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Abstract

Invariant manifolds like tori, spheres and cylinders play an impor-
tant part in dynamical systems. In engineering, tori correspond with
the important phenomenon of multi-frequency oscillations. Normal hy-
perbolicity guarantees the robustness of these manifolds but in many
applications weaker forms of hyperbolicity present more realistic cases
and interesting phenomena. We will review the theory and present a
number of examples using normalization-averaging techniques.

1 Introduction

When studying dynamical systems, either generated by maps, ordinary dif-
ferential equations, partial differential equations or other deterministic sys-
tems, a basic approach is to locate and to characterize the classical ingredi-
ents of such systems. These ingredients are critical points (equilibrium solu-
tions), periodic solutions, invariant manifolds (in particular quasi-periodic
tori), homoclinics, heteroclinics and in general stable and unstable manifolds
of special solutions.
Here we will discuss invariant manifolds like slow manifolds, tori, cylinders
with emphasis on the dissipative case. Consider a system like

ẋ = f(x) + εR(t, x, ε)
∗Dedicated to nonlinear scientist Ales̆ Tondl on his 80th birthday. To be publ. in Acta

Applicandae Mathematicae, 2005.
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where ε will indicate a small, positive parameter, R represents a smooth
perturbation. Suppose for instance that we have found an isolated torus Ta

by first order averaging or another normalizing technique. Does this man-
ifold persist, slightly deformed as a torus T , when considering the original
equation? Note that the original equation can be seen as a perturbation of
an averaged or normalized equation and the question can then be rephrased
as the question of persistence of the torus Ta under perturbation.
If the invariant manifold in the averaged equation is normally hyperbolic the
answer is affirmative (normally hyperbolic means loosely speaking that the
strength of the flow along the manifold is weaker than the rate of attrac-
tion or repulsion to the manifold). We will discuss such cases. In many
applications however the normal hyperbolicity is not easy to establish. In
the Hamiltonian case the tori arise in families and they will not even be
hyperbolic.
We will look at different scenarios for the emergence of tori in some exam-
ples. A torus is generated by various independent rotational motions - at
least two - and we shall find different timescales characterizing these rota-
tions.
Our emphasis on the analysis of invariant manifolds should be supplemented
by appropriate numerical schemes. In Schilder, Osinga and Vogt (2004) con-
tinuation of quasi-periodic invariant tori is studied with a discussion of an
algorithm, examples and extensive references. Another important aspect is
the break-up, or more in general the bifurcations of tori. We will briefly dis-
cuss some of the results in this rich field. Bifurcations of invariant manifolds
invoke much more complicated dynamics than bifurcations of equilibria or
periodic solutions and there are still many problems to study.

2 Deforming a normally hyperbolic manifold

Consider the dynamical system in Rn described by the equation

ẋ = f(x)

and assume that the system contains a smooth (Cr) invariant manifold
M . The smoothness enables us to define a tangent bundle T (M) and a
normal bundle N(M) of M . A typical situation in mechanics involves N
coupled two-dimensional oscillators containing a m-dimensional torus where
2 ≤ m ≤ N . In this case n = 2N , the tangent bundle is m-dimensional, the
normal bundle (2N −m)-dimensional.
Hyperbolicity is introduced as follows. Assume that we can split the cor-
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responding normal bundle of M with respect to the flow generated by the
dynamical system in an exponentially stable one N s and an exponentially
unstable one Nu with no other components. In differential geometric terms
the flow near the invariant manifold M takes place on

N s ⊕ T (M)⊕Nu.

In this case the manifold M is called hyperbolic. If this hyperbolic splitting
does not contain an unstable manifold Nu, M is stable. For a more detailed
discussion of these classical matters see for instance Hirsch, Pugh and Shub
(1977).
Note that the smoothness of M is needed in this description. In many cases
the manifolds under consideration loose smoothness at certain bifurcation
points when varying parameters. In such cases Lyapunov exponents can still
be used to characterize the stability.
The manifold M is moreover normally hyperbolic if, measured in the matrix-
and vector norms in Rn, Nu expands more sharply than the flow associated
with T (M) and N s contracts more sharply than T (M) under the flow.
A number of details and refinements of the concept can be found in Hirsch,
Pugh and Shub (1977), see also Shub (1987), Broer, Osinga and Vegter
(1997).
Interestingly the concept of normal hyperbolicity is used often without ex-
plicit definition or even mentioning the term but is implicitly present in the
conditions. Normal hyperbolicity in the case of a smooth manifold can be
checked in a relatively simple way, in the case of nonsmoothness we have to
adapt the definition.
In many applications the situation is simpler because a small parameter
is present which induces slow and fast dynamics in the dynamical system.
Consider the system

