∪Ω′∈O closΩ′, which collection we will refer to as being a quadrature mesh. Writ-
ing I(f) as

∑

Ω′∈O
∫

Ω′ f , on each subdomain Ω′ we employ a quadrature rule

QΩ′(f) =
∑

j w
Ω′

j f(xΩ′

j ) of order p, defining a composite quadrature rule Q of

rank N := #O (and order p) by Q(f) :=
∑

Ω′∈OQΩ′(f).

Proposition 2.2. For the error functional E = I−Q of this composite quadrature
rule, and f ∈W p

∞(Ω) we have

|E(f)| ≤

(

1 + sup
Ω′∈O

∑

j |w
Ω′

j |

vol(Ω′)

)

· sup
Ω′∈O

(

N1/nrad(Ω′)

diam(Ω)

)p

×N−p/n ·
np

p!
· diam(Ω)p · vol(Ω) · |f |Wp

∞(Ω).

In view of above estimate, as well as to control the number of function evaluations
that are required, in this paper we will consider families (Qp)p∈IN of composite

quadrature rules Qp : f 7→
∑

Ω′∈O
∑

j w
p,Ω′

j f(xp,Ω
′

j ) of order p with a fixed mesh
O, that are admissible meaning that they satisfy

sup
p∈IN,Ω′∈O

max

{

∑

j |w
p,Ω′

j |

vol(Ω′)
,
#xp,Ω

′

j

pn

}

<∞.

Note that the bound on the number of abscissae in each subdomain is reasonable
because the space of polynomials of total degree p− 1 has

(

p−1+n
n

)

≤ pn degrees of
freedom. Moreover, for a quadrature mesh O we define the following quantity

(2.3) CO := sup
Ω′∈O

(#O)1/nrad(Ω′)

diam(Ω)
.

Finally in this section, we consider product quadrature rules which are generally
applied on Cartesian product domains. Let A and B be domains of possibly different
dimensions, equipped with the quadrature rules Q(A) : g 7→

∑

j wjg(xj) and Q(B) :

h 7→
∑

k vkh(yk) to approximate I(A) : g 7→
∫

A
g and I(B) : h 7→

∫

B
h, respectively.

For simplicity, in this setting we will always assume that these rules are positive
and have strictly positive orders. Now with the product rule Q(A) ×Q(B) we mean
the mapping f 7→

∑

jk wjvkf(xj , yk) to approximate I : f 7→
∫

A×B f .

Lemma 2.3. With error functionals E(A) := I(A)−Q(A) and E(B) := I(B)−Q(B),
the product rule Q := Q(A) ×Q(B) satisfies

(2.4) |I(f) −Q(f)| ≤ vol(A) sup
x∈A

|E(B)(f(x, ·))| + vol(B) sup
y∈B

|E(A)(f(·, y))|,

as long as both E(A)(f(·, y)) and E(B)(f(x, ·)) make sense for all y ∈ B and x ∈ A,
respectively.

As an application of this lemma, we have the following result for product quad-
rature rules on rectangular domains.

Proposition 2.4. Consider the rectangular domain � := (0, l1) × . . . × (0, ln)

and define l := maxi li. For the i-th coordinate direction, let Q
(i)
M be a composite

quadrature rule of order p with respect to a quadrature mesh on (0, li) of M equally
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sized subintervals. Then for the product quadrature rule Q := Q
(1)
M × . . . ×Q

(n)
M to

approximate I : f 7→
∫

�
f , and f such that ∂pi f ∈ L∞(�), i ∈ 1, n, we have

(2.5) |I(f) −Q(f)| ≤ n
21−p

p!
M−p · ln+p · max

i∈1,n
‖∂pi f‖L∞(�).

In particular, this quadrature rule is exact on Qp−1(�) := Pp−1(0, l1) × . . . ×
Pp−1(0, ln).

3. Compressibility

For some µ ∈ IN , let Γ be a patchwise smooth, compact n-dimensional, globally
Cµ−1,1 manifold in IRn+1. Following [DS99b], we assume that Γ = ∪Mq=1Γq , with
Γq ∩ Γq′ = ∅ when q 6= q′, and that for each 1 ≤ q ≤M , there exists

• a domain Ωq ⊂ IRn, and a C∞-parametrization κq : IRn → IRn+1 with
Im(κq|Ωq

) = Γq,

• a domain IRn ⊃ Ω̂q ⊃⊃ Ωq , and an extension of κq|Ωq
to a Cµ−1,1 para-

metrization κ̂q : Ω̂q → Im(κ̂q) ⊂ Γ.

κq

Ωq

Γq

Figure 1. Parametrization of the manifold.

Formally supposing that the domains Ωq are pairwise disjoint, for notational con-
venience we introduce the invertible mapping κ : ∪qΩq → ∪qΓq ⊂ Γ via

κ(x) := κq(x) with q such that x ∈ Ωq .

For |s| ≤ µ, the Sobolev spaces Hs(Γ) are well-defined, where for s < 0, Hs(Γ) is
the dual of H−s(Γ). Let

Ψ = {ψλ : λ ∈ Λ}

be a Riesz basis for H t(Γ) of wavelet type. The index λ encodes both the level,
denoted by |λ| ∈ IN0, and the location of the wavelet ψλ. We will assume that the
wavelets are local and piecewise smooth with respect to nested subdivisions in the
following sense. We assume that there exists a sequence (O`)`∈IN0

of collections O`

of disjoint “uniformly” Lipschitz domains Θ ∈ O`, with

(3.1) diam(Θ) h 2−` and vol(Θ) h 2−n`,

and where each Θ ∈ O` is contained in some Ωq, and its closure is the union of the
closures of a uniformly bounded number of subdomains from O`+1. For a precise
definition of a collection of sets to be a collection of uniformly Lipschitz domains,
we refer to [Ste04a, Remark 2.1]. Defining the collections of panels

G` := {κ(Θ) : Θ ∈ O`}, (` ∈ IN0),
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we assume that Γ = ∪Π∈G`
Π, (` ∈ IN0), and that for each λ ∈ Λ there exists a

subcollection Gλ ⊂ G|λ| with

sup
λ∈Λ

#Gλ <∞ and sup
`∈IN0,Π∈G`

#{λ : |λ| = `, Π ∈ Gλ} <∞,

such that suppψλ = ∪Π∈Gλ
closΠ, being a connected set, and that on each Θ ∈

κ−1(Gλ), the pull-back ψ̂λ,Θ := (ψλ ◦ κ)|Θ is smooth with

(3.2) sup
x∈Θ

|∂βψ̂λ,Θ(x)| <∼ 2(|β|+n
2
−t)|λ| for β ∈ Nn

0 .

We assume that the wavelets have the so-called cancellation property of order
d̃ ∈ IN , saying that there exists a constant η > 0, such that for any p ∈ [1,∞], for
all continuous, patchwise smooth functions v and λ ∈ Λ,

(3.3) |〈v, ψλ〉| <∼ 2−|λ|( n
2
−n

p
+t+d̃) max

1≤q≤M
|v|W d̃

p (B(suppψλ;2−|λ|η)∩Γq),

where for A ⊂ IRn+1 and ε > 0, B(A; ε) := {y ∈ IRn+1 : dist(A, y) < ε}.
Furthermore, for some k ∈ IN0 ∪ {−1}, with k < µ and

(3.4) γ := k + 3
2 > t,

we assume that all ψλ ∈ Ck(Γ), where k = −1 means no global continuity condition,

and that for all r ∈ [−d̃, γ), s < γ, necessarily with |s|, |r| ≤ µ,

(3.5) ‖ · ‖Hr(Γ)
<
∼ 2`(r−s)‖ · ‖Hs(Γ) on W` := span{ψλ : |λ| = `}.

Inside a patch, a similar property can be required for larger ranges: For all q ∈ 1,M ,
and r ∈ [−d̃, γ), s < γ, we assume that
(3.6)

‖ · ‖Hr(Γq)
<
∼ 2`(r−s)‖ · ‖Hs(Γq) on span{ψλ : |λ| = `, B(suppψλ; 2

−`η) ⊂ Γq}.

