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Abstract. In this paper, an adaptive wavelet method for solving linear operator equations is
constructed that is a modification of the method from [Math. Comp, 70 (2001), pp.27–75] by Co-
hen, Dahmen and DeVore, in the sense that there is no recurrent coarsening of the approximate
solutions. Despite of this, it will be shown that the method has optimal computational com-
plexity. Numerical results in a simple model problem indicate that the avoidance of coarsening
results in a more efficient algorithm.

1. Preliminaries

For some boundedly invertible linear operator A : H → H ′, where H is some Hilbert space
with dual H ′, and some f ∈ H ′, we consider the problem of finding u ∈ H such that

Au = f.

As typical examples, we think of linear differential or integral equations of some order 2t in
variational form. Furthermore, although systems of such equations also fit into the framework,
usually we think of scalar equations, so that typically H is a Sobolev space H t on the underlying
domain or manifold, possibly incorporating essential boundary conditions.

Assuming that we have a Riesz basis Ψ = {ψλ : λ ∈ ∇} for Ht available, which we formally view
as a column vector, by writing u = uT Ψ the above problem is equivalent to finding u ∈ `2 = `2(∇)
satisfying the infinite matrix-vector system

Au = f ,

where A := 〈Ψ, AΨ〉 : `2 → `2 is boundedly invertible and f := 〈Ψ, f〉 ∈ `2. Here 〈·, ·〉 denotes
the duality product on (H t, H−t). In the following, we will also use 〈·, ·〉 to denote 〈·, ·〉`2 , and use
‖ · ‖ to denote ‖ · ‖`2 as well as ‖ · ‖`2→`2 . Throughout this paper, u and f will always denote the
solution and right-hand side of this equation, respectively.

Let us denote by uN a best N -term approximation for u, i.e., a vector with at most N nonzero
coefficients that has distance to u not larger than that of any vector with a support of that size.
Note that ‖u − uT

NΨ‖Ht h ‖u − uN‖. Considering bases Ψ of sufficiently smooth wavelet type,
the theory of nonlinear approximation ([DeV98, Coh00]) tells us that if both

0 < s < d−t
n ,

where d is the order of the wavelets and n is the space dimension, and u is in the Besov space

Bsn+t
τ (Lτ ), with τ = ( 1

2 + s)−1, then

(1.1) sup
N∈N

Ns‖u− uN‖ <∞.

The condition here involving Besov regularity is much milder that the corresponding condition u ∈
Hsn+t involving Sobolev regularity that would be needed to guarantee the same rate of convergence
with linear approximation in the span ofN wavelets corresponding to the “coarsest levels.” Indeed,
assuming a sufficiently smooth right-hand side, for several boundary value problems it was proven
that the solution has a much higher Besov than Sobolev regularity [DD97, Dah99]. Note that,
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regardless of the smoothness of the solution u, a rate higher than d−t
n can never be expected with

wavelets of order d, except when u happens to be exceptionally close to a finite linear combination
of wavelets. On general domains or manifolds, suitable wavelet bases for H t have been constructed
in [DS99a, CTU99, CM00, DS99b, Ste04a, HS04].

Vectors u ∈ `2 that satisfy (1.1) can be characterized as follows (see [DeV98]): Let γn(u) denote
the nth largest coefficient in modulus of u. For 0 < τ < 2, the space `wτ = `wτ (∇) is defined by

`wτ =

{

u ∈ `2 : |u|`w
τ

:= sup
n
n1/τ |γn(u)| <∞

}

.

It is easily verified that `τ ↪→ `wτ ↪→ `τ+δ for any δ ∈ (0, 2− τ ], justifying why `wτ is called weak `τ .
The expression |u|`w

τ
defines only a quasi-norm since it does not necessarily satisfy the triangle

inequality. With these `wτ -spaces at hand, it can be shown that the property (1.1) is equivalent to
u ∈ `wτ , with τ related to s according to τ = ( 1

2 + s)−1. In particular, for each τ ∈ (0, 2),

(1.2) sup
N
Ns‖u− uN‖ h |u|`w

τ
,

see, e.g., [CDD01, Proposition 3.2]. Here and in the following, in order to avoid the repeated use
of generic but unspecified constants, by C . D we mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously, C & D is defined as
D . C, and C h D as C . D and C & D.

The aforementioned convergence rates under the mild Besov regularity assumption concern best
N -term approximations, whose computation, however, requires full knowledge of the solution u,
which is only implicitly given. In [CDD01, CDD02], iterative methods for solving Au = f were
developed that produce a sequence of approximations that converge with the same rate as that of
the best N -term approximations, taking a number of operations that is equivalent to their support
sizes. Both properties show that these methods are of optimal computational complexity. As a
preparation for the results that will be derived in this paper, below we discuss both methods in
some detail.

In each iteration of the methods, the matrix A has to be applied to some (finitely supported)
vector. Since, generally, each column of A contains infinitely many non-zero entries, clearly this
matrix-vector product cannot be computed exactly, and has to be approximated. For sufficiently
smooth wavelets, that have sufficiently many vanishing moments, and for both differential oper-
ators with piecewise sufficiently smooth coefficients, or singular integral operators on sufficiently
smooth manifolds, the results from [Ste04b, GS04, GS05] show that for some s∗ > d−t

n , A is
s∗-computable, meaning that for any s < s∗, for all N ∈ N, there is an infinite matrix AN , having
in each column O(N) non-zero entries, whose computations require O(N) operations, such that

(1.3) ‖A−AN‖ . N−s.

