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Abstract
Integrable systems admitting a sufficiently large sym-

metry group are considered. In the non–degenerate
case this group is abelian and KAM theory ensures
that most of the resulting Lagrangean tori persist un-
der small non–integrable perturbations. For non–
commutative symmetry groups the system is superin-
tegrable, having additional integrals of motion that fi-
bre Lagrangean tori into lower dimensional invariant
tori. This simplifies the integrable dynamics, but ren-
ders the perturbation analysis more complicated. I re-
view important cases where it is possible to find an “in-
termediate” integrable system that is non–degenerate
and approximates the perturbed dynamics.
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1 Introduction
In Hamiltonian dynamics, integrable systems are

rather the exception than the rule. Still, within this cel-
ebrated class of Hamiltonian systems one encounters a
whole hierarchy of possibilities. An important aspect is
always how the dynamics behave under non–integrable
perturbations.
The typical or generic case (within the non–generic

class of integrable Hamiltonian systems) is that of non–
degenerate integrable systems ; examples in three de-
grees of freedom are easily constructed from a point
mass in R

3 moving in a separated potential. Almost all
motion is quasi–periodic with three frequencies, in ge-
ometric language the motion is confined to invariant 3–
tori in phase space. In action–angle variables (x, y) ∈
T

3×R
3 the Hamiltonian (locally) reads H = H(y) and

under e.g. the Kolmogorov non–degeneracy condition

det D2H(y) 6= 0 (1)

most 3–tori survive a sufficiently small non–integrable
perturbation.
In case there are more integrals of motion than de-

grees of freedom almost all motion is generically —
now within this more restricted class of superintegrable
systems — confined to invariant (d − 1)–tori, where d

denotes the number of degrees of freedom. Examples
are given by a point mass in R

3 moving in a rotationally
symmetric potential V = V (r) . In generalized action–
angle variables (x, y, z) ∈ T

2 × R
2 × R

2 the Hamil-
tonian only depends on y and one expects additional
motion in the z–direction already under integrable per-
turbations. Correspondingly, the first step in studying
non–integrable perturbations of (minimally) superinte-
grable systems is to construct an integrable approxima-
tion that removes the degeneracy by means of normal-
ization with respect to the unperturbed flow. The result-
ing Lagrangean tori have d − 1 frequencies of order 1
and one frequency of the order ε of the perturbation,
and a further application of KAM theory yields such
quasi–periodic motions also in the original perturbed
system.
A maximally superintegrable system in d degrees of

freedom (globally) admits 2d − 1 integrals of motion.
An example is the (spatial) Kepler system of a point
mass in R

3 moving in the potential

V (r) = −1

r
;

after regularization of the singularity all orbits are pe-
riodic. Note that from d ≥ 4 on there is a whole hier-
archy of superintegrable systems between the extreme
cases of minimal and maximal superintegrability.
Integrable systems often admit a symmetry group. In-

deed, by Noether’s theorem every 1–parameter symme-
try yields an integral of motion. To obtain d commuting
first integrals in this way one needs a d–dimensional
commutative symmetry group. For these integrals to be
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independent the group has to act effectively. More than
d integrals in d degrees of freedom cannot all commute
with each other and a corresponding symmetry group
has to be non–commutative.
The dynamics of integrable Hamiltonian systems is

particularly regular. To fix thoughts we concentrate on
compact energy shells. Then all (but some exceptional)
motion is quasi–periodic and hence confined to an in-
variant torus. These tori are the connected components
of the level sets of the integrals of motion. In the non–
degenerate case these are d–tori in the 2d–dimensional
phase space, and in the superintegrable case the 2d− r

integrals of motion define invariant r–tori. The fol-
lowing result formulated in [Fassò, 2005] describes the
general situation on the regular part M of the phase
space P where the integrals are independent.

Theorem 1.1. On the subset M ⊆ P of the phase
space with symplectic structure σ let f : M −→
R

2d−r be a submersion with compact and connected
fibres (hence, a fibration). Assume that {fi, fj} =
Pij ◦ f , i, j = 1, . . . , 2d − r and that the matrix P

with entries Pij : M −→ R has rank 2d − r at all
points of f(M) . Then every fibre of f is diffeomor-
phic to T

r and the fibration f has local trivialisations
which are symplectic.

Thus, every fibre of f has a neighbourhoodU with co–
ordinates

(x, y, q, p) : U −→ T
r ×R

r ×R
d−r ×R

d−r (2)

such that the level sets of f coincide with the level sets
of (y, q, p) and

σ|U =

r
∑

i=1

dxi ∧ dyi +

2d−r
∑

j=1

dqj ∧ dpj .

These co–ordinates are Nekhoroshev’s generalized
action–angle variables.
The aim of this paper is to specify how (su-

per)integrability structures the phase space into in-
variant subsets and in how far this structure is pre-
served under small perturbations. In the next section
the non–degenerate integrable case is treated. Sec-
tion 3 starts with minimally superintegrable systems,
where the perturbation analysis still goes through with-
out non–generic assumptions. Then the extreme case of
maximally superintegrable systems is considered, be-
fore exemplyfying the general hierarchy of superinte-
grable systems.