Remark 3.1. Wavelets that satisfy the assumptions in principle for any d, d̃ and
smoothness permitted by both d and the regularity of the manifold were constructed
in [DS99b]. Apart from this construction, all known approaches based on non-
overlapping domain decompositions yield wavelets which over the interfaces between
patches are only continuous. With the constructions from [DS99a, CTU99, CM00],
biorthogonality was realized with respect to a modified L2(Γ)-scalar product. As
a consequence, with the interpretation of functions as functionals via the Riesz
mapping with respect to the standard L2(Γ) scalar product, for negative t the
wavelets only generate a Riesz basis for H t(Γ) when t > − 1

2 , and likewise wavelets
with supports that extend to more than one patch generally have no cancellation
properties in the sense of (3.3). Recently in [Ste04b], this difficulty was overcame,
and wavelets were constructed that all have the cancellation property of the full
order, and that generate Riesz bases for the full range of Sobolev spaces H t(Γ)
that is allowed by continuous gluing of functions over the patch interfaces and the
regularity of the manifold.

For some |t| ≤ µ, let L be a bounded operator from H t(Γ) → H−t(Γ), where we
have in mind a singular integral operator of order 2t. We assume that the operator
L is defined by

(3.7) Lu(z) =

∫

Γ

K(z, z′)u(z′)dΓz′ , (z ∈ Γ),
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and that its local kernel function

K̂(x, x′) := K(κ(x), κ(x′)) · |∂κ(x)| · |∂κ(x′)|

satisfies for all x, x′ ∈ ∪1≤q≤MΩq, and α, β ∈ INn
0 ,

(3.8) |∂αx ∂
β
x′K̂(x, x′)| <∼

|α+ β|!

ς |α+β| · dist(κ(x), κ(x′))−(n+2t+|α+β|),

with a constant ς > 0 (cf. [Har01, DHS02]), provided that n+ 2t+ |α+ β| > 0. If
the kernel function K(z, z′) contains non-integrable singularities, the integral (3.7)
has to be understood in the finite part sense of Hadamard, see e.g. [SW92, SL00].
Following [DHS02], we emphasize that (3.8) requires patchwise smoothness but no
global smoothness of Γ. Only assuming global Lipschitz continuity of Γ, the local
kernel of any standard boundary integral operator of order 2t can be shown to
satisfy (3.8).

We assume that for some σ ∈ (0, µ− |t|], both L and its adjoint L′ are bounded
from Ht+σ(Γ) → H−t+σ(Γ).

Remark 3.2. If Γ is a C∞-manifold, then these boundary integral operators are
known to be pseudo-differential operators, meaning that for any σ ∈ IR they
define bounded mappings from H t+σ(Γ) → H−t+σ(Γ). For Γ being only Lips-
chitz continuous, for the classical boundary integral equations it is known that
L : Ht+σ(Γ) → H−t+σ(Γ) is bounded for the maximum possible value σ = 1 − |t|
(cf. [Cos88]). With increasing smoothness of Γ one may expect this boundedness
for larger values of σ. Results in this direction can be found in [MS04].

Furthermore, with H̃s(Γq) :=

{

Hs(Γq) when s ≥ 0,
(H−s

0 (Γq))
′ when s < 0,

we assume that

there exists a τ ∈ (0, µ− |t|] such that

(3.9) L : Ht+τ (Γ) → H̃−t+τ (Γq) is bounded for all 1 ≤ q ≤M.

Remark 3.3. Since for any |s| ≤ µ, the restriction of functions on Γ to Γq is a

bounded mapping from Hs(Γ) to H̃s(Γq), from the boundedness of L : H t+σ(Γ) →
H−t+σ(Γ), it follows that in any case (3.9) is valid for τ = σ. So for example for Γ
being a C∞-manifold, (3.9) is valid for any τ ∈ IR. Yet, in particular when t < 0,
for Γ being less smooth it might happen that (3.9) is valid for a τ that is strictly
larger than any σ for which L : H t+σ(Γ) → H−t+σ(Γ) is bounded.

In the following theorem, we recall the main result on compressibility for bound-
ary integral operators from [Ste04a].

Theorem 3.4. For Ψ being a Riesz basis for H t(Γ) as described above with t+ d̃ >

0, and d̃ > γ − 2t, let M = 〈Ψ, LΨ〉.
Let α ∈ ( 1

2 , 1) and bi := (1 + i)−1−ε for some ε > 0. Choose k satisfying

(3.10)

k =
1

n− 1
when n > 1,

k >
min{t+ d̃, τ}

γ − t
and k ≥ max{1,

min{t+ d̃, τ}

min{t+ µ, σ}
} when n = 1.
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We define the infinite matrix Mj for j ∈ IN by replacing all entries Mλ,λ′ =
〈ψλ, Lψλ′〉 by zeros when

∣

∣|λ| − |λ′|
∣

∣ > jk, or(3.11)
∣

∣|λ| − |λ′|
∣

∣ ≤ j/n and δ(λ, λ′) ≥ max{3η, 2α(j/n−||λ|−|λ′||)}, or(3.12)
∣

∣|λ| − |λ′|
∣

∣ > j/n and

δ̃(λ, λ′) ≥ max{2n(j/n−||λ|−|λ′||)b||λ|−|λ′||−j/n, 2η2
−||λ|−|λ′||},

(3.13)

where

(3.14) δ(λ, λ′) := 2min{|λ|,|λ′|}dist(suppψλ, suppψλ′),

and

δ̃(λ, λ′) := 2min{|λ|,|λ′|} ×

{

dist(suppψλ, sing suppψλ′) when |λ| > |λ′|,

dist(sing suppψλ, suppψλ′) when |λ| < |λ′|,

and η is from (3.3).
Then the number of non-zero entries in each column of Mj is of order 2j, and

for any

s ≤ min
{

t+d̃
n , τn

}

, with s < γ−t
n−1 , s ≤

σ
n−1 and s ≤ µ+t

n−1 when n > 1,

it holds that ‖M−Mj‖ <∼ 2−js. We conclude that M is s∗-compressible, as defined

in Definition 1.4, with s∗ = min{ t+d̃n , τn ,
σ
n−1 ,

γ−t
n−1 ,

µ+t
n−1} when n > 1, and s∗ =

min{t+ d̃, τ} when n = 1.

From this theorem we infer that if d̃ ≥ d − 2t, τ ≥ d − t and, when n > 1,
min{γ−t,σ,t+µ}

n−1 ≥ d−t
n , then s∗ ≥ d−t

n as required. For n > 1, the condition involving

γ is satisfied for instance for spline wavelets, where γ = d− 1
2 , in case d−t

n ≥ 1
2 .

If each entry of M can be exactly computed in O(1) operations, then s∗-com-
pressibility implies s∗-computability, as defined in Definition 1.1, and so, when
indeed s∗ ≥ d−t

n , it implies the optimal computational complexity of the adaptive
wavelet scheme from [CDD02]. In general, one is not able to compute the matrix
entries exactly. What is more, it is far from obvious how to compute the entries of
Mj sufficiently accurate while keeping the average computational expense per entry
in each column uniformly bounded. In the next section, additionally assuming that
the wavelets are essentially piecewise polynomials, we will show that it is possible
to arrange quadrature schemes which admit s∗-computability of M.

4. Computability

In this section, we will present a numerical integration scheme which computes
an approximation M∗

j of Mj such that, for some specified constant c, by spend-

ing O(jc2j) computational work per column of M∗
j , the approximation error sat-

isfies ‖Mj − M∗
j‖

<
∼ 2−js

∗

with s∗ given by Theorem 3.4, implying that M is
s∗-computable.

Let us consider the computation of individual entries

(4.1) Mλ,λ′ =

∫

Γ

ψλ(z)

(∫

Γ

K(z, z′)ψλ′ (z′)dΓz′

)

dΓz
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of M. Unless explicitly stated otherwise, throughout this section we assume that

|λ| ≥ |λ′|.

We start with an assumption.

Assumption 4.1. For any Ξ ∈ Gλ, Ξ′ ∈ G|λ| with Ξ′ ⊂ suppψλ′ , in the following
we assume that the integral

∫

Ξ

∫

Ξ′

K(z, z′)ψλ(z)ψλ′(z′)dΓzdΓz′

is well-defined.

This assumption obviously holds in case of proper or improper integrals. How-
ever, it requires an appropriate interpretation of the integrals in case of strongly-
or hyper-singular kernels. For strongly singular kernels on surfaces in IR3 the as-
sumption was confirmed in [HS93].