Using this result, the adaptive approximate matrix-vector product APPLY from [CDD01] can be
shown to have the following properties:

APPLY[w, ε] → z. The input satisfies ε > 0, and w is finitely supported. The output satisfies

‖Aw − z‖ ≤ ε, with for s < s∗, #supp z . ε−1/s|w|1/s
`w

τ
, where, as always, τ = ( 1

2 + s)−1, and

the number of arithmetic operations and storage locations required by this call is bounded by some

absolute multiple of ε−1/s|w|1/s
`w

τ
+ #suppw + 1.

The construction of a sequence of approximations for u that converge with a certain rate requires
the availability of a sequence of approximations for f that converge with at least that rate. It can
be shown that for s < s∗, with τ = ( 1

2 + s)−1, if u ∈ `wτ , then f ∈ `wτ , with |f |`w
τ

. |u|`w
τ
, and so

supN Ns‖f−fN‖ . |u|`w
τ
, which, however does not tell how to construct an approximation g which

is qualitatively as good as fN with a comparable support size. We will assume the availability of
the following routine, whose realization depends on the right-hand side at hand.

RHS[ε] → g with ‖f − g‖ ≤ ε, such that if u ∈ `wτ , and s < s∗, then #suppg . ε−1/s|u|1/s
`w

τ
, and

the number of arithmetic operations and storage locations required by this call is bounded by some

absolute multiple of ε−1/s|u|1/s
`w

τ
+ 1.
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The result concerning optimal computational complexity of the iterative methods from [CDD01,
CDD02] requires the properties of APPLY and RHS mentioned above. Moreover, the methods
apply under the condition that A is symmetric, positive definite (SPD), which, since A = 〈Ψ, AΨ〉,
is equivalent to 〈v,Aw〉 = 〈Av,w〉, v, w ∈ H , and 〈v,Av〉 & ‖v‖2

H , v ∈ H . For the case that A
does not have both properties, in [CDD02] alternatives were sketched to reformulate Au = f as
an equivalent well-posed infinite matrix-vector problem with a symmetric, positive definite system
matrix, as via the normal equations, or, in case the equation represents a saddle point problem,
by using the reformulation as a positive definite system introduced in [BP88]. In these cases, A, f

are not given by 〈Ψ, AΨ〉, 〈Ψ, f〉, respectively. We include these generalizations by, in those cases,
simply assuming that we have routines APPLY and RHS as above, where for a discussion under
which conditions this can be realized we refer to [CDD02]. Furthermore, to be able to conclude
optimality of the iterative methods, in this generalized setting we now assume that the value s∗

is larger than any s for which (1.1) can be expected.

The idea of the iterative method from [CDD02] is to apply Richardson iteration to Au = f .
Of coarse, this iteration cannot be performed exactly, but by ensuring that the errors due to
the inexact matrix-vector product and the approximation of f exhibit a proper decay when the
iteration proceeds, a linear convergent method is obtained.

The principle behind the method from [CDD01] is to improve a given approximation w for u

by realizing the saturation property: We set 〈〈·, ·〉〉 = 〈A·, ·〉 and ||| · ||| = 〈〈·, ·〉〉 1
2 . For any Λ ⊂ ∇, let

PΛ denote the `2-orthogonal projector onto `2(Λ), i.e., PΛ replaces all coefficients outside Λ by
zeros. With the notations vΛ, zΛ, etc., we will mean vectors in `2(Λ), i.e., vectors that are zero
outside Λ. Using that A is SPD, one easily verifies that for any v ∈ `2, Λ ⊂ ∇, vΛ ∈ `2(Λ),

‖A−1‖− 1
2 ‖v‖ ≤ |||v||| ≤ ‖A‖ 1

2 ‖v‖, ‖Av‖ ≤ ‖A‖ 1
2 |||v|||, ‖A−1‖− 1

2 |||vΛ||| ≤ ‖PΛAvΛ‖,
which properties will be often used in the following. The following lemma is well-known:

Lemma 1.1. Let µ ∈ (0, 1), w ∈ `2, ∇ ⊃ Λ ⊃ suppw such that

(1.4) ‖PΛ(f −Aw)‖ ≥ µ‖f −Aw‖.
Then, for uΛ ∈ `2(Λ) being the solution of the Galerkin system PΛAuΛ = PΛf , we have

|||u − uΛ||| ≤ [1 − κ(A)−1µ2
]

1
2 |||u −w|||.