ẋ = f(x, y), x ∈ D ⊂ Rn, t ≥ 0
εẏ = g(x, y), y ∈ G ⊂ Rm

with f and g sufficiently smooth vector functions in x, y. Putting ε =
0 we have from the second equation 0 = g(x, y) which we assume to be
solvable by ȳ = φ(x) where φ(x) is a continuous function and an isolated root
corresponding with a compact manifold. Fenichel (1971-79) has shown that
if this root is hyperbolic, it corresponds with a nearby hyperbolic invariant
manifold of the full system, a so-called slow manifold. In the analysis the fact
that if this root is hyperbolic the corresponding manifold is also normally
hyperbolic is inherent in the problem formulation. For the fibers of the slow
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manifold are ruled by the fast time-scale 1/ε corresponding with a boundary
layer in time while the dynamics of the drift along the manifold is ruled by
the time-scale O(1).
It is nearly trivial but useful to rewrite the system in different time-like
variables. Putting τ = t/ε the system becomes

dx

dτ
= εf(x, y),

dy

dτ
= g(x, y).

The slow variation of the variable x which is O(ε) is set off against the fast
motion of y which varies O(1).
A simple example of a normally hyperbolic torus with small perturbations
is the system

Example 2.1

ẍ + x = µ(1− x2)ẋ + εf(x, y),
ÿ + ω2y = µ(1− y2)ẏ + εg(x, y)

with ε-independent positive constant ω and µ (fixed positive numbers, O(1)
with respect to ε) and smooth perturbations f, g. Omitting the perturba-
tions f, g we have two uncoupled normally hyperbolic oscillations. In general
if ω is irrational the combined oscillations attract to a torus in 4-space, the
product of the two periodic attractors, filled with quasi-periodic motion.
Adding the perturbations f, g can not destroy this torus but only deforms
it. In this example the torus is two-dimensional but the timescales of rota-
tion, if µ is large enough, are in both directions determined by the timescales
of relaxation oscillation (see Grasman, 1987) and so are O(1/µ).

There are natural extensions to non-autonomous systems by introducing
the so-called stroboscopic map. We demonstrate this by an example derived
from Broer, Osinga and Vegter (1997). See also the monograph by Broer,
Huitema and Sevryuk (1996).

Example 2.2
Consider the forced van der Pol-oscillator

ẍ + x = µ(1− x2)ẋ + ε cosωt
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which we write as the system

ẋ = y,

ẏ = −y + µ(1− x2)y + ε cos τ,

τ̇ = ω.

The 2π-periodic forcing term ε cos τ produces a stroboscopic map of the
x, y-plane into itself. For ε = 0 this is just the map of the periodic solution
of the Van der Pol-equation, an invariant circle, into itself and the closed
orbit is normally hyperbolic. In the extended phase space R2 ×R/2πZ this
invariant circle for ε = 0 corresponds with a normally hyperbolic torus which
is persistent for small, positive values of ε.
Actually, the authors, choosing µ = 0.4, ω = 0.9 consider what happens
if ε increases. At ε = 0.3634 the normal hyperbolicity is destroyed by a
saddle-node bifurcation.

3 Slow manifolds

Early approximation theory, in particular by Tikhonov is concerned with
singular perturbation problems where the attraction, at least for some time,
is directed towards the regular expansion of the solution with respect to the
small parameter which corresponds with a stable critical point of the bound-
ary layer equation. For a description and references see Verhulst (2005).
In the case of autonomous equations it is possible to associate with the reg-
ular asymptotic expansion a manifold in phase-space and to consider the
attraction properties of the flow near this manifold. This raises the question
whether these manifolds really exist or if they are just a phantom phe-
nomenon.
Such questions were addressed and answered in a number of papers by
Fenichel (1971, ’74, ’77, ’79), Hirsch, Pugh and Shub (1977) and other au-
thors; the reader is referred to the survey papers by Jones (1994), Kaper
(1999), Kaper and Jones (2001).
Consider again the autonomous system

ẋ = f(x, y) + ε · · · , x ∈ D ⊂ Rn,

εẏ = g(x, y) + ε · · · , y ∈ G ⊂ Rm.