As a consequence of the assumption, we may write

(4.2) Mλ,λ′ =
∑

Π∈Gλ

∑

Π′∈Gλ′

Iλλ′ (Π,Π′),

with, for Π ∈ Gλ and Π′ ∈ Gλ′ ,

(4.3) Iλλ′(Π,Π′) :=
∑

{Ξ′∈G|λ|:Ξ′⊂Π′}

∫

Π

∫

Ξ′

K(z, z′)ψλ(z)ψλ′(z′)dΓzdΓz′ .

We assume that for each Π ∈ Gλ, Π′ ∈ Gλ′ an approximation of the integral
Iλλ′(Π,Π′) is obtained by some numerical scheme dependent on j, and using (4.2),
that these approximations are used to assemble the matrix M∗

j . The following theo-
rem defines a criterion on the computational cost in relation to the accuracy of com-
puting the integrals Iλλ′ (Π,Π′) so that s∗-compressibility implies s∗-computability.

Theorem 4.2. Let s∗ > 0 be any given constant, and M, Mj be as in Theorem 3.4.
Let σ : ∪`G` → IR be some fixed function such that

(4.4) σ(Ξ) h diam(Ξ) for Ξ ∈ ∪`G`,

and let d∗, e∗ ∈ IR and % > 1 be fixed constants. Assume that for any p ∈ IN , an
approximation I∗λλ′ (Π,Π′) of the integral Iλλ′ (Π,Π′) can be computed such that by
spending the number of

(4.5) W <
∼ p2n(1 + ||λ| − |λ′||)

arithmetical operations, the error satisfies

|Eλλ′ (Π,Π′)| <∼ %−p2||λ|−|λ′||d∗

× max

{

1,
dist(Π,Π′)

%max{σ(Π), σ(Π′)}

}e∗−p
.

(4.6)

Then for any fixed ϑ ≥ 0, and for parameters θ and τ with

(4.7) θ ≥ s∗/ log2 % and τ > (n/2 + d∗)/ log2 %,

by choosing p for the computation of I∗λλ′ (Π,Π′) as the smallest positive integer
satisfying

(4.8) p > e∗ + n and p ≥ jθ + τ ||λ| − |λ′|| − ϑ,
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the so computed approximation M∗
j of Mj satisfies ‖Mj −M∗

j‖
<
∼ 2−js

∗

, where the

work for computing each column of M∗
j is O(j2n+12j).

By taking s∗ as given in Theorem 3.4, we conclude that the matrix M is s∗-
computable for the same value of s∗ as it was shown to be s∗-compressible.

The proof will use Schur’s lemma that we recall here for the reader’s convenience.

Lemma 4.3 (Schur’s lemma). If for a matrix A = (aλ,λ′ )λ,λ′∈Λ, there is a sequence
wλ > 0, λ ∈ Λ, and a constant C such that

∑

λ′∈Λ

wλ′ |aλ λ′ | ≤ wλC, (λ ∈ Λ), and
∑

λ∈Λ

wλ|aλ λ′ | ≤ wλ′C, (λ′ ∈ Λ),

then ‖A‖ ≤ C.

Proof of Theorem 4.2. Since #Gλ, #Gλ′
<
∼ 1, it is sufficient to give the proof pre-

tending that #Gλ = #Gλ′ = 1.
With the matrix (∆λ,λ′)λ,λ′∈Λ defined by

∆λ,λ′ := max

{

1,
dist(Π,Π′)

%max{σ(Π), σ(Π′)}

}

, Π ∈ Gλ, Π′ ∈ Gλ′ ,

for each λ ∈ Λ, `′ ∈ IN0, and β > n, we can verify that

(4.9)
∑

|λ′|=`′
∆−β
λ,λ′

<
∼ 2nmax{0,`′−|λ|},

using the locality of the wavelets and the fact that σ(Π′) h diam(Π′) h 2−|λ′| and

that vol(Π′) h 2−|λ′|n.
Denoting the entry (λ, λ′) of the error matrix Mj − M∗

j by εj,λλ′ , and by sub-
stituting p ≥ jθ + τ ||λ| − |λ′|| − ϑ into (4.6), we infer that

εj,λλ′ . 2−jθ log
2
%2−||λ|−|λ′||(τ log

2
%−d∗)∆

−(p−e∗)
λ,λ′(4.10)

Recall that σ := τ log2 % − d∗ > n/2 and p − e∗ > n. Applying Schur’s lemma to
the error matrix Mj −M∗

j with weights wλ = 2−|λ|n/2, we have

w−1
λ

∑

λ′

wλ′ |εj,λλ′ | . 2−jθ log
2
%2|λ|n/2

∑

`′≥0

2−`
′n/22−(|λ|−`′)σ ·

∑

|λ′|=`′
∆

−(p−e∗)
λ,λ′

. 2−jθ log
2
%2|λ|n/2

∑

0≤`′≤|λ|
2−`

′n/22−(|λ|−`′)σ · 1

+ 2−jθ log
2
%2|λ|n/2

∑

`′>|λ|
2−`

′n/22−(`′−|λ|)σ · 2(`′−|λ|)n

. 2−jθ log
2
%,

where we used (4.9) in the second step. Now by the symmetry of the estimate
(4.10) in λ and λ′, we conclude that the error in the computed matrix M∗

j satisfies

‖Mj −M∗
j‖ . 2−jθ log

2
% ≤ 2−js

∗

.

The work for computing the entry (M∗
j )λ,λ′ is of order

p(j, λ, λ′)2n(1 + ||λ| − |λ′||) <∼ (jθ + τ ||λ| − |λ′||)2n(1 + ||λ| − |λ′||).

Since M∗
j contains nonzero entries only for ||λ|− |λ′|| ≤ jk, we can bound the work

for computing each element (M∗
j )λ,λ′ by a constant multiple of j2n+1. Now using
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the fact that each column of Mj contains O(2j) nonzero entries, we conclude the
computational work per column is O(j2n+12j). �

By applying the error estimates from Section 2, we will now show how nu-
merical quadrature schemes satisfying (4.5) and (4.6) can be realized. We will
consider variable order quadrature rules, meaning that constants absorbed by the
“<∼” symbol will not depend on the quadrature order. To this end, we consider a
general finite subdivision Υ ⊂ (∪`G`)2 of the integration domain Π × Π′ such that
{Ξ×Ξ′ ∈ Υ : dist(Ξ,Ξ′) = 0} ⊂ G2

|λ|. Then in view of Assumption 4.1, we can split

the integral (4.3) as

(4.11) Iλλ′ (Π,Π′) =
∑

Ξ×Ξ′∈Υ

Iλλ′ (Ξ,Ξ′),

with

Iλλ′ (Ξ,Ξ′) :=

∫

Ξ

∫

Ξ′

K(z, z′)ψλ(z)ψλ′(z′)dΓzdΓz′ .

First we will study the numerical evaluation of an individual integral I(Ξ,Ξ′) for
the case that dist(Ξ,Ξ′) > 0. We can write the integral I(Ξ,Ξ′) in local coordinates

(4.12) Iλλ′ (Ξ,Ξ′) =

∫

Θ

∫

Θ′

K̂(x, x′)ψ̂λ,κ−1(Π)(x)ψ̂λ′ ,κ−1(Π′)(x
′)dxdx′,

where Θ = κ−1(Ξ) and Θ′ = κ−1(Ξ′).

Definition 4.4. The wavelet basis Ψ is said to be of P -type of order e when for

all λ ∈ Λ and Θ ∈ O|λ|, ψ̂λ,Θ ∈ Pe−1(Θ). Similarly, Ψ is of Q-type of order e when

for all λ ∈ Λ and Θ ∈ O|λ|, Θ is an n-rectangle and ψ̂λ,Θ ∈ Qe−1(Θ).