Proof. We have

|||uΛ −w||| ≥ ‖A‖− 1
2 ‖A(uΛ −w)‖ ≥ ‖A‖− 1

2 ‖PΛ(f −Aw)‖
≥ ‖A‖− 1

2 µ‖f −Aw‖ ≥ κ(A)−
1
2 µ|||u −w|||,

which, with κ(A)−
1
2µ reading as some arbitrary positive constant, is known as the saturation

property of `2(Λ) 3 w. Using the Galerkin orthogonality |||u−w|||2 = |||u−uΛ|||2 + |||uΛ −w|||2, the
proof is completed. �

In this lemma it was assumed to have full knowledge about the exact residual, and that the
arising Galerkin system is solved exactly, but as with the Richardson iteration, linear convergence
is retained with an inexact evaluation of the residuals, and an inexact solution of the Galerkin
systems, when the tolerances exhibit a proper decay as the iteration proceeds.

We remark that if, instead of being a Riesz basis, Ψ is only a frame for H , then the inexact
Richardson method is still applicable (see [Ste03, DFR04]), whereas the other method is not since
in that case the Galerkin systems can be arbitrarily badly conditioned.

Returning to the Riesz basis case, both the above iterative methods are linearly convergent,
however, generally the rates are not as good as that of the best N -term approximations. Therefore
in [CDD01, CDD02], these methods were extended with a so-called coarsening routine. After each
K iterations, where K is a sufficiently large, fixed constant, the smallest coefficients from the
current approximation vector are removed, increasing the upper bound for its error with some
factor larger than 2, but with that restoring the optimal balance between accuracy and vector
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length. Only after the extension with the coarsening routine, the resulting methods could be
shown to be of optimal computational complexity.

In this paper, we reconsider the method from [CDD01]. Since for any subset Λ ⊂ ∇, in
energy norm, the best approximation from `2(Λ) is the Galerkin solution, which can be accurately
approximated at relatively low cost, we expect that this method gives quantitatively the best
results. The main point of the paper will be that we show that if µ is less than κ(A)−

1
2 , and Λ is

the smallest set containing suppw that satisfies (1.4), then, without coarsening of the approximate
solutions, these approximations converge with a rate as that of the best N -term approximations.
As we will see, this result holds also true when the residuals and the Galerkin solutions are
determined only inexactly, assuming a proper decay of the tolerances as the iteration proceeds,
and when the cardinality of Λ is only minimal up to some constant factor, with which again a
method of optimal computational complexity is obtained. Apart from the theoretical interest
in that it is possible to construct an adaptive algorithm of optimal computational complexity
without coarsening, it can be expected that the avoidance of coarsening also has a quantitative

advantage. Indeed, in each coarsening step at least half, but often a much larger part of the current
approximation vector is removed, which part has been involved in a number of computations.

Another difference with the method from [CDD01] is that for each call of APPLY or RHS, we
will use a tolerance that is some fixed multiple of an a posteriori estimate of the current residual,
instead of an a priori prescribed tolerance. Since it seems hard to avoid that a priori tolerances
are increasingly either unnecessarily small, making the calls costly, or large so that the perturbed
iteration due to the inexact evaluations converges significantly slower than the unperturbed one,
also here we expect to obtain a quantitative improvement.

We consider approximations for u from `2(Λ), where Λ is any finite subset of ∇. In [CDD03],
in the context of non-linear operators, a slightly restricted type of wavelet approximation is intro-
duced, in the sense that only sets Λ are considered that are trees, meaning that if λ ∈ Λ, then for
any λ′ ∈ ∇ with suppψλ ⊂ suppψλ′ , also λ′ ∈ Λ. Although, at least for linear operators, there is
no real need to restrict to tree approximations, on the other hand, working with trees has advan-
tages in view of obtaining an efficient implementation, whereas best tree N -term approximations
converge towards u with a rate N−s under regularity conditions that are only slightly stronger
than that for unrestricted best N -term approximations. We note that by making obvious changes
only, the results from this paper also apply to tree approximations.

We tested our adaptive wavelet solver for the Poisson equation on the interval. The results
reported in the last section show that, in this simple example, the new method is indeed much
more efficient than the inexact Richardson method with coarsening. In [DHS05], co-authored by
the second author, numerical results based on tree approximations are given for singular integral
equations on the boundary of three dimensional domains.

2. The adaptive method without coarsening

In the following lemma it is showed that for sufficiently small µ and u ∈ `wτ , for a set Λ as in
Lemma 1.1 that has minimal cardinality, #(Λ\suppw) can be bounded in terms of ‖f −Aw‖ and
|u|`w

τ
only, i.e., independently of |w|`w

τ
and the value of s∗ (cf. [CDD01, §4.2-4.3]).

Lemma 2.1. Let µ ∈ (0, κ(A)−
1
2 ) be a constant, w ∈ `2, and for some s > 0 and τ = ( 1

2 + s)−1,
u ∈ `wτ . Then the smallest set Λ ⊃ suppw with

‖PΛ(f −Aw)‖ ≥ µ‖f −Aw‖
satisfies

#(Λ\suppw) . ‖f −Aw‖−1/s|u|1/s
`w

τ
.