2 Non–degenerate integrable systems
The flow on the Lagrangean tori of a Liouville inte-

grable system is conditionally periodic. Locally around
such a torus the action angle variables (2) simplify to
(x, y) ∈ T

d × R
d in which the symplectic structure

becomes σ = dx ∧ dy and the Hamiltonian function
H = H(y) does not depend on the angles. The equa-
tions of motion read

ẋ = ω(y) := DH(y)

ẏ = 0

and where the frequency vector ω is non–resonant the
quasi–periodic flow on T

n is dense, excluding the exis-
tence of further integrals of motion. We speak of a non–
degenerate Liouville integrable system if almost all La-
grangean tori have dense orbits. Sufficient conditions
are the Kolmogorov non–degeneracy condition (1) for
almost all y or iso–energetic non–degeneracy.
The Lagrangean tori form d–parameter families and

the singular fibres of the ramified d–torus bundle deter-
mine how these families fit together. At the (d − 1)–
parameter families of elliptic (d − 1)–tori the La-
grangean tori shrink down in the same way as periodic
orbits shrink down to centres in one degree of freedom.
Different families of Lagrangean tori are separated by
(d − 1)–parameter families of hyperbolic (d − 1)–tori
and their (un)stable manifolds.
This picture is repeated in how the (d− 1)–tori shrink

down to (d− 2)–parameter families of (partially) ellip-
tic (d−2)–tori and are separated by (d−2)–parameter
families of (partially) hyperbolic (d− 2)–tori and (part
of) their (un)stable manifolds. Furthermore there are
(d − 2)–parameter families of hyperbolic (d − 2)–
tori with Floquet exponents ±< ± i= , together with
their (un)stable manifolds these form “pinched” d–tori.
In these three ways we are led to invariant tori of
smaller and smaller dimension until we end up with 1–
parameter families of periodic orbits and isolated equi-
libria.
Within the family of all (d − 1)–tori we encounter

quasi–periodic centre–saddle and frequency halving bi-
furcations along (d − 2)–parameter subfamilies and
more generally bifurcations of co–dimension k ≤ d−1
along (d− k− 1)–parameter subfamilies. Similarly in-
variant (d−2)–tori undergoing a quasi–periodic Hamil-
tonian Hopf bifurcation form (d − 3)–parameter fam-
ilies and the n–parameter families of invariant n–tori
have (n − k)–parameter subfamilies where bifurca-
tions of co–dimension k ≤ n occur. Such bifurcations
are not restricted to those of semi–local type, but may
also involve coinciding stable and unstable manifolds
of different invariant tori. For instance, heteroclinic or-
bits between hyperbolic (d − 1)–tori form (2d − 1)–
dimensional submanifolds of the phase space P .

2.1 Perturbation analysis
To sum up, the dynamics of a non–degenerate inte-

grable system makes the phase space P a ramified torus
bundle. The regular fibres are the Lagrangean invari-
ant tori, singular fibres are invariant tori of lower di-
mension, together with their stable and unstable man-
ifolds. What happens to the ramified d–torus bundle
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under small perturbations of the Hamiltonian ? Let us
collect the partial answers that are already known and
indicate possible directions of future research.
Persistence of Lagrangean tori is addressed by clas-

sical KAM theory. Most tori survive a small pertur-
bation if the Kolmogorov condition (1) is satisfied —
near such y the relative measure of surviving tori tends
to 1 as the perturbation strength tends to zero. These
tori form a (Whitney)–smooth Cantor family, being
parametrised over a Cantor set that has the local struc-
ture

R × Cantor dust .

Where the energy level sets are transversal to the
continuous direction one has persistence of most La-
grangean tori on each energy shell, parametrised by
Cantor dust. The same result is obtained under the con-
dition of iso–energetic non–degeneracy, which is in-
dependent of Kolmogorov’s condition. Note that it is
generic for an integrable system to satisfy both condi-
tions almost everywhere. However, in applications it
is a non–trivial task to actually check this and to de-
termine the hypersurfaces in action space where these
determinants vanish.
The Cantor set structure is defined by Diophantine

conditions

∧

k∈Zd\{0}

|〈k, ω〉| ≥ γ

|k|τ . (3)

and this can be used to weaken the necessary non–
degeneracy condition. Indeed, since the gaps are de-
fined by linear inequalities the conditions on the first
derivatives of the frequency mapping y 7→ ω(y) =
DH(y) can be replaced by conditions on the curvature
or even higher derivatives. Such Rüssmann–like condi-
tions still guarantee that the relative measure of surviv-
ing tori tends to 1 as the perturbation strength tends to
zero, but at a price. For instance, the highest derivative
L ∈ N needed in