Lemma 4.5. Assume that the wavelet basis Ψ is of P -type of order e and that
dist(κ(Θ), κ(Θ′)) > 0. For the domains Θ and Θ′, we employ composite quadrature
rules from admissible families (uniformly in Θ,Θ′) of orders p and fixed ranks N ,
and apply the product of these quadrature rules to approximate the non-singular
integral Iλλ′(κ(Θ), κ(Θ′)) from (4.12). We define

(4.13) σ(κ(Θ̃)) :=
nC

ςN1/n
diam(Θ̃) for all Θ̃ ∈ ∪`O`,

where ς > 0 is the constant involved in the Calderon-Zygmund estimate (3.8), and

C is an upper bound on the quantity (2.3) for quadrature meshes on Θ̃ ∈ ∪`O`.
Then with

(4.14) ω :=
dist(κ(Θ), κ(Θ′))

max{σ(κ(Θ)), σ(κ(Θ′))}
,

for any p ≥ max{e− 2t− n, e− 1}, the quadrature error E(κ(Θ), κ(Θ′)) satisfies

|E(Ξ,Ξ′)| <∼ 2||λ|−|λ′||(n/2−t)ω−(n+p) max{1, ω}e−1

× min{σ(κ(Θ)), σ(κ(Θ′))}n dist(κ(Θ), κ(Θ′))−2t.
(4.15)

Proof. Since there will be no risk of confusion, we will write ψ̂λ and ψ̂λ′ instead

of ψ̂λ,κ−1(Π) and ψ̂λ′,κ−1(Π′), respectively. By Lemma 2.3, the error of the product
quadrature is

(4.16) |E(κ(Θ), κ(Θ′))| ≤ vol(Θ′) · sup
x′∈Θ′

|E(x′)| + vol(Θ) · sup
x∈Θ

|E′(x)|,
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where we denoted by E(x′) the error of the quadrature over the domain Θ with the

integrand x 7→ K̂(x, x′)ψ̂λ(x)ψ̂λ′ (x′). Analogously E′(x) denotes the error of the
quadrature over Θ′. Using Proposition 2.2 to bound E(x′), we have

(4.17) |E(x′)| <∼
np

p!
CpN−p/n vol(Θ) · diam(Θ)p · |ψ̂λ′(x′)| · |K̂(·, x′)ψ̂λ|Wp

∞(Θ).

The partial derivatives with |η| = p, satisfy

∣

∣

∣∂ηx

(

K̂(x, x′)ψ̂λ(x)
)∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∑

ξ≤η

(

η

ξ

)

∂η−ξx K̂(x, x′)∂ξxψ̂λ(x)

∣

∣

∣

∣

∣

∣

≤
∑

{ξ≤η:|ξ|≤e−1}

(

η

ξ

)

∣

∣

∣∂η−ξx K̂(x, x′)∂ξxψ̂λ(x)
∣

∣

∣ ,

since ∂ξψ̂λ can only be nonzero when |ξ| ≤ e− 1 because ψ̂λ ∈ Pe−1. Applying the
estimates (3.2) and (3.8) we have, with δ := dist(κ(Θ), κ(Θ′))

|K̂(·, x′)ψ̂|Wp
∞(Θ)

<
∼ max

|η|=p

∑

{ξ≤η:|ξ|≤e−1}

(

η

ξ

)

(p− |ξ|)!

ςp−|ξ| δ−(n+2t+p−|ξ|)2(|ξ|+n/2−t)|λ|

<
∼ 2|λ|(n/2−t)δ−(n+2t+p)

× max
|η|=p

∑

{ξ≤η:|ξ|≤e−1}

(

η

ξ

)

(p− |ξ|)!

ςp−|ξ|

(

2|λ|δ
)|ξ|

<
∼
p!

ςp
· 2|λ|(n/2−t)δ−(n+2t+p) · max{1, 2|λ|δ}e−1,

where
(

η
ξ

)

(p − |ξ|)! ≤ p! was used. By substituting this result into (4.17), setting

c := nC/(ςN1/n), and using vol(Θ) <∼ diam(Θ)n, vol(Θ′) <∼ diam(Θ′)n, and again
(3.2), we get

vol(Θ′) · sup
x′∈Θ′

|E(x′)| <∼ diam(Θ′)ncp diam(Θ)n+p · 2(|λ|+|λ′|)(n/2−t)

× δ−(n+2t+p) max{1, 2|λ|δ}e−1

= diam(Θ′)n diam(Θ)n+p · 2(|λ|+|λ′|)(n/2−t)c−nδ−2tω−n−p

× max{diam(Θ), diam(Θ′)}−n−p max{1, 2|λ|δ}e−1

= c−n2(|λ|+|λ′|)(n/2−t)δ−2tω−n−pmin{diam(Θ), diam(Θ′)}n

×

(

diam(Θ)

max{diam(Θ), diam(Θ′)}

)p

max{1, 2|λ|δ}e−1,

by definition of ω. For the expression in the last row, employing the inequalities

(

diam(Θ)

max{diam(Θ), diam(Θ′)}

)p

≤ 1,
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and

(

diam(Θ)

max{diam(Θ), diam(Θ′)}

)p
(

2|λ|δ
)e−1

=

(

diam(Θ)

max{diam(Θ), diam(Θ′)}

)p−e+1

×

(

δ

max{diam(Θ), diam(Θ′)}

)e−1 (
diam(Θ)

2−|λ|

)e−1

<
∼ ωe−1,

and taking the maximum over these two, the assertion of the lemma is proven for
the first term in (4.16). The remaining second term in (4.16) can be estimated
exactly in the same fashion by interchanging the roles of λ and λ′. �

Obviously, if Ψ is of Q-type of order e, then it is also of P -type of order
n(e− 1) + 1. In the next lemma, however, we will see that product quadrature
rules are quantitatively more efficient for Q-type wavelets.

Lemma 4.6. Assume that the wavelet basis Ψ is of Q-type of order e and that
dist(κ(Θ), κ(Θ′)) > 0. For the domains Θ and Θ′, we employ composite prod-
uct quadrature rules of orders p and fixed ranks N as in Corollary 2.4, and ap-
ply the product of these quadrature rules to approximate the non-singular integral
Iλλ′(κ(Θ), κ(Θ′)) from (4.12). We define

(4.18) σ(κ(Θ̃)) :=
1

2ςN1/n
l̃ for all Θ̃ ∈ ∪`O`,

where l̃ is the maximum edge length of Θ̃, and ς is the constant involved in the
Calderon-Zygmund estimate (3.8). Then with

(4.19) ω :=
dist(κ(Θ), κ(Θ′))

max{σ(κ(Θ)), σ(κ(Θ′))}
,

for any p ≥ max{e− 2t− n, e− 1}, the quadrature error E(κ(Θ), κ(Θ′)) satisfies

|E(Ξ,Ξ′)| <∼ 2||λ|−|λ′||(n/2−t)ω−(n+p) max{1, ω}e−1

× min{σ(κ(Θ)), σ(κ(Θ′))}n dist(κ(Θ), κ(Θ′))−2t.
(4.20)

Proof. Adopting the notations from the previous proof, we use Corollary 2.4 to
estimate E(x′).

|E(x′)| ≤ n
21−p

p!
N−p/nln+p · |ψ̂λ′(x′)| · max

j=1,n

∥

∥

∥∂pxj

(

K̂(x, x′)ψ̂λ(x)
)∥

∥

∥

L∞(Θ)
.

The partial derivative of order p along the j-th coordinate direction satisfies

∣

∣

∣
∂pxj

(

K̂(x, x′)ψ̂λ(x)
)∣

∣

∣
=

∣

∣

∣

∣

∣

p
∑

k=0

(

p

k

)

∂p−kxj
K̂(x, x′)∂kxj

ψ̂λ(x)

∣

∣

∣

∣

∣

≤

min{p,e−1}
∑

k=0

(

p

k

)

∣

∣

∣∂p−kxj
K̂(x, x′)∂kxj

ψ̂λ(x)
∣

∣

∣ ,
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since ∂kxj
ψ̂λ(x) can only be nonzero when k ≤ e− 1 because ψ̂λ ∈ Qe−1. Applying

the estimates (3.2) and (3.8) we have, with δ := dist(κ(Θ), κ(Θ))

max
j=1,n

‖K̂(·, x′)ψ̂‖L∞(Θ)
<
∼ 2|λ|(n/2−t)δ−(n+2t+p) ·

min{p,e−1}
∑

k=0

(

p

k

)

(p− k)!

ςp−k

(

2|λ|δ
)k

<
∼
p!

ςp
· 2|λ|(n/2−t)δ−(n+2t+p) · max{1, 2|λ|δ}e−1.