Proof. Let λ > 0 be a constant with µ ≤ κ(A)−
1
2 (1−‖A‖λ2)

1
2 . Let N be such that a best N -term

approximation uN for u satisfies ‖u− uN‖ ≤ λ|||u−w|||. Since |||u−w||| ≤ ‖A−1‖ 1
2 ‖f −Aw‖, we

have

N . ‖f −Aw‖−1/s|u|1/s
`w

τ
.
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With Λ̆ := suppw ∪ suppuN , the solution of PΛ̆AuΛ̆ = PΛ̆f satisfies

|||u − uΛ̆||| ≤ |||u − uN ||| ≤ ‖A‖ 1
2 ‖u− uN‖ ≤ ‖A‖ 1

2λ|||u − w|||,
and so by Galerkin orthogonality, |||uΛ̆ −w||| ≥ (1 − ‖A‖λ2)

1
2 |||u −w|||, giving

‖PΛ̆(f −Aw)‖ = ‖PΛ̆(AuΛ̆ −Aw)‖ ≥ ‖A−1‖− 1
2 |||uΛ̆ −w|||

≥ ‖A−1‖− 1
2 (1 − ‖A‖λ2)

1
2 |||u −w||| ≥ κ(A)−

1
2 (1 − ‖A‖λ2)

1
2 ‖f −Aw‖

≥ µ‖f −Aw‖.
Since Λ̆ ⊃ suppw, by definition of Λ we conclude that

#(Λ\suppw) ≤ #(Λ̆\suppw) ≤ N . ‖f −Aw‖−1/s|u|1/s
`w

τ
.

�

Based on Lemmas 1.1 and 2.1, the following routine GROW provides a practical algorithm
for extending the support of an approximation w for u to a set Λ, which cardinality can be
bounded as in Lemma 2.1, but, on the other hand, which is sufficiently large such that `2(Λ) has
the saturation property. First, inside a loop, the tolerances for the approximate matrix-vector
product and the approximation of the right-hand side are decreased until either the computed
approximate residual r has a sufficiently small relative error, or the norm of the residual is below
the target tolerance meaning that w will be excepted as a valid approximation for u. Second,
in the first case, for a suitable constant α, the, up some constant factor, smallest Λ ⊃ suppw is
determined with ‖PΛr‖ ≥ α‖r‖.
GROW[w, ν̄, ε] → [Λ, ν]:
% Let α, ω be constants with 0 < ω < α ≤ 1, α+ω

1−ω < κ(A)−
1
2 .

ζ := 2 ων̄
1−ω

do ζ := ζ/2, r := RHS[ζ/2] −APPLY[w, ζ/2]
until ν := ‖r‖+ ζ ≤ ε or ζ ≤ ω‖r‖
if ν > ε
then determine a set ∇ ⊃ Λ ⊃ suppw, with, up to some absolute constant factor,

minimal cardinality, such that ‖PΛr‖ ≥ α‖r‖
else Λ := ∅
endif

Remark 2.2. If ν̄ 6∈ [ 1−ω
1+ω ‖f − Aw‖, ‖f − Aw‖], then ζ at the first evaluation of r is outside

[ ω
1+ω‖f − Aw‖, ω

1−ω‖f − Aw‖], and from ω‖f − Aw‖ − ζ ≤ ω‖r‖ ≤ ω‖f + Aw‖ + ζ, one infers
that in this case either the second test in the until-clause will fail anyway, meaning that the first
iteration of the do-loop is not of any use, or that second test in the until-clause is always passed,
but possibly with a tolerance that is unnecessarily small. We conclude that there is not much
sense in calling GROW with a value of ν̄ that is far outside [ 1−ω

1+ω ‖f −Aw‖, ‖f −Aw‖].
Remark 2.3. Selecting Λ in GROW with true minimal cardinality would require the sorting
of all coefficients of r|∇\supp w by their modulus, which, with N := #supp r|∇\suppw, requires
O(N logN) operations. Another O(#supp r) operations for computing ‖r‖ are unavoidable. In
the following, we recall a procedure with which the above log-factor is avoided.

In view of our task to select Λ ⊃ suppw with ‖PΛr‖ ≥ α‖r‖, we may discard all coeffi-

cients of r|∇\supp w with modulus not larger than
√

(1 − α2)‖r‖/
√
N . With M := ‖r|∇\suppw‖∞,

and q the smallest integer with 2−(q+1)/2M ≤
√

(1 − α2)‖r‖/
√
N , we store the other coeffi-

cients of r|∇\suppw in q + 1 bins corresponding whether it lies in [M, 1√
2
M), [ 1√

2
M, 1

2M), . . . , or

[2−q/2M, 2−(q+1)/2M). We then build Λ by extracting coefficients from the bins, starting with the
first bin, and when it got empty moving to the second bin and so on until ‖PΛr‖ ≥ α‖r‖ is satisfied.
Let the resulting Λ now contains coefficients from the pth bin, but not from further bins. Then a
minimal set Λ̃ that satisfies ‖PΛ̃r‖ ≥ α‖r‖ contains all coefficients from the bins up to the (p−1)th

one. Since any two coefficients in the pth bin differ at most a factor
√

2, we infer that the cardinality
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of the contribution from the pth bin to Λ is at most twice at large as that to Λ̃, so that #Λ ≤ 2#Λ̃.
The number of operations and storage locations required by this procedure is O(#supp r+q), where

q < 2 log2(M
√
N/[

√
1 − α2‖r‖]) ≤ 2 log2(

√
N/

√
1 − α2) . log2(

√
N) < #supp r.