<
∂|`|ω

∂y
| |`| ≤ L > = R

d (4)

enters the Diophantine conditions on the frequency
vector by means of the inequality τ > dL − 1 on the
Diophantine constant τ . For more details the reader
is referred to [Broer, Huitema and Sevryuk, 1996;
Rüssmann, 2001] and references therein.
For hyperbolic n–tori the above criteria remain valid

almost verbatim ; the key step is to pass to a centre
manifold (and to replace d by n in the formulas). A
technical difficulty is that even for analytic Hamilto-
nians centre manifolds may only be of finite differen-
tiability. KAM–theorems remain true in this context,
during the proof one has to intersperse an analytic ap-
proximation at each iteration step. Still, the analytic

context has its advantages — for instance (4) is satis-
fied for some L ∈ N for an analytic frequency map-
ping ω if and only if imω does not lie within a linear
hyperplane. An alternative is therefore to prove persis-
tence of hyperbolic tori directly, see [Rüssmann, 2001;
Rudnev, 2003] and references therein. This also gives a
more direct hold on their stable and unstable manifolds.
Elliptic (d − 1)–tori need one extra parameter to con-

trol the normal frequency as well. Similar to the iso–
energetic case one can use time re–parametrisation and
obtain Cantor families of persistent elliptic (d − 1)–
tori parametrised by Cantor dust without the use of an
external parameter. Where there are more than one nor-
mal frequency to control this can no longer be done in a
linear way ; a problem solved by Rüssmann–like condi-
tions on the higher derivatives of the frequency vector,
see [Broer, Huitema and Sevryuk, 1996; Rüssmann,
2001] and references therein. In case the mapping of
internal frequencies satisfies Kolmogorov’s condition,
the higher order derivatives are only needed of normal
frequencies. Now normal frequencies αj enter the Dio-
phantine conditions

|2π〈k, ω〉 + 〈`, α〉| ≥ γ

|k|τ (5)

only as combinations 〈`, α〉 with |`| ≤ 2 . This allows
to extend the result to finite–dimensional elliptic tori in
infinitely many degrees of freedom, cf. [Pöschel, 1989;
Kuksin, 1993]. For hypo–elliptic tori one may deal
with the hyperbolic part by means of a centre manifold
or use a direct approach, cf. [Huitema, 1988; Broer,
Huitema and Takens, 1990; Rüssmann, 2001].
Where (lower–dimensional) n–tori undergo a semi–

local bifurcation the n actions y conjugate to the toral
angles x first of all have to versally unfold the bi-
furcation scenario. It is generic for the integrable
Hamiltonian H that the n–parameter families of n–
tori, 1 ≤ n ≤ d − 1 , do not encounter bifurcations
of co–dimension higher than n , so this is possible.
The curvature of the frequency mapping is then used
to ensure Diophanticity of most bifurcating tori, i.e.
a Rüssmann–like condition with L = 2 is sufficient,
cf. [Broer, Hanßmann and You, 2003; 2004; Hanß-
mann, 2003; 2004].
While the proof in the above papers is kept as sim-

ple as possible, restricting to n = d − 1 , it should
be feasible to include additional elliptic and hyperbolic
normal directions. On the other hand, additional viola-
tions of (5) pose a much harder problem, as in this situ-
ation even the corresponding bifurcations of equilibria
have yet to be understood. Thus, if we explicitly re-
quire that the bifurcation results from violating (5) with
a single normal–internal resonance, the quasi–periodic
bifurcation scenario should persist for all n–tori with
2 ≤ n ≤ d − 1 and in fact also in infinite–dimensional
Hamiltonian systems. Recall that the maximal co–
dimension of occurring bifurcations is the dimension n

of the bifurcating torus and not related to the number
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of degrees of freedom. For instance, the above cur-
vature requirement is not necessary for 2–tori ; these
may undergo the quasi–periodic analogues of the co–
dimension one bifurcations of periodic orbits detailed
in [Meyer, 1970; 1975]. Indeed, co–dimension two bi-
furcations are isolated within these 2–parameter fami-
lies and cannot be prevented to disappear in resonance
gaps.
Let an (n − k)–parameter family of n–tori that un-

dergo a bifurcation of co–dimension k have m ad-
ditional pairs of purely imaginary Floquet exponents.
Then excitation of normal modes, cf. [Jorba and Vil-
lanueva, 1997; Sevryuk, 1997], leads for l = 1, . . . , m

to (n+ l−k)–parameter families of (n+ l)–tori under-
going that co–dimension k bifurcation in the integrable
system. This whole structure should persist under a
(sufficiently small) non–integrable perturbation on per-
tinent Cantor sets. Additional hyperbolic directions
augment the dimension of stable and unstable mani-
folds.
Up to now the reported changes of the ramified d–

torus bundle under a small perturbation of the Hamilto-
nian were of the form “Diophantine tori persist” lead-
ing to a “Cantorification” of the ramified d–torus bun-
dle — the stratification of the action space into vari-
ous subfamilies parametrising the tori is replaced by
a Cantor stratification. Of equal importance are those
changes that make sure that the non–integrable per-
turbed dynamics is indeed qualitatively different from
the integrable unperturbed dynamics. While the former
persistence results are obtained upon genericity condi-
tions on the unperturbed system, such changes require
the perturbation to be generic.
One of the effects of a small generic perturbation is

that stable and unstable manifolds of hyperbolic tori
no longer coincide, but split and intersect transversely,
cf. [Robinson, 1970a; 1970b; Delshams, de la Llave
and Seara, 2003a; 2003b]. Where this concerns hete-
roclinic orbits between two different families of hyper-
bolic tori this leads to drastic changes of the connection
bifurcation scenario. Indeed, heteroclinic orbits exist
in the integrable system only at µ = 0 for an appropri-
ately chosen transversal parameter µ . For a sufficiently
small generic perturbation there is a whole interval of
µ–values containing a Cantor subset of relative mea-
sure near 1 for which there are heteroclinic orbits be-
tween surviving hyperbolic tori. Similar observations
apply to stable and unstable manifolds of parabolic and
other bifurcating tori.
Completely new phenomena are also to be expected