Further we can proceed as in the preceding proof. �

We now turn back to the computation of the integral Iλλ′(Π,Π′) in (4.3). From
Lemmata 4.5 and 4.6, we see that convergence of the quadrature rule as a function
of the order p depends on the quantity ω, which is in essence the distance between
the panels in terms of the size of the bigger panel. For panels Π and Π′ that have
a sufficiently large mutual distance, namely, when dist(Π,Π′) > max{σ(Π), σ(Π′)}
and thus ω > 1, it makes sense to apply quadrature directly on the domain Π×Π′,
that is, not to apply a further splitting as in (4.11).

For the integrals with 0 < dist(Π,Π′) ≤ max{σ(Π), σ(Π′)}, however, the subdi-
vision Υ has to be nontrivial. By subdividing the integration domain Π×Π′ in such
a way that ω > 1 for all individual integrals Iλλ′ (Ξ,Ξ′), we will ensure convergence
of the numerical integration also for these integrals.

Finally, for the case that dist(Π,Π′) = 0, quadrature methods developed for
standard Galerkin boundary elements cannot be applied directly in the wavelet
setting, because the panels Π and Π′ can have very different sizes. Therefore, our
strategy here will be to split the bigger panel into smaller panels such that the
resulting singular integrals are over panels of the same level, and such that the
nonsingular integrals are arranged so that ω > 1 for each of them. In view of these
considerations, we consider the following algorithm for producing a subdivision of
the product domain Π × Π′.

Algorithm 4.7. Let ρ > 0 be given, and σ : ∪lGl → IR be a function satisfying

(4.21) σ(Ξ) h diam(Ξ) uniformly in Ξ ∈ ∪lGl.

Let a pair of elements Π ∈ G` and Π′ ∈ G`′ with ` ≥ `′ be given.

1. Set Υ := ∅, Ξ := Π, Ξ′ := Π′, and ˜̀ := `, ˜̀′ := `′.
2. If the pair Ξ and Ξ′ does satisfy one of the conditions

(4.22) dist(Ξ,Ξ′) ≥ ρ · max{σ(Ξ), σ(Ξ′)},

or

(4.23) dist(Ξ,Ξ′) = 0 and Ξ = Π, Ξ′ ∈ G`,

accept the pair: Υ := Υ ∪ {Ξ × Ξ′}. If not, go to either step 3 or 4.

3. If ˜̀′ ≤ ˜̀, subdivide Ξ′ into next level elements Ξ′
i ∈ G˜̀′+1, and perform step

2 with ˜̀′ = ˜̀′ + 1, Ξ′ = Ξ′
i for each Ξ′

i.

4. If ˜̀′ > ˜̀, subdivide Ξ into next level elements Ξi ∈ G˜̀+1, and perform step

2 with ˜̀= ˜̀+ 1, Ξ = Ξi for each Ξi.

Remark 4.8. Algorithm 4.7 can already be found in, e.g., [Har01, LS99, vPS97] with
ρ = 1 and σ(Ξ) = diam(Ξ). This nonuniform subdivision effectively distributes
the “strength” of the nearly singular behavior of the integrand over individual
subdomains. Later we will see that the parameter ρ can be used to control the
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convergence rate of quadrature schemes based on the subdivision generated by
Algorithm 4.7.

Π

Π′

Figure 2. A possible subdivision of Π × Π′ generated by Algo-
rithm 4.7: n = 1, dist(Π,Π′) = 0 and Π ∩ Π′ = ∅.

Remark 4.9. Since the manifold is Lipschitz, and the subdivisions are nested and
satisfy (3.1), one can verify that for any pair Ξ,Ξ′ ∈ ∪`G` with dist(Ξ,Ξ′) > 0,

dist(Ξ,Ξ′) ≥ cΓ min{diamΞ, diam Ξ′},

with the constant cΓ depending only on the manifold Γ and its parametrization.

Theorem 4.10. For any Π×Π′ ∈ G` ×G`′ with ` ≥ `′, Algorithm 4.7 terminates.
We have ∪Ξ×Ξ′∈ΥΞ×Ξ′ = Π×Π′ and the number of elements in Υ can be bounded
by

(4.24) #Υ <
∼ (ρn + 1)(`− `′) + ρ2n + 1,

with the constant absorbed by the “<∼” symbol not depending on Π, Π′, and ρ.

Proof. In each two successive subdivisions the maximum diameter of the “current”
panels decreases by a constant factor, while the minimum distance between the
“current” pairs does not decrease. Furthermore, thinking of a pair of panels that
have distance zero, if the panels of a current pair live on different levels, then the
difference in levels is decreased by a subdivision. Therefore the conditions (4.22)
or (4.23) will eventually be satisfied starting from any pair, implying that the
algorithm will terminate.

To avoid some technicalities, we prove here the estimate (4.24) for the simple

case that the manifold Γ is IRn, and that σ(Ξ̃) = diam(Ξ̃) = 2−
˜̀

for all Ξ̃ ∈ G˜̀,
˜̀∈ IN0. For the general case an analogous proof is obtained by using the fact that

Γ is Lipschitz and that σ(Ξ̃) h diam(Ξ̃) h 2−
˜̀
for all Ξ̃ ∈ G˜̀, ˜̀∈ IN0.

Let N˜̀ denote the number of pairs Ξ × Ξ′ ∈ Υ such that Ξ′ ∈ G˜̀. Then we can
estimate the total number of pairs by estimating the numbers N ˜̀ and summing

over all ˜̀. It is obvious that if dist(Π,Π′) > 0, the number of pairs Ξ × Ξ′ ∈ Υ
that satisfy (4.23) is zero, and if dist(Π,Π′) = 0, this number is uniformly bounded.
Since in (4.24) this number is absorbed by the term 1 at the right hand side, in the
remainder we will only count pairs of type (4.22).

In case ˜̀≤ `, we have Ξ = Π for any Ξ′ ∈ G˜̀ with Ξ× Ξ′ ∈ Υ. When, moreover
˜̀> `′ we have dist(Π,Ξ′) ≤ (2ρ+2)2−

˜̀
. Indeed, if not, then the “parent” Ξ′′ ∈ G˜̀−1

of Ξ′ would have satisfied dist(Π,Ξ′′) > 2ρ2−
˜̀

= max{σ(Π), σ(Ξ′′)} and so Ξ′

would never have been created by the algorithm. We conclude that for `′ < ˜̀≤ `,

N˜̀
<
∼

(

(2ρ+ 2)2−
˜̀
+ 2−`

)n

/2−
˜̀n <

∼ ρn + 1.

Now we consider Ξ×Ξ′ ∈ Υ with Ξ′ ∈ G˜̀ and ˜̀> ` (and such that Ξ×Ξ′ satisfies
(4.22)). By construction of the algorithm, we have either Ξ ∈ G ˜̀ or Ξ ∈ G˜̀−1.
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Similar arguments as have been used above show that for fixed Ξ, the number
of such pairs is bounded by a constant multiple of ρn + 1. Since the number of

such Ξ is bounded by a constant multiple of 2(˜̀−`)n, we conclude that for ˜̀> `,

N˜̀
<
∼ (ρn + 1)2(˜̀−`)n.
Employing Remark 4.9, it is easy to see that the smallest subelements generated

by this algorithm will belong to the level `max that satisfies ρ2−`max >
∼ 2−`, implying

that 2(`max−`)n <
∼ ρn. Therefore, we conclude that the number of elements in the

subdivision Υ is bounded by a constant multiple of

1+

`max
∑

˜̀=`′+1

N˜̀
<
∼ 1+

∑̀

˜̀=`′+1

(ρn+1)+

`max
∑

˜̀=`+1

(ρn+1)2(˜̀−`)n <
∼ (ρn+1)(`− `′)+ρ2n+1.

�

From the condition (4.23), we have that the singular integrals corresponding to
the subdivision Υ are always over pairs of panels on the same level. In this paper,
we make the following Assumption 4.11 on quadrature schemes for computing those
singular integrals. For completeness, in the appendix we confirm this assumption
for the simple case of the single layer kernel on polyhedral surfaces in IR3. In any
case for weakly- and strongly singular integrals, using the quadrature schemes from
e.g. [Sau96, SS04], we expect that Assumption 4.11 can be verified generally.