Theorem 2.4. [Λ, ν] = GROW[w, ν̄, ε] terminates, with ν ≥ ‖f − Aw‖ and ν & min{ν̄, ε}. If,

for s < s∗ and with τ = ( 1
2 + s)−1, u ∈ `wτ , then the number of arithmetic operations and storage

locations required by the call is bounded by some absolute multiple of min{ν̄, ν}−1/s
[

|w|1/s
`w

τ
+|u|1/s

`w
τ

+

ν̄1/s(#suppw + 1)
]

.

If GROW terminates with ν > ε, then

(2.1) α−ω
1+ω ν ≤ ‖PΛ(f −Aw)‖,

and

(2.2) #(Λ\suppw) . ν−1/s|u|1/s
`w

τ
.

Proof. If at evaluation of the until-clause, ζ > ω‖r‖, then ‖r‖+ ζ < (ω−1 + 1)ζ. Since ζ is halved
in each iteration, we infer that, if not by ζ ≤ ω‖r‖, GROW will terminate by ‖r‖ + ζ ≤ ε.

Since after any evaluation of r inside the algorithm, ‖r − (f − Aw)‖ ≤ ζ, any value of ν
determined inside the algorithm is an upper bound on ‖f − Aw‖. If the do-loop terminates in
the first iteration, or the algorithm terminates with ν > ε, then ν & min{ν̄, ε}. In the other
case, let rold := RHS[ζ] − APPLY[w, ζ]. We have ‖rold‖ + 2ζ > ε and 2ζ > ω‖rold‖, so that
ν ≥ ζ > (2ω−1 + 2)−1(‖rold‖ + 2ζ) > ωε

2+2ω .
By the geometric decrease of ζ inside the algorithm, and in view of Remark 2.3, with ζ, r and ν

having their values at termination, the properties of RHS and APPLY imply that the total cost

of the call of GROW can be bounded by some multiple of ζ−1/s(|w|1/s
`w

τ
+ |u|1/s

`w
τ

) +K(#suppw +

1), with K being the number of calls of APPLY that were made. Taking into account its
initial value, and the geometric decrease of ζ inside the algorithm, we have K(#suppw + 1) =
Kν̄−1/sν̄1/s(#supp w + 1) . ζ−1/sν̄1/s(#suppw + 1). The proof of the first part of the theorem
is completed once we have shown that ζ & min{ν̄, ν}. When the do-loop terminates in the first
iteration, we have ζ & ν̄, and when the algorithm terminates with ζ ≥ ω‖r‖, we have ζ & ν. In
the other case, with rold as above, we have ω‖rold‖ < 2ζ, and so from ‖r− rold‖ ≤ ζ+2ζ, we infer
‖r‖ ≤ ‖rold‖ + 3ζ < (2ω−1 + 3)ζ, so that ν < (2ω−1 + 4)ζ.

Now assume that GROW terminates with ν > ε and thus with ζ ≤ ω‖r‖. With g = RHS[ζ/2]
and z = APPLY[w, ζ/2], we have

‖PΛ(f −Aw)‖ ≥ ‖PΛr‖ − ‖PΛ(Aw − z)‖ − ‖PΛ(f − g)‖
≥ α‖r‖ − ζ ≥ α−ω

1+ω ν,

where the last inequality is a consequence of ζ ≤ ω‖r‖, ω < α, and ν = ‖r‖ + ζ.

To prove (2.2), with µ = α+ω
1−ω let ∇ ⊃ Λ̂ ⊃ suppw be the smallest set with

‖PΛ̂(f −Aw)‖ ≥ µ‖f −Aw‖.
Then µ‖r‖ ≤ µ‖f−Aw‖+µζ ≤ ‖PΛ̂(f −Aw)‖+µζ ≤ ‖PΛ̂r‖+(1+µ)ω‖r‖ or ‖PΛ̂r‖ ≥ α‖r‖. By

construction of Λ in GROW, we conclude that #(Λ\suppw) . #(Λ̂\suppw). Since µ < κ(A)
1
2

by the condition on ω and α, and ‖f − Aw‖ ≤ ν, an application of Lemma 2.1 shows that

#(Λ̂\suppw) . ν−1/s|u|1/s
`w

τ
which completes the proof. �

When having extended suppw to a set Λ such that `2(Λ) has the saturation property, the
second ingredient of the iterative method is the approximate solution of the Galerkin system on
`2(Λ). Given an approximation gΛ for PΛf , there are various possibilities to approximately solving
the system PΛAuΛ = gΛ, starting with some initial approximation wΛ for uΛ, where obviously we
will take wΛ = w. After approximately computing the initial residual using the APPLY routine,
instead of relying on the adaptive routine APPLY throughout the iteration, the following routine
GALSOLVE iterates using some fixed, non-adaptive approximation for

AΛ := PΛA|`2(Λ).
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The accuracy of this approximation depends only on the factor with which one wants to reduce
the norm of the residual. This approach can be expected to be particularly efficient when the
approximate computation of the entries of A is relatively expensive, as with singular integral
operators. As can be deduced from [ES04], it is even possible in the course of the iteration to
gradually diminish the accuracy of the approximation for AΛ.