in the gaps of the Cantor sets parametrising persistent
tori. Disintegrating Lagrangean tori lead to invariant
n–tori, where d − n is the number of independent res-
onances 〈k, ω〉 = 0 of the (internal) frequencies. Most
of these lower dimensional tori will be elliptic or hyper-
bolic, cf. [Treshchëv, 1991]. The new hyperbolic tori
lie at the basis of the example in [Arnol’d, 1964] of dy-
namical instablility. This approach to Arnol’d diffusion
relies on the splitting of separatrices which also leads

to transversal intersections of stable and unstable man-
ifolds of neighbouring hyperbolic tori in the same en-
ergy shell. These hyperbolic tori form a Cantor family,
and one of the main problems is to make sure that the
transition chain of hyperbolic tori and their heteroclinic
connections bridges the occuring gaps, cf. [Delshams,
de la Llave and Seara, 2003a; 2003b] and references
therein.
The dynamics in the gaps of Cantor families of hyper-

bolic tori can already be studied in the perturbation near
resonant singular fibres of the ramified d–torus bundle.
On the centre manifold these become again (resonant)
regular fibres, but the full perturbed motion is super-
posed by the hyperbolic dynamics in the symplectic
normal directions. In particular, secondary hyperbolic
tori — maximal tori on the centre manifold that ap-
pear in the resonance gap — are used in [Delshams,
de la Llave and Seara, 2003a] together with hyperbolic
tori of even lower dimension to continuate a transition
chain through the resonance gap.
A Lagrangean torus with d−1 independent resonances

consists of periodic orbits. When the torus breaks up
under the perturbation, only finitely many of these are
expected to survive. At the same time the trivial nor-
mal behaviour of these periodic orbits changes, result-
ing in hyperbolic and elliptic periodic orbits. The lat-
ter can serve as starting points for the construction of
solenoids, cf. [Markus and Meyer, 1980]. This con-
struction should carry over to elliptic tori, where the
“encircling” tori emerge from the normal–internal reso-
nances studied in [Broer, Hanßmann, Jorba, Villanueva
and Wagener, 2003]. This might also result in solenoids
that are limits of tori with varying dimension.
The nature of the gaps where (5) is not satisfied for

elliptic tori is twofold. Internal resonances 〈k, ω〉 =
0 lead again to the destruction of the torus. The
study [Broer, Hanßmann, Jorba, Villanueva and Wa-
gener, 2003] of normal–internal resonances relates
boundary points of the resulting gaps to quasi–periodic
bifurcations. In particular resonance gaps

| 2π〈k, ω〉 + 2α | <
γ

|k|τ

are completely filled by hyperbolic tori (in accordance
with [Bourgain, 1994; 1997; Xu and You, 2001]) that
terminate in frequency halving bifurcations. One may
speculate that resonance gaps

| 2π〈k, ω〉 + α1 + α2 | <
γ

|k|τ

are similarly filled by hyperbolic tori obtained in quasi–
periodic Hamiltonian Hopf bifurcations generated by
the perturbation.
The results in [Broer, Hanßmann and You, 2003;

2004; Hanßmann, 2003; 2004] address persistence of
Diophantine tori involved in a bifurcation and the cor-
responding gaps trigger again new phenomena. A
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first step has been made in [Litvak–Hinenzon, 2001;
Litvak–Hinenzon and Rom–Kedar, 2002a; 2002b;
2004] where (internally) resonant parabolic tori in-
volved in a quasi–periodic Hamiltonian pitchfork bifur-
cation are considered. This may result in large dynam-
ical instabilities, especially where multiple parabolic
resonances are encountered. The effect is further am-
plified for tangent (or flat) parabolic resonances, which
fail to satisfy the iso–energetic non–degeneracy condi-
tion.

2.2 The Lagrange top
The rigid body with a fixed point is a mechanical sys-

tem with three degrees of freedom, the phase space
P = T ∗SO(3) ∼= SO(3) × R

3 being the cotangent
bundle of the group SO(3) of three–dimensional rota-
tions g . An example of a non–degenerate integrable
system on P is the Lagrange top, an axially symmet-
ric rigid body subject to a constant vertical force field,
cf. [Cushman and Bates, 1997]. Next to the energy

H(ρ, `) = I1

`2

1
+ `2

2

2
+ I3

`2

3

2
+ χg33

both the component `3 of the angular momentum along
the figure axis and the component

µ3 = g31`1 + g32`2 + g33`3

of the angular momentum along the vertical axis are
(commuting) integrals of motion. These two integrals
generate the rotations about the figure axis and the ver-
tical axis, respectively. When the top is standing up-
right or hanging upside down these two S1–actions co-
incide and correspondingly the motion is periodic1 and
consists of rotation about that common axis. In case
XH lies within the plane spanned by Xµ3

and X̀
3

the
motion is called regular precession — a superposition
of the rotation about the figure axis and the precession
of the figure axis about the vertical axis — and takes
place on a 2–torus. For regular values of the energy–
momentum mapping EM = (H, `3, µ3) we obtain the
Lagrangean 3–tori as the figure axis starts to nutate up
and down as well.
To complete this description of the ramified torus bun-

dle note that unstable rotations about the upright stand-
ing figure axis are accompanied by asymptotic mo-
tions forming the (un)stable manifold, this turns the
level set of EM into a pinched 3–torus. When the
magnitude of `3 = µ3 increases these periodic or-
bits get gyroscopically stabilized through a periodic
Hamiltonian Hopf bifurcation. Corresponding to the
two rotation senses two such bifurcations take place at
`3 = µ3 = ±2

√
I1χ .