As before y is called the fast variable, x the slow variable. The zero set
of g(x, y) is given by ȳ = φ(x) which in this autonomous case represents a
first-order approximation M0 of the n-dimensional (slow) manifold Mε. The
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flow on Mε is to a first order approximation described by ẋ = f(x, φ(x)).
We assume hyperbolicity of the approximate slow manifold; in the construc-
tions of a stable manifold we assume

Re Sp gy(x, φ(x)) ≤ −µ < 0, x ∈ D,

i.e. the eigenvalues of the linearized flow near M0, derived from the equa-
tion for y, have negative real parts only. In geometric singular perturbation
theory, for which Fenichel’s results are basic, we only assume that all real
parts of the eigenvalues are non-zero. In this case the slow manifold Mε is
normally hyperbolic.
The slow manifold being hyperbolic but unstable allows for interesting phe-
nomena. One might approach Mε for instance by a stable branch, stay for
some time near Mε, and then leave again a neighbourhood of the slow mani-
fold by an unstable branch. This produces solutions indicated as ’pulse-like’,
’multi-bump solutions’ etc. This type of exchanges of the flow near Mε, is
what one often looks for in geometric singular perturbation theory.

Existence of the slow manifold
The question whether the slow manifold Mε approximated by ȳ = φ(x) per-
sists for ε > 0 was answered by Fenichel. The main result is as follows:
If M0 is a compact manifold which is normally hyperbolic, it persists for
ε > 0, i.e. there exists for sufficiently small, positive ε a smooth mani-
fold Mε close to M0. Corresponding with the signs of the real parts of the
eigenvalues there exist stable and unstable manifolds of Mε, smooth contin-
uations of the corresponding manifolds of M0, on which the flow is fast. To
a first order approximation the fast flow is described by the boundary layer
equation

εẏ = g(x(0), y)

where the initial value is chosen outside the slow manifold, y(0) 6= φ(x(0)).
There are some differences between the cases where M0 has a boundary or
not. For details see Jones (1994), Kaper (1999) and the original papers.

The compactness property
Note that the assumption of compactness of M0 is essential for the uniquess
of the slow manifold. In many examples and applications M0, the approxi-
mation of the slow manifold obtained from the fast equation, is not bounded.
This can be remedied, admittedly in an artificial way, by applying a suitable
cut-off of the vector field far away from the domain of interest. In this way
compact domains arise which coincide locally with D and G. However, this
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may cause some problems with the uniqueness of the slow manifold. We
have for instance the following example:

Example 3.1
Consider the system

ẋ = x2, x(0) = x0 > 0,

εẏ = −y , y(0) = y0.

Putting ε = 0 produces y = 0 which corresponds with M0. We can obtain a
compact domain for x by putting l ≤ x ≤ L with l and L positive constants
independent of ε. However, the limiting behaviour of the solutions depends
on the initial condition. Integration of the phase-plane equation yields

y(x) = y0 exp(
1
εx
− 1

εx0
).

As x(t) increases (for t = 1/x0, x(t) becomes infinite) the solution for y(t)
tends to

y0 exp(− 1
εx0

).

So the solutions are for x(0) > 0 and after an initial fast transition all
exponentially close to y = 0. There are however an infinite number of
slow manifolds dependent on x0, all tunnelling into this exponentially small
neighbourhood of M0 given by y = 0.

One might wonder about the practical use of exponential closeness as such
solutions cannot be distinguished numerically. The phenomenon is impor-
tant and of practical use when there is a change of stability or in general
a bifurcation of the slow manifold. Also, exponentially close orbits may
demonstrate very different sticking phenomena; see again Verhulst (2005).

Example 3.2
As a more complicated illustration we consider the van der Pol relaxation
oscillator with parametric excitation

ẍ + x = µ(1− x2)ẋ + µc2ẋ cos2 qt

with µ À 1, c and q positive constants. We write the equation as the
autonomous system

ẍ + x = µ(1− x2)ẋ + µẋy2,

ÿ + q2y = 0
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with initial values y(0) = c, ẏ(0) = 0. Following Verhulst and Abadi (2005)
we introduce the generalized Liénard transformation (x, ẋ) → (x, z) while
putting ε = 1/µ to produce the equivalent system

εẋ = z + x− 1
3
x3 + xy2,

ż = −x− 2xyẏ,

ÿ + q2y = 0.

The approximate slow manifold M0 is given by

z = −x(1 + y2) +
1
3
x3

which corresponds with a 3-dimensional cubic cylinder parallel to the ẏ-axis
in 4-space. Note that M0 is not compact which might imply non-uniqueness.
The slow manifold is stable if 1−x2+y2 < 0 on M0, unstable if 1−x2+y2 > 0.
The possibility of stability changes invokes the presence of interesting limit
sets. Numerical experiments show that these can be (multiple) relaxation
oscillations with either a periodic or aperiodic character.

4 Tori by Bogoliubov-Mitropolsky-Hale continua-
tion

The branching off of tori is more complicated than the emergence of periodic
solutions in dynamical system theory. The emergence of tori was considered
extensively by