GALSOLVE[Λ,gΛ,wΛ, δ, ε] → w̃Λ:
% The input should satisfy δ ≥ ‖gΛ −AΛwΛ‖.
% Let N be such that, with AN from (1.3), τ := ‖A−AN‖‖A−1‖ ≤ ε

3ε+3δ .

% Set B := PΛ
1
2 (AN + A∗

N )|`2(Λ).

r0 := gΛ −PΛ(APPLY[wΛ,
ε
3 ])

Apply a suitable iterative method for solving Bx = r0, e.g., Conjugate Gradients or Conjugate
Residuals, to find an x with ‖r0 −Bx‖ ≤ ε

3
w̃Λ := wΛ + x

Theorem 2.5. w̃Λ := GALSOLVE[Λ,gΛ,wΛ, δ, ε] satisfies ‖gΛ −AΛw̃Λ‖ ≤ ε. For any s < s∗,
the number of arithmetic operations and storage locations required by the call is bounded by some

absolute multiple of ε−1/s(|wΛ|1/s
`w

τ
+ |uΛ|1/s

`w
τ

) + c(δ/ε)#Λ, with c : R+ → R+ being some non-

decreasing function.

Proof. Writing B = AΛ(I + A−1
Λ (B − AΛ)), and using that ‖A−1

Λ ‖ ≤ ‖A−1‖, ‖B − AΛ‖ ≤
‖A−AN‖, and τ ≤ 1

3 < 1, we find that B is SPD with respect to the canonical scalar product on

`2(Λ), with κ(B) . 1 uniformly in ε and δ, and ‖B− AΛ‖‖B−1‖ ≤ τ
1−τ . We have ‖r0‖ ≤ δ + ε

3 .
Writing

gΛ −AΛw̃Λ = (gΛ −AΛwΛ − r0) + (r0 −Bx) + (B−AΛ)B−1(r0 + Bx − r0),

we find

‖AΛw̃Λ − gΛ‖ ≤ ε
3 + ε

3 + τ
1−τ (δ + ε

3 + ε
3 ) ≤ ε.

The properties of APPLY and RHS show that the cost of the computation of r0 is bounded

by some multiple of ε−1/s(|wΛ|1/s
`w

τ
+ |uΛ|1/s

`w
τ

). Since by (1.3), B is sparse and can be constructed

in O(#Λ) operations, and the required number of iterations of the iterative method is bounded,
everything only dependent on an upper bound for δ/ε, the proof is completed. �

We have now the ingredients available to define our adaptive wavelet solver.

SOLVE[ν−1, ε] → wk:

% Let γ be a constant in
(

0, 1
6κ(A)−

1
2

α−ω
1+ω

)

, with α, ω being the parameters inside GROW.
% Let θ > 0 be a constant.

k := 0; wk := 0
while with [Λk+1, νk] := GROW[wk, θνk−1, ε], νk > ε do

gk+1 := PΛk+1
(RHS[γνk])

wk+1 := GALSOLVE[Λk+1,gk+1,wk, (1 + γ)νk, γνk]
k := k + 1

enddo

Remark 2.6. As we will see, at the call of GROW[wk, θνk−1, ε], we have that ‖f −Awk‖ . νk−1.
Although, for any fixed θ > 0, SOLVE will be shown to be of optimal computational complexity,
in view of Remark 2.2, a suitable tuning of θ will result in quantitatively better results. Ideally, θ
has the largest value for which the do-loop inside GROW always terminates in one iteration.

Theorem 2.7. w := SOLVE[ν−1, ε] terminates with ‖Aw − f‖ ≤ ε. If ν−1 h ‖f‖ & ε, and for

some s < s∗, and τ = ( 1
2 +s)−1, u ∈ `wτ , then #suppw . ε−1/s|u|1/s

`w
τ

and the number of arithmetic

operations and storage locations required by the call is bounded by some absolute multiple of the

same expression.
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Proof. Before we come to the actual proof, first we indicate the need for the conditions involving
ν−1, ‖f‖ and ε. If ν−1 6& ε, then the cost of the first call of RHS in the first call of GROW can
be arbitrarily large. If ν−1 6. ‖f‖, then we cannot bound the number of iterations in the loop of
the first call of GROW, each of them requiring in any case some arithmetic operations. Finally,

if ‖f‖ 6& ε, then ε−1/s|u|1/s
`w

τ
might be arbitrarily small, whereas SOLVE takes in any case some

arithmetic operations.
Theorem 2.4 shows that νk ≥ ‖Awk − f‖, and, as long as νk > ε, that νk . ‖f − Awk‖. We

have ‖gk+1 −PΛk+1
Awk‖ ≤ (1+ γ)νk, so that (1+ γ)νk is a valid parameter for the (k+1)th call

of GALSOLVE. Below we will prove that a constant ξ < 1 exists such that, as long as νk > ε,

(2.3) |||u −wk+1||| ≤ ξ|||u −wk|||.
Because of ‖Awk − f‖ h |||u − wk|||, this result shows that SOLVE terminates after finitely
many iterations, say directly after the (K + 1)th call of GROW that produces [ΛK+1, νK ], and
furthermore that νk . ξk−iνi for all 0 ≤ i ≤ k ≤ K − 1. From, when K > 0, νK ≤ ε < νK−1, and
ν0 ≤ max{ε, 1+ω

α−ω‖f‖} . ν−1, the latter inequality by assumption, we even have

(2.4) νk . ξk−iνi, −1 ≤ i ≤ k ≤ K.