1There is a whole S1 of equilibria when furthermore µ3 and `3
vanish.

While the periodic orbits survive a small perturbation
by means of the implicit mapping theorem, the two bi-
furcations serve as organizing centres for the Cantori-
fication of the family of invariant 2–tori, see [Pacha,
2002]. Furthermore, the monodromy around the
pinched 3–tori ensures that the Kolmogorov condi-
tion (1) is satisfied almost everywhere.
Let us discuss two procedures to generalize this result

to more degrees of freedom. A weak coupling with a
quasi–peirodic oscillator of n frequencies is considered
in [Hoo, 2005; Broer, Hanßmann and Hoo, 2004]. This
turns the Lagrangean tori into (n + 3)–tori, the ellip-
tic tori into (n + 2)–tori and the periodic orbits into
(n + 1)–tori. Again the quasi–periodic Hamiltonian
Hopf bifurcations serve as organizing centres for the
Cantorification of the ramified torus bundle, see [Hoo,
2005; Broer, Hanßmann and Hoo, 2004]. In particu-
lar the (n + 1)–parameter families of elliptic and hy-
perbolic tori persist on Cantor sets, as does the n–
parameter family of (n + 1)–tori in 1:−1 resonance.
One may also weakly couple two (or even more) La-

grange tops. Where 3–periodic motion of one body
is superposed with the ramified torus bundle defined
by the other body this resembles the weak coupling
with a 3–dimensional oscillator and the results of [Hoo,
2005; Broer, Hanßmann and Hoo, 2004] still apply. Su-
perposition with elliptic 2–periodic motion yields 5–
tori, 4–tori and 3–tori. Persistence of the elliptic 5–
tori and 4–tori follows from [Huitema, 1988; Pöschel,
1989; Broer, Huitema and Takens, 1990; Rüssmann,
2001], and the same holds true for the elliptic and hy-
perbolic 3–tori. To prove persistence of a normally
elliptic quasi–periodic Hamiltonian Hopf bifurcation
one would have to drag the Diophantine conditions (5)
through the computations in [Hoo, 2005; Broer, Hanß-
mann and Hoo, 2004].
The above applies mutatis mutandi for the superposi-

tion with elliptic or hyperbolic rotations about the ver-
tical figure axis. The coupling of two periodic Hamil-
tonian Hopf bifurcations is a much more difficult prob-
lem. Still, one may take [Hoo, 2005; Broer, Hoo and
Naudot, 2004] as a starting point where persistence of
the resulting 2–tori in normal 1:1:−1:−1 resonance has
been proven.

3 Perturbations of superintegrable systems
We speak of a superintegrable system if the regular fi-

bres of the ramified torus bundle are isotropic tori of
dimension < d (= 1

2
dimP) . Determined by the di-

mension of these “maximal” tori this defines a whole
hierarchy, starting with the minimally superintegrable
systems where the regular fibres are (d − 1)–tori (and
almost all of them have dense quasi–periodic orbits) up
to maximally superintegrable systems where almost all
orbits are periodic. In the case of d = 2 degrees of
freedom all these notions coincide. According to The-
orem 1.1 the Hamiltonian of a superintegrable system
only depends on the r actions conjugate to the toral an-
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gles, so the 2(d − r) “extra integrals” are mute param-
eters and a family of n–tori still encounters only bifur-
cations up to co–dimension n — although these are no
longer isolated but form 2(d − r)–parameter families.
Again we want to know what happens to the ramified

r–torus bundle under small perturbations of the Hamil-
tonian. The strategy is to find an “intermediate” system
that is also integrable, but non–degenerately so.

Definition 3.1. The perturbation εP of a superinte-
grable Hamiltonian N removes the degeneracy if the
perturbed Hamiltonian H = N + εP can be written in
the form

H = N + εS + ε2R

where N + εS is a non–degenerate integrable Hamil-
tonian.

Let (x, q, y, p) complete the action angle variables
(x, y) of N = N(y) to action angle variables of
N(y)+εS(y, p) . If N satisfies “its” Kolmogorov con-
dition det D2N(y) 6= 0 for almost all y then

det









∂2S
∂p2

1

· · · ∂2S
∂p1∂pd−r

...
. . .

...
∂2S

∂p1∂pd−r

· · · ∂2S
∂p2

d−r









6= 0

ensures that the integrable Hamiltonian N +εS is non–
degenerate. Under this condition most invariant tori

T
r × T

d−r × {(y, p)}

persist under the perturbation of the intermediate sys-
tem by ε2R(x, q, y, p) , cf. [Arnol’d, 1963b]. If N is
iso–energetically non–degenerate in y then this holds
true on every energy shell.