Assumption 4.11. We assume that there exist d∗0 ∈ IR and %0 > 1 such that
for any λ, λ′ ∈ Λ with |λ| ≥ |λ′|, Ξ,Ξ′ ∈ G|λ| with dist(Ξ,Ξ′) = 0, and for any
order p ∈ IN , an approximation I∗λλ′ (Ξ,Ξ′) of Iλλ′ (Ξ,Ξ′) can be computed within

W <
∼ p2n arithmetical operations, having an error

(4.25) |Iλλ′ (Ξ,Ξ′) − I∗λλ′ (Ξ,Ξ)′| <∼ %−p0 2||λ|−|λ′||d∗
0 .

Now we are ready to present an algorithm how to compute the integral (4.11)
with the help of a generally non-uniform subdivision of the integration domain
Π × Π′.

Algorithm 4.12. Assume that Ψ is of P -type of order e, and choose the function
σ(·) as in Lemma 4.5, and fix a value of ρ > 1. Then for any p ∈ IN the following
algorithm approximates the integral Iλλ′ (Π,Π′).

1. Apply Algorithm 4.7 with the above ρ and σ(·) to get the subdivision Υ of
Π × Π′;

2. For each subdomain Ξ × Ξ′ ∈ Υ apply either step 3 or 4;
3. If dist(Ξ,Ξ′) > 0, apply the quadrature scheme of order p from Lemma 4.5;
4. If dist(Ξ,Ξ′) = 0, apply the computational scheme of order p from Assump-

tion 4.11.

Remark 4.13. For Q-type wavelets, the above algorithm can be redefined by re-
placing ”Lemma 4.5” by ”Lemma 4.6”.

Theorem 4.14. Let Ψ be of P -type of order e, and assume that an approximation
I∗λλ′(Π,Π′) of Iλλ′ (Π,Π′) is computed by using Algorithm 4.12. Assume that n ≥ 2t.
Then, in case that

(4.26) dist(Π,Π′) ≥ ρmax{σ(Π), σ(Π′)},
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with e∗ = e− 1 − 2t− n, the error of the numerical integration satisfies

(4.27) |Eλλ′ (Π,Π′)| <∼ ρ−p2−||λ|−|λ′||(t+n/2)
(

dist(Π,Π′)

ρmax{σ(Π), σ(Π′)}

)e∗−p
,

and the work for computing I∗λλ′ (Π,Π′) is bounded by a constant multiple of p2n,
provided that p ≥ max{e − 1, e∗ + 1}. In case that (4.26) does not hold, for any
d∗1 ≥ |t| − n/2, with d∗1 > −n/2 when t = 0, the error satisfies

(4.28) |Eλλ′ (Π,Π′)| <∼ ρ−p2||λ|−|λ′||d∗
1 + %−p0 2||λ|−|λ′||d∗

0 ,

and the work is bounded by a constant multiple of p2n(1+ ||λ|− |λ′||), provided that
p ≥ max{e− 1, e∗ + 1}. In view of Remark 4.13, these results also hold for Q-type
wavelets of order e.

By taking % := min{%0, ρ} and d∗ := max{d∗0, d
∗
1}, we conclude that the criteria

(4.5) and (4.6) for s∗-computability from Theorem 4.2 are satisfied.

Proof. Without loss of generality, we assume that |λ| ≥ |λ′|. First, we will consider
the case that (4.26) holds. In this case, we have the subdivision Υ = {Π×Π′}, and
so the computational work is of order of p2n. Applying Lemma 4.5 with Θ = κ−1(Π)
and Θ′ = κ−1(Π′), taking into account the definition of ω, and using the fact that

ω ≥ ρ > 1 and that min{σ(Π), σ(Π′)} <∼ 2−|λ|, we get

|Eλλ′ (Π,Π′)| <∼ 2(|λ|−|λ′|)(n/2−t)ω−(n+p) max{1, ω}e−1

× min{σ(Π), σ(Π′)}n dist(Π,Π′)−2t

<
∼ 2−|λ|(t+n/2)+|λ′|(t−n/2)ωe−1−n−pω−2t max{σ(Π), σ(Π′)}−2t.

Now using the estimate max{σ(Π), σ(Π′)} h 2−|λ′| and n ≥ 2t, we have

|Eλλ′ (Π,Π′)| <∼ 2−(|λ|−|λ′|)(t+n/2)−|λ′|(n−2t)ωe
∗−p

<
∼ ρ−p2−(|λ|−|λ′|)(t+n/2)(ω/ρ)e

∗−p,

proving the first part of the theorem.
Let us now consider the case that (4.26) does not hold. Since ρ is fixed, the

number of subdomains of the subdivision Υ is of order 1 + ||λ| − |λ′||, and thus
we get the work bound. By Assumption 4.11, the sum of the errors made in the
approximations for Iλλ′ (Ξ,Ξ′) with Ξ × Ξ′ ∈ Υ and dist(Ξ,Ξ′) = 0 is responsible
for the last term in (4.28).

We need to estimate the portion of the total error Eλλ′ (Π,Π′) that corresponds
to the integrals Iλλ′(Ξ,Ξ′) with Ξ×Ξ′ ∈ Υ and dist(Ξ,Ξ′) > 0. We denote by I1 the
sum of all these integrals arising from the subdivision Υ, and by I∗1 the computed
approximation for I1. Since by construction for any Ξ×Ξ′ ∈ Υ with dist(Ξ,Ξ′) > 0

it holds that dist(Ξ,Ξ′)
max{σ(Ξ),σ(Ξ′)} ≥ ρ > 1, Lemma 4.5 gives

|I1 − I∗1 |
<
∼

∑

{Ξ×Ξ′∈Υ:dist(Ξ,Ξ′)>0}
2(|λ|−|λ′|)(n/2−t)ρe−1−n−p

× min{σ(Ξ), σ(Ξ′)}n dist(Ξ,Ξ′)−2t

<
∼ ρ−p2−|λ|(t+n/2)+|λ′|(t−n/2)

∑

{Ξ×Ξ′∈Υ:dist(Ξ,Ξ′)>0}
dist(Ξ,Ξ′)−2t,

(4.29)

where we have used that min{σ(Ξ), σ(Ξ′)} <∼ 2−|λ|.
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From the proof of Lemma 4.10, recall that for the number N ˜̀ of Ξ × Ξ′ ∈ Υ

with Ξ′ ∈ G˜̀, we have N˜̀ = 0 for ˜̀ > `max where, since ρ is a fixed constant,

`max − |λ| <∼ 1, and furthermore N˜̀
<
∼ 1 for |λ′| ≤ ˜̀≤ `max. Since for Ξ × Ξ′ ∈ Υ

with dist(Ξ,Ξ′) > 0 and Ξ′ ∈ G˜̀, dist(Ξ,Ξ′) h 2−
˜̀
, we may bound the sum in the

last row of (4.29) on a constant multiple of

`max
∑

˜̀=|λ′|

2
˜̀·2t <

∼











1 + ||λ| − |λ′|| if t = 0,

2|λ
′|·2t if t < 0,

2|λ|·2t if t > 0.

By substituting this result into (4.29), the proof is completed. �

Appendix A. Quadrature for singular integrals

In this appendix, we confirm Assumption 4.11 for the simple case of the single
layer kernel on polyhedral surfaces in IR3.

We assume that the manifold Γ is the surface of a three dimensional polyhedron,
and that the subdivisions G`, (` ∈ IN), are generated by dyadic refinements of G0,
being an initial conforming triangulation of Γ.

We take the operator L to be the single layer operator (thus t = − 1
2 ) having the

kernel

(A.1) K(z, z′) =
1

4π|z − z′|
z 6= z′,

and assume that the wavelet basis Ψ is of P -type of order e. Let λ, λ′ ∈ Λ be indices
with |λ| ≥ |λ′|. Then in view of Assumption 4.11, we are ultimately interested in
computing the integral

(A.2) I :=

∫

Ξ

∫

Ξ′

K(z, z′)ψλ(z)ψλ′(z′)dΓzdΓz′ ,

where Ξ,Ξ′ ∈ G|λ| and dist(Ξ,Ξ′) = 0. With

T := {(x1, x2) ∈ IR2 : 0 < x2 < x1 < 1},

we can find affine bijections χΞ : T → Ξ, and χΞ′ : T → Ξ′, thus with Jacobians
JΞ := |∂χΞ| h 2−2|λ|, and JΞ′ := |∂χΞ′ | h 2−2|λ|, such that

(A.3) I =

∫

T

∫

T

g(x, y)

|r(x, y)|
dxdy,

where g(x, y) := (4π)−1JΞJΞ′ψλ(χΞ(x))ψλ′ (χΞ′(y)) and r(x, y) := χΞ′(y) − χΞ(x).
Taking into account that n = 2 and t = − 1

2 , from (3.2) we derive the following
estimates

(A.4) |∂βx g|
<
∼ 2−

5

2
|λ|+ 3

2
|λ′| and |∂βy g|

<
∼ 2−

5

2
|λ|+ 3

2
|λ′|2(|λ′|−|λ|)|β| for β ∈ IN2

0.