Since, with Λ0 := ∅, suppwi ⊂ Λi and Λi ⊂ Λi+1, by (2.2) for 1 ≤ k ≤ K we have

(2.5) #supp wk ≤ #Λk =

k−1
∑

i=0

#(Λi+1\Λi) . (

k−1
∑

i=0

ν
−1/s
i )|u|1/s

`w
τ

. ν
−1/s
k−1 |u|1/s

`w
τ
.

From |wk|`w
τ

. |u|`w
τ
+(#suppwk)s‖wk−u‖ ([CDD01, Lemma 4.11]), we infer that |wk|`w

τ
. |u|`w

τ
.

By Theorem 2.4, for k ≤ K the cost of the (k+ 1)th call of GROW is bounded by an absolute
multiple of

min{νk−1, νk}−1/s
[

|u|1/s
`w

τ
+ ν

1/s
k−1(ν

−1/s
k−1 |u|1/s

`w
τ

+ 1)
]

. ν
−1/s
k |u|1/s

`w
τ
,

where we used (2.5), min{νk−1, νk} & νk by (2.4), and 1 . ν
−1/s
k−1 |u|1/s

`w
τ

by νk−1 . ν−1 . ‖f‖ .

|u|`w
τ
. For k < K, also the cost of the (k + 1)th call of RHS or GALSOLVE is bounded by an

absolute multiple of ν
−1/s
k |u|1/s

`w
τ

or ν
−1/s
k (|wk|1/s

`w
τ

+ |u|1/s
`w

τ
) + #Λk+1 . ν

−1/s
k |u|1/s

`w
τ

, respectively.

From (2.4) and νK & min{νK−1, ε} & ε by Theorem 2.4, where the second inequality follows from
νK−1 > ε when K > 0, and by assumption when K = 0, the proof is completed upon showing
(2.3).

Abbreviating PΛk+1
as Pk+1, for 0 ≤ k < K let uk+1 be the solution of Pk+1Auk+1 = Pk+1f .

Because of ‖f−Awk‖ ≤ νk and (2.1), that can be applied since νk > ε, we have ‖Pk+1(f−Awk)‖ ≥
α−ω
1+ω ‖f −Awk‖, so that Lemma 1.1 shows that |||u − uk+1||| ≤ [1 − κ(A)−1(α−ω

1+ω )2
]

1
2 |||u −wk|||.

Our (k+1)th iterand is, however, not uk+1 but wk+1, which contains errors because of the non-
exact right-hand side and the inexact solution of the Galerkin system. One can simply estimate
|||u − wk+1||| ≤ |||u − uk+1||| + |||uk+1 − wk+1|||, but a sharper result can be derived by using that

u− wk+1 is nearly 〈〈·, ·〉〉-orthogonal to `2(Λk+1). With β := γ 2+2ω
α−ω κ(A)

1
2 < 1

3 , we have

|||uk+1 −wk+1||| ≤ ‖A−1‖ 1
2 ‖Pk+1A(uk+1 −wk+1)‖

≤ ‖A−1‖ 1
2

(

‖gk+1 −Pk+1Awk+1‖ + ‖Pk+1f − gk+1‖
)

≤ ‖A−1‖ 1
2 2γνk ≤ ‖A−1‖ 1

2 2γ 1+ω
α−ω‖Pk+1(f −Awk)‖ ≤ β|||uk+1 − wk|||.

Using u − uk+1 ⊥〈〈 , 〉〉 `2(Λk+1), we have

|〈〈u −wk+1,wk+1 −wk〉〉| = |〈〈uk+1 −wk+1,wk+1 −wk〉〉|
≤ |||uk+1 −wk+1||||||wk+1 −wk||| ≤ β|||uk+1 −wk||||||wk+1 −wk|||.

Now by writing

|||u −wk|||2 = |||u −wk+1|||2 + |||wk+1 −wk|||2 + 2〈〈u −wk+1,wk+1 −wk〉〉,
and, for obtaining the second line, two applications of

|||wk+1 −wk||| ≥ |||uk+1 −wk||| − |||wk+1 − uk+1||| ≥ (1 − β)|||uk+1 −wk|||,
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we find that

|||u −wk|||2 ≥ |||u −wk+1|||2 + |||wk+1 −wk|||
(

|||wk+1 −wk||| − 2β|||uk+1 −wk|||
)