3.1 Minimally superintegrable systems
One way to put εP (x, q, y, p) into the form εS(y, p)+

ε2R(x, q, y, p) is to compute a normal form of εP with
respect to N . This results in an intermediate Hamilto-
nian H̄ = N + εP̄ where P̄ is the average of P along
the fibres of the ramified torus bundle defined by N .
On the regular part of this bundle this defines a T

r–
symmetry and regular reduction makes P̄ a Hamilto-
nian in d − r degrees of freedom.
In the minimally superintegrable case r = d − 1 this

is a one–degree–of–freedom system and always inte-
grable. Furthermore, it is generic for P̄ to have non–
trivial dynamics in one degree of freedom, so P re-
moves the degeneracy with S = P̄ . The remainder
term ε2R is given by

R =
1

ε

(

P ◦ Ψ − P̄
)

where Ψ is the normalizing transformation. Note that
the dynamics defined by N is fast with respect to
the ε–slow one–degree–of–freedom dynamics defined
by εP̄ .
From the ramified (d − 1)–torus bundle and the one–

degree–of–freedom dynamics we now construct the
ramified d–torus bundle defined by the intermediate
system. The Lagrangean tori consist of the regular
(d − 1)–tori superposed with the slow periodic one–
degree-of–freedom dynamics. To obtain singular fibres
we can proceed in two different ways.
One the one hand, the (relative) equilibria of the one–

degree–of–freedom system lead to singular fibres. This
is already true for the (d−1)–tori of the “fast” ramified
torus bundle and even more so for its singular fibres.
A further hierarchical structure is imposed by the co–
dimensions of the various equilibria of the (d − 1)–
parameter family Sy = P̄ (y, ..) , starting at saddles and
centres of co–dimension zero and generically ranging
to bifurcations up to co–dimension d − 1 .
On the other hand, superposing singular fibres of the

(fast) ramified (d− 1)–torus bundle with the slow peri-
odic one–degree–of–freedom dynamics leads to singu-
lar fibres of the ramified d–torus bundle as well. In this
way the intermediate system has four kinds of motion :

(i) The regular fibres correspond to conditionally pe-
riodic motions with d− 1 fast frequencies and one
slow frequency.

(ii) Singular fibres with periodic slow motion corre-
spond on resulting (n + 1)–tori, 0 ≤ n ≤ d − 2 ,
to conditionally periodic motions with n fast and
one slow frequencies. The symplectic normal be-
haviour is fast as well, this is in particular true for
the asymptotic motion on existing (un)stable man-
ifolds.

(iii) Singular fibres constructed from regular (d − 1)–
tori have fast conditionally periodic motion and
slow symplectic normal behaviour. In particular,
the motion on existing (un)stable manifolds com-
bines a fast rotational motion with a slow approxi-
mation of the invariant (d − 1)–torus.

(iv) The superposition of one–degree–of–freedom
equilibria and singular fast fibres leads to condi-
tionally periodic motion with n fast frequencies,
0 ≤ n ≤ d − 2 , while the symplectic normal be-
haviour is a combination of d− n− 1 fast degrees
of freedom and one slow degree of freedom.

It remains to understand what happens to the ramified
d–torus bundle defined by H̄ = N + εP̄ under per-
turbation by ε2R . For the regular fibres (i) the re-
sult in [Arnol’d, 1963b] yields persistence of a Can-
tor family of Lagrangean tori. The proof relies on ini-
tial normalizing transformations, using the ultraviolet
cut–off introduced in [Arnol’d, 1963a]. The lower–
dimensional tori (ii) also have the slow dynamics en-
coded in one of the internal frequencies, the symplectic
normal behaviour is of the same magnitude as the fast
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frequencies. This should allow to obtain their persis-
tence along the same lines.

For the (d − 1)–tori (iii) the two time scales distin-
guish the internal from the normal dynamics. In the
hyperbolic case the normal hyperbolicity of the cen-
tre manifold is of order ε and thus sufficiently large
with respect to the perturbation strength ε2 to yield
persistence. During local bifurcations in the slow dy-
namics one has the alternative between a scaling argu-
ment [Broer, Hanßmann and You, 2003] and a direct in-
corporation in the KAM–iteration [Hanßmann, 1998].
In the elliptic case (treated in [Lieberman, 1971; 1972])
the Diophantine conditions again involve both the ε–
small normal and the “large” internal frequencies.

The fast–slow dynamics is contained in the symplec-
tic normal behaviour for lower–dimensional tori (iv).
Again the hypo–elliptic case does not pose new prob-
lems. When incorporating additional elliptic and hy-
perbolic directions into the KAM iteration one should
furthermore be able to let one of them be slow — where
the bifurcation scenario is developing in the slow dy-
namics the above alternatives still apply. More interest-
ing is the combination of two bifurcations in both the
fast and the slow (symplectic normal) dynamics. In-
deed, with two different time scales e.g. the dynamics
triggered by two simultaneous violations of (5) appears
to be of (1+1)–degree–of–freedom rather than having
truly 2 degrees of freedom. This might help to obtain
more detailed results.