We present here a slight variation of the quadrature scheme developed in e.g.
[Sau96, vPS97, SS04], see also [SL00]. The idea is to apply a degenerate coordi-
nate transformation which is a generalization of the so called Duffy’s triangular
coordinates, effectively removing the singularity of the integrand while preserving
a polyhedral shape of the integration domain. The coordinate transformations in-
troduced here are somewhat simpler than the ones in the above mentioned papers,
and we expect that the presentation is geometrically more intuitive.
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To this end, we need to partition the integration domain T×T into several pyra-
mides, which is necessary for us to use Duffy’s transformations in order to remove
the singularities, cf. [Sau96, vPS97]. Denote the vertices of the triangle T by
A0 = (0, 0), A1 = (0, 1), and A2 = (1, 1). Then obviously, T×T has nine vertices
Aik := Ai ×Ak for i, k = 0, 1, 2. Note that A00 = O.

We break T×T up into two pyramides D1 := {(x, y) ∈ T×T : x1 > y1} and
D2 := {(x, y) ∈ T×T : x1 < y1}. One can verify that D1 is the pyramid with vertex
O and base B1 = A10A11A12A20A21A22, being a triangular prism, and that D2 is
the pyramid with vertex O and base B2 B2 = A01A11A21A02A12A22, being also a
triangular prism. Moreover, these prisms can be described as B1 = {1}× (0, 1)×T
and B2 = T×{1}×(0, 1). Introducing the reflection with respect to the plane x = y
by R : (x, y) 7→ (y, x), we notice the symmetry B2 = RB1 and so D2 = RD1.

By subdividing the prism B1 into tetrahedra, we can get a simplicial partitioning
of T×T , because any simplicial partitioning of B1 induces a simplicial partitioning
of D1, and by taking the image under the mapping R, a simplicial partitioning of
D2. Our choice of such a partitioning is depicted in Figure 3.

A
20

A
21

A
22

A
10

A
11

A
12

Figure 3. A simplicial partitioning of the prism B1.

Consequently, the domain T×T is subdivided into the following simplices de-
scribed by their vertices.

D1







S1 = OA10A11A12A22,
S2 = OA10A11A20A22,
S3 = OA11A20A21A22,

and D2







S4 = OA01A11A21A22,
S5 = OA01A11A02A22,
S6 = OA11A02A12A22.

We notice the symmetry Si = RSi+3 for i = 1, 2, 3. The above partitionings of
T×T will be used in quadrature schemes for the integral (A.3).

In the following we will distinguish three basic cases:

• Coincident panels: Ξ = Ξ′, that is, the case of identical panels;
• Edge adjacent panels: Ξ and Ξ′ share one common edge;
• Vertex adjacent panels: Ξ and Ξ′ share one common vertex.

In view of (A.3), we need to integrate a singular function over a four dimensional
polyhedral domain T × T . The singularity of the function is located on different
dimensional sets in different situations: whereas the singularity occurs at a point
for vertex adjacent integrals, it occurs all along an edge in case the integral is
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edge adjacent, and for coincident integrals, the singularity is on a two dimensional
“diagonal” of the domain. Therefore in each of the three cases, we first characterize
the singularity in terms of the distance to the singularity set, and then introduce
special coordinate transformations that annihilate the singularity.

A.1. Case of identical panels. First we will discuss the case of identical panels
Ξ = Ξ′. In this case, the difference r = χΞ(y) − χΞ(x) is zero if and only if
t := y − x = 0. Since χΞ is affine, we can write

r = 2−|λ|l1(t) = 2−|λ|l1(y1 − x1, y2 − x2),

where l1 : IR2 7→ IR3 is a linear function depending only on the shape of Ξ. Noting
that any panel Ξ is similar to a panel from the initial triangulation, we only have
to deal with finitely many functions l1. Introducing polar coordinates (ρ, θ) in IR2

by ρ = |t| and θ = t/|t| ∈ S1, being the unit circle in IR2, this difference r reads as

r = 2−|λ|ρl1(θ).

Our goal is now to obtain an expression for |r|−1, because this quantity essentially
determines the singular behavior of the local kernel. Since r is defined on some
complete neighborhood of t = 0, the function l1(θ) has to be nonzero for any
θ ∈ S1, and so we have

|r|−1 = 2|λ|ρ−1a(θ)

with a(θ) := |l1(θ)|
−1 which is analytic in a neighborhood of S1. Now the integrand

of (A.3) can be written as

(A.5) |r(x, y)|−1g(x, y) = 2|λ|ρ−1a(θ)g(x, y).

It is time to use the above described simplicial partitioning of the integration
domain T × T , in combination with special coordinate transformations for the
purpose of removing the singularity of the integrand. Introducing the notation
P := T × (0, 1)× (0, 1), we define the transformations φi : P→Si : (η, ζ, ξ) 7→ (x, y)
for i ∈ 1, 6.

φ1(η, ζ, ξ) =









(1 − ξ)η1 + ξ
(1 − ξ)η2

(1 − ξ)η1 + ξζ
(1 − ξ)η2 + ξζ









, φ2(η, ζ, ξ) =









(1 − ξ)η1 + ξ
(1 − ξ)η2 + ξζ

(1 − ξ)η1
(1 − ξ)η2









,

φ3(η, ζ, ξ) =









(1 − ξ)η1 + ξ
(1 − ξ)η2 + ξ
(1 − ξ)η1 + ξζ

(1 − ξ)η2









,(A.6)

and φi+3 := R ◦ φi for i = 1, 2, 3. The Jacobian of each transformation φi is given
by ξ(1 − ξ)2. Recall that ρ−1 characterizes the singularity of the integrand (A.5).
In this regard, for each transformation φi one can show that

ρ = ξfi(ζ), with an analytic fi(ζ)≥
1√
2

for any ζ ∈ [0, 1].

For instance, for φ1 we have

ρ2 = ξ2(ζ2 + (1 − ζ)2) ≥ ξ2· 12 ,

since ζ2 + (1 − ζ)2≥1
2 for any ζ ∈ IR. Moreover, for each φi one can verify that

θ = ϑi(ζ) for some analytic function ϑi : [0, 1] → S1.
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In all, the Jacobian of the mapping φi annihilates the singularity in the integrand
(A.5), meaning that the integral I in (A.3) now can be written as the following
proper integral

I =

∫ 1

0

∫ 1

0

∫

T

ξ(1 − ξ)2
6
∑

i=1

g(φi(η, ζ, ξ))

|r(φi(η, ζ, ξ))|
dηdζdξ

= 2|λ|
∫ 1

0

∫ 1

0

∫

T

(1 − ξ)2
6
∑

i=1

a(ϑi(ζ))g(φi(η, ζ, ξ))

fi(ζ)
dηdζdξ.

(A.7)

Therefore we will be able to use standard quadrature schemes to approximate the
integral I . Note that in numerical quadrature we can use the first expression in
(A.7) for the integral I . The functions fi and a ◦ ϑi are introduced here merely for
the analysis purpose.

Since the integrand in (A.7) is polynomial with respect to the variables ξ and η,
we can always choose exact quadrature rules for integrations over those variables.

Proposition A.1. Approximate the integral (A.7) by a product quadrature rule
Qξ×Qζ ×Qη, where Qξ and Qη are quadrature rules exact for the integration over
the variables ξ ∈ (0, 1) and η ∈ T , respectively, and Qζ is a composite quadrature
rule for the integration over ζ ∈ (0, 1) of varying order p and fixed rank N . Then
there exist a constant δ > 0 such that the quadrature error satisfies

(A.8) |E(Ξ,Ξ′)| <∼ 2−
3

2
(|λ|−|λ′|)(δN)−p.

Choosing N such that δN > 1, we conclude that in this case Assumption 4.11 is
fulfilled with d∗0 = − 3

2 .