≥ |||u −wk+1|||2 + (1 − β)(1 − 3β)|||uk+1 −wk|||2

≥ |||u −wk+1|||2 + (1 − β)(1 − 3β)κ(A)−1(α−ω
1+ω )2|||u −wk|||2,

or

|||u −wk+1||| ≤
[

1 − (1 − β)(1 − 3β)κ(A)−1(α−ω
1+ω )2

]
1
2 |||u −wk|||,

which completes the proof. �

Remark 2.8. Inside the call of GROW[wk, θνk−1, ε] made in SOLVE, we search an approximation
rk,ζ := RHS[ζ/2] − APPLY[wk, ζ/2] for r̄k := f − Awk with a ζ ≤ ω‖rk,ζ‖ that is as large as
possible in order to minimize supp rk,ζ . When k > 0, because of the preceding calls of RHS and
GALSOLVE, we have available a set Λk ⊃ suppwk and a νk−1 with ‖PΛk

r̄k‖ ≤ δk := 2γνk−1,
whereas on the other hand, for relatively large ζ, ‖PΛk

rk,ζ‖ might be larger than δk. In this remark,
we investigate whether it is possible to benefit from the additional information concerning PΛk

r̄k.
Let rI

k,ζ := PΛk
rk,ζ and rE

k,ζ := P∇\Λk
rk,ζ , and similarly r̄I

k and r̄E
k . From

ζ2 ≥ ‖r̄− rk,ζ‖2 = ‖r̄I − rI
k,ζ‖2 + ‖r̄E − rE

k,ζ‖2 ≥ (‖rI
k,ζ‖ − δk)2 + ‖r̄E − rE

k,ζ‖2,

we have

‖r̄− rE
k,ζ‖ = (‖r̄E − rE

k,ζ‖2 + ‖r̄I‖2)
1
2 ≤ (ζ2 − (‖rI

k,ζ‖ − δk)2 + δ2k)
1
2 =: ζ̆ .

So, alternatively, instead of rk,ζ , we may use rE
k,ζ as an approximation for r̄k, and thus stop

the routine GROW as soon as νk := ‖rE
k,ζ‖ + ζ̆ ≤ ε or ζ̆ ≤ ω‖rE

k,ζ‖, and use rE
k,ζ also for the

determination of Λk+1. Since for any ζ and rk,ζ with rI
k,ζ 6= 0 and ζ < ‖rk,ζ‖, it holds that

ζ̆‖rk,ζ‖ < ζ‖rE
k,ζ‖ if δk is small enough, under this condition the alternative test is passed more

easily. This may even be a reason to decrease the parameter γ.
The approach discussed in this remark has been applied in the experiments reported in [DHS05].

3. Numerical experiment

We consider the variational formulation of the following problem of order 2t = 2 on the interval
[0, 1], i.e., n = 1, with periodic boundary conditions

(3.1) −∆u+ u = f on R/Z,

where the right-hand side f is defined by f(v) = 4v( 1
2 ) +

∫ 1

0
g(x)v(x)dx, with

(3.2) g(x) = (16π2 + 1) cos(4πx) − 4 +

{

2x2, if x ∈ [0, 1/2),
2(1 − x)2, if x ∈ [1/2, 1],

so that the solution u is given by

(3.3) u(x) = cos(4πx) +

{

2x2, if x ∈ [0, 1/2),
2(1 − x)2, if x ∈ [1/2, 1],

see Figure 1.
We use the periodized B-spline wavelets of order d = 3 with 3 vanishing moments from [CDF92].

The solution u ∈ Hs+1(R/Z) only for s < 1
2 . Since, on the other hand, u can be shown to be in

Bs+1
τ (Lτ (R/Z)) for any s > 0, we deduce that the corresponding discrete solution u is in `wτ for

any s < d−t
n = 2, where τ = ( 1

2 + s)−1.
We will compare the results of our adaptive wavelet algorithm SOLVE with those obtained

with the Richardson iteration based method from [CDD02], which we refer as being the CDD2
method, and that reads as follows:

CDD2SOLVE[ν, ε] → w:
% ν ≥ ‖u‖
% Define the parameters ω := 2

‖A‖+‖A−1‖−1 , and ρ := 1−κ(A)
1+κ(A)

% Let θ and K be constants with 2ρK < θ < 1/2.
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Figure 1. The solution u is the sum of both functions illustrated.

w := 0
while ν > ε do

for j = 1 to K

w := w + ω
(

RHS[ ρjν
2ωK ] −APPLY[w, ρjν

2ωK ]
)

endfor

ν := 2ρKν/θ
w := COARSE[w, (1 − θ)ν]

enddo

where the coarsening routine COARSE is defined by

COARSE[w, δ] → wδ with ‖wδ −w‖ ≤ δ, where #suppwδ, up to some absolute constant factor,

is minimal.

We tested our adaptive wavelet algorithm SOLVE or CDD2SOLVE with parameters µ = 0.4,
ω = 0.012618, and γ = 0.009581, or K = 5 and θ = 2/7, respectively. Inside the ranges where
the methods are proven to be of optimal computational complexity, these parameters are close
to the values that give quantitatively the best results. We implemented the routine RHS by
computing all coefficients of f up to a sufficiently high level, and sorted them beforehand. Now
in a call of RHS, the largest coefficients are gathered in a vector g until

√

‖f‖2 − ‖g‖2 is less
than the prescribed tolerance. The numerical results, given in Figure 2, illustrate the optimal
computational complexity of both SOLVE and CDD2SOLVE, and show that, in this example,
the new method needs less than a factor 10 computing time to achieve the same accuracy.
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