3.2 Systems in three degrees of freedom

For superintegrable systems with regular r–tori with
r ≤ d − 2 it is no longer automatic for the average
εP̄ of the perturbation εP to reduce to an r–parameter
family of integrable systems, the remaining number of
degrees of freedom being d − r ≥ 2 . It seems there-
fore unlikely that a given perturbation removes the de-
generacy, but see [Arnol’d, 1963b] for a treatment of
the planetary system as a perturbation of the superinte-
grable superposition of 9 Keplerian systems that does
remove the degeneracy. The ensuing problems can al-
ready be illustrated in three degrees of freedom.

The Euler–Poinsot system is a “free” rigid body not
subject to any external force or torque. This makes the
spatial components µ1, µ2, µ3 of the angular momen-
tum three non–commuting integrals of motion next to
the (kinetic) energy

N =
`1

2I1

+
`2

2I2

+
`3

2I3

and replacing one of them by the sum µ2 = µ2

1
+ µ2

2
+

µ2

3
of their squares yields a second integral (next to

the energy) that commutes with all other integrals. In
this way the phase space P becomes a ramified 2–torus
bundle with a complicated singular set at µ2 = 0 . Re-

defining

P = T ∗SO(3)\SO(3)

by taking out the zero section (where no dynamics
takes place, SO(3) consists of equilibria) simplifies
this situation and also allows to replace µ2 by |µ| =
√

µ2 .
In the dynamically symmetric case I1 = I2 of two

equal moments of inertia the conditionally periodic
motion along the regular 2–tori becomes particularly
transparent. Indeed, for such an Euler top the preces-
sion of the figure axis about the angular momentum is
superposed by a rotation of the body about the figure
axis. At `3 = 0 the 2–tori become (internally) 1:0 res-
onant as the precession consists of the body rotating
about any axis perpendicular to the figure axis. Note
that the Hamiltonian

N =
|µ|2
2I1

− I3 − I1

I1I3

`2

3

2

can be expressed as a function of |µ| and `3 whence
the additional integral `3 does not lead to topologi-
cal changes of the regular fibres of the ramified 2–
torus bundle. This will change below when we replace
the additional S1–symmetry by an additional SO(3)–
symmetry.
For the general free rigid body with three different

moments of inertia the above 1:0 resonant 2–tori break
up and the (un)stable manifolds of the rotation about
the “middle” axis of inertia separate four families of
regular 2–tori. Depending on which family a 2–torus
belongs to, the rôle of the figure axis is played by
the “longest” or the “shortest” axis of inertia, which
still precesses regularly about the direction of the an-
gular momentum. However, the rotational motion of
the body about this figure axis looks more complicated
as the sines and cosines of the dynamically symmetric
case have to be replaced by elliptic functions. The free
rigid body is a minimally superintegrable system.
The torque exerted by a perturbing external force field

causes the angular momentum to slowly move in space.
For the intermediate system this motion is periodic and
superposed to the fast precessional–rotational motion
of the free rigid body. In [Mazzocco, 1997] persistence
of the resulting 3–tori is explicitly proven. The struc-
ture of the ramified 3–torus bundle defined by the inter-
mediate system depends on the precise form of (the av-
erage of) the perturbation. The case of an affine2 force
field is detailed in [Hanßmann, 1995; 1997] for the dy-
namically symmetric case.
A free rigid body with three equal moments I1 = I2 =

I3 of inertia has only periodic motions (we still exclude
the zero section SO(3) from the phase space) since ev-
ery axis through the fixed point is a principal axis of

2The linear part is needed to break the rotational symmetry of the
constant part of the force field.
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inertia. Correspondingly, one has five independent in-
tegrals of motion by choosing next to the energy

N =
|µ|2
2I1

two of the three components `1, `2, `3 of the angular
momentum about a body set of axes and two out of the
µ1, µ2, µ3 in a spatial frame. The free rigid body with
trivial tensor of inertia is a maximally superintegrable
system.
The effect of the torque of the average of a perturb-

ing external force field is now that the direction of the
angular momentum moves both in the spatial and the
body frame. Fixing |µ| , regular reduction of the S1–
symmetry generated by |µ| yields a two–degree–of–
freedom system on S2

|µ| × S2

|µ| . This system may of

course be integrable, e.g. because the force field is S1–
symmetric. Note that the external force field has to
“detect” the asymetries of the rigid body, whence an
affine force field is no longer sufficiently general, lead-
ing to an S1–symmetric system. But already a generic
quadratic force field has an average that cannot be used
to remove the degeneracy.
An interesting phenomenon appears in some applica-

tions involving the Kepler system. Indeed, the regular-
ized spatial Kepler problem is a maximally superinte-
grable three–degree–of–freedom system with Hamilto-
nian N(K) = K and has a “first” normal form

H̄ = K + εS(K, L)

for the lunar problem, the Rydberg (or hydrogen) atom
in crossed fields and the problem of orbiting dust,
cf. [van der Meer and Cushman, 1986; 1987; Cush-
man, 1992; Cushman and Sadovskiı̌, 2000; Sommer,
2003; Efstathiou, 2004]. Here L is the third compo-
nent of the angular momentum and in the two former
cases S(K, L) is a multiple of K · L , while it can be
brought into this form by an additional transformation
in the latter case as well. A second normalization yields

H = K + εS(K, L) + ε2T (K, L, I)

with an appropriately chosen third action I .
In all these cases the conditionally periodic motion

defined by H has three time scales, while the rates of
change of these frequencies are only of the two orders
ε and ε2 of magnitude. This is not a coincidence since
for a maximally superintegrable system with nowhere
vanishing periodic flow the first action can always be
chosen to be the unperturbed Hamiltonian. While a
perturbation

Hε(J, φ) = J1 + εS(J1, J2) + ε2T (J, ε) + h.o.t.

does not fulfil Definition 3.1, it could nonetheless be
shown in [Sommer, 2003] that most regular fibres of the

ramified 3–torus bundle defined by H persists as a Can-
tor family, provided that appropriate non–degeneracy
conditions hold true.

3.3 The hierarchy of superintegrable systems
One still obtains a minimally superintegrable system

when coupling an Euler top with one or several La-
grange tops. Note that the Euler–Poinsot system can
be realized even in the presence of constant gravity by
letting the fixed point coincide with the centre of mass.
Similarly, the weak coupling of m tops appropriately
chosen among the Lagrange top, the Euler top and the
dynamically spherically symmetric Euler top yields a
superintegrable system in d = 3m degrees of freedom
with the dimension r of the regular fibres of the result-
ing ramified torus bundle satisfying m ≤ r ≤ 3m .
A class of examples where the dimension r may as-

sume any number between the number of degrees of
freedom r = d and the maximally superintegrable case
r = 1 is given by the C.Neumann system, cf. [Dullin
and Hanßmann, 2005]. A point moves on a sphere Sd

under the influence of a linear force field. Only the
differences between the coefficients of the force field
have dynamical consequences. In particular, when all
coefficients are equal to each other the C.Neumann sys-
tem becomes the geodesic flow, a maximally superin-
tegrable system with symmetry group SO(d + 1) . A
subgroup of SO(d + 1) of product form

SO(m0) × · · · × SO(ms)

is the symmetry group of the degenerate C.Neumann
system with s+1 groups of mς equal coefficients. Note
that mς = 2 equal coefficients do not yet lead to su-
perintegrability. Indeed, the angular momentum defin-
ing the corresponding SO(2)–action merely replaces
one of the Uhlenbeck integrals, see [Dullin and Hanß-
mann, 2005] for more details. For mς ≥ 3 the factor
SO(mς) is non–commutative and does lead to super-
integrability. Thus, the degenerate C.Neumann system
is minimally superintegrable if and only if there is one
group of three equal coefficients and all other coeffi-
cients equal at most one more coefficient.
As formulated in Theorem 1.1, the regular part M

of the ramified torus bundle determined by a super-
integrable system is a fibration by isotropic invariant
tori T

r . Since the Poisson bracket of two first integrals
{fi, fj} = Pij ◦ f is again a first integral this isotropic
fibration admits a polar foliation which is co–isotropic.
In the local co–ordinates (2) the co–isotropic leaves
are co–ordinized by (x, q, p) while y is fixed. Where
superintegrability is coming from a non–commutative
symetry group the quotient of a co–isotropic leaf by T

r

is the co–adjoint orbit, with local co–ordinates (q, p) .
On the other hand, for a non–degenerate integrable sys-
tem both the isotropic fibration and the co–isotropic fo-
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liation coincide with the fibration by Lagrangean tori.
A superintegrable Hamiltonian N depends only on y

and in case the co–isotropic foliation is in fact a fibra-
tion c : M −→ A — as holds true in all examples
in the present paper — one may write N ◦ c for this
Hamiltonian. Similarly, a normal form P̄ of the per-
turbation P with respect to N may be written as P̄ ◦ i

where i : M −→ B denotes the isotropic fibration.
We have already seen that N ◦ c + εP̄ ◦ i is integrable
and may serve as an intermediate system for minimally
superintegrable N .
But even when not integrable (and thus not helpful for

KAM–like results) normal forms N ◦ c + εP̄ ◦ i show
that the perturbed motion has three time scales. Next to
the fast motion

ẋ =
∂N

∂y
+ O(ε)

there is an ε–slow motion in q and p . Moreover, the
motion in y can be made very slow by considering a
high order of the normal form. Along these lines one
may obtain Nekhoroshev–like results, for more details
see [Fassò, 2005] and references therein.
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Pöschel, J. (1989) On Elliptic Lower Dimensional
Tori in Hamiltonian Systems. Math. Z. 202, pp. 559
– 608
Robinson, R.C. (1970) Generic properties of conser-
vative systems. Am. J. Math. 92, pp. 562 – 603
Robinson, R.C. (1970) Generic properties of conser-
vative systems II. Am. J. Math. 92, pp. 897 – 906
Rudnev, M. (2003) Hamilton–Jacobi method for a
simple resonance. Preprint, University of Bristol
Rüssmann, H. (2001) Invariant tori in non–degenerate
nearly integrable Hamiltonian systems. Reg. Chaot.
Dyn. 6(2), pp. 119 – 204
Sevryuk, M.B. (1997) Invariant Tori of Intermedi-
ate Dimensions in Hamiltonian Systems. Reg. Chaot.

Dyn. 2(3/4), pp. 30 – 40
Sommer, B.S. (2003) A KAM Theorem for the Spatial
Lunar Problem. Ph.D. thesis, RWTH Aachen
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