Proof. In view of Lemma 2.3, it suffices to consider the integration over ζ. Using

the analyticity of ζ 7→ a(ϑi(ζ))
fi(ζ)

one derives

sup
ζ∈[0,1]

∣

∣

∣

∣

∂kζ
a(ϑi(ζ))

fi(ζ)

∣

∣

∣

∣

<
∼
k!

δk
for k ∈ IN0, i ∈ 1, 6,

for some constant δ > 0. From (A.4) and (A.6) we have for each i ∈ 1, 6 that g ◦φi
is a polynomial of order e and

|∂kζ (g ◦ φi)|
<
∼ 2−

5

2
|λ|+ 3

2
|λ′| for k ∈ 1, e− 1.

Now using Proposition 2.4 the proof is obtained. �

A.2. Case of edge adjacent panels. Now we will discuss the case when Ξ and
Ξ′ share exactly one common edge. Without loss of generality, we assume that
χΞ(x) = χΞ′(x) for all x ∈ (0, 1) × {0}. Then, the difference r = χΞ′(y) − χΞ(x) is
zero if and only if

t = (t1, t2, t3) := (y1 − x1, x2, y2)

equals zero. Since χΞ and χΞ′ are affine, we can write

r = χΞ′(x1 + t1, t3) − χΞ(x1, t2) = 2−|λ|l1(t),

where l1 : IR3 → IR3 is a linear function depending only on the shapes of Ξ and Ξ′.
Introducing polar coordinates (ρ, θ) in IR3 by ρ = |t| and θ = t/|t| ∈ S2, being the
unit sphere in IR3, this difference r reads as

r = r(ρ, θ) = 2−|λ|ρl1(θ).
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Since r is defined on a complete neighborhood of t = 0 in IR × IR2
≥0, the function

l1(θ) 6= 0 for any θ ∈ S2 with θ2, θ3 ≥ 0, allowing us to write

|r|−1 = 2|λ|ρ−1b(θ)

with b(θ) := |l1(θ)|
−1 which is analytic in a neighborhood of S2∩

(

IR× IR2
≥0

)

. Then
the integrand of (A.3) can be written as

(A.9) |r(x, y)|−1g(x, y) = 2|λ|ρ−1b(θ)g(x, y).

Now we define the transformations φi : P→Si : (η, ζ, ξ) 7→ (x, y) for i ∈ 1, 6.

φ1(η, ζ, ξ) =









(1 − ξ)ζ + ξ
ξη2

(1 − ξ)ζ + ξη1

ξη1









, φ2(η, ζ, ξ) =









(1 − ξ)ζ + ξ
ξη1

(1 − ξ)ζ + ξη2

ξη2









,

φ3(η, ζ, ξ) =









(1 − ξ)ζ + ξ
ξ

(1 − ξ)ζ + ξη1

ξη2









,(A.10)

and φi+3 := R ◦ φi for i = 1, 2, 3. For each transformation φi one can show that
the Jacobian equals ξ2(1 − ξ), and that

ρ = ξfi(η), with an analytic fi(η)≥
1√
2

for any η ∈ T .

For instance, for φ1 we have

ρ2 = ξ2(η2
1 + (1 − η1)

2 + η2
2) ≥ ξ2· 12 .

Moreover, for each φi one can verify that θ = ϑi(η) with some analytic function
ϑi : T → S2.

In all, the Jacobian of the mapping φi annihilates the singularity in the integrand
(A.9), meaning that the integral I in (A.3) now can be written as the following
proper integral

I =

∫ 1

0

∫ 1

0

∫

T

ξ2(1 − ξ)

6
∑

i=1

g(φi(η, ζ, ξ))

|r(φi(η, ζ, ξ))|
dηdζdξ

= 2|λ|
∫ 1

0

∫ 1

0

∫

T

ξ(1 − ξ)

6
∑

i=1

b(ϑi(η))g(φi(η, ζ, ξ))

fi(η)
dηdζdξ,

(A.11)

and thus the standard quadrature schemes on P can be applied.

Proposition A.2. Approximate the integral (A.11) by a product quadrature rule
Qξ×Qζ ×Qη, where Qξ and Qζ are quadrature rules exact for the integration over
the variables ξ, ζ ∈ (0, 1), respectively, and Qη is a composite quadrature rule for
the integration over η ∈ T of varying order p and fixed rank N . Then there exist a
constant δ > 0 such that the quadrature error satisfies

(A.12) |E(Ξ,Ξ′)| <∼ 2−
3

2
(|λ|−|λ′|)(δN)−p.

Choosing N such that δN > 1, we conclude that in this case Assumption 4.11 is
fulfilled with d∗0 = − 3

2 .

The proof is obtained similarly to the proof of Proposition A.1.
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A.3. Case of vertex adjacent panels. Let Ξ and Ξ′ share exactly one common
point. Without loss of generality, we assume that χΞ(0) = Ξ ∩ Ξ′ = χΞ′(0). Then
obviously, the difference r = r(x, y) = χΞ′(y)−χΞ(x) is zero if and only if t := (x, y)
equals zero. Since χΞ and χΞ′ are affine, we can write

r(x, y) = 2−|λ|l1(x, y),

where l1 : IR4 → IR3 is a linear function depending only on the shapes of Ξ and Ξ′.
Introducing polar coordinates (ρ, θ) in IR4 by ρ = |t| and θ = t/|t| ∈ S3, being the
unit sphere in IR4, this difference r reads as

r = r(ρ, θ) = 2−|λ|ρl1(θ).

Since r is defined on a complete neighborhood of t = 0 in {t ∈ IR4 : t1 ≥ t2 ≥
0, t3 ≥ t4 ≥ 0}, the function l1(θ) 6= 0 for any θ ∈ S3 with θ1 ≥ θ2 ≥ 0 and
θ3 ≥ θ4 ≥ 0, allowing us to write

|r|−1 = 2|λ|ρ−1c(θ)

with c(θ) := |l1(θ)|−1 which is analytic in a neighborhood of {θ ∈ S3 : θ1 ≥ θ2 ≥
0, θ3 ≥ θ4 ≥ 0}. Then the integrand of (A.3) can be written as

(A.13) |r(x, y)|−1g(x, y) = 2|λ|ρ−1c(θ)g(x, y).

We define the transformations φ1 and φ2 that map the coordinates (η, ζ, ξ) ∈ P
onto the four dimensional pyramides D1 and D2 respectively.

(A.14) φ1(η, ζ, ξ) = ξ(1, ζ, η1, η2), and φ2(η, ζ, ξ) = ξ(η1, η2, 1, ζ).

Notice that φ1 = R ◦ φ2 with R being the reflection x↔y. For both of the trans-
formations, the Jacobian equals ξ3, and we have

ρ = ξf(η, ζ) with f(η, ζ) =
√

1 + η12 + η22 + ζ2.

Moreover, for the transformation φ1 we have θ = ϑ1(η, ζ) := f(η, ζ)−1(1, ζ, η1, η2),
and for the transformation φ2 we have θ = ϑ2(η, ζ) := Rϑ1(η, ζ).

In all, the Jacobian of the mapping φi annihilates the singularity in the integrand
(A.13), meaning that the integral I in (A.3) now can be written as the following
proper integral

I =

∫ 1

0

∫ 1

0

∫

T

ξ3
2
∑

i=1

g(φi(η, ζ, ξ))

|r(φi(η, ζ, ξ))|
dηdζdξ

= 2|λ|
∫ 1

0

∫ h

0

∫

T

ξ2
2
∑

i=1

c(ϑi(η, ζ))g(φi(η, ζ, ξ))

f(η, ξ)
dηdζdξ,

(A.15)

and thus the standard quadrature schemes on P can be applied.

Proposition A.3. Approximate the integral (A.15) by a product quadrature rule
Qξ×Qζ×Qη, where Qξ is a quadrature rule exact for the integration over ξ ∈ (0, 1),
and Qζ and Qη are composite quadrature rules for the integration over ζ ∈ (0, 1)
and η ∈ T , respectively, of varying order p and fixed rank N . Then there exist a
constant δ > 0 such that the quadrature error satisfies

(A.16) |E(Ξ,Ξ′)| <∼ 2−
3

2
(|λ|−|λ′|)(δN)−p.

Choosing N such that δN > 1, we conclude that in this case Assumption 4.11 is
fulfilled with d∗0 = − 3

2 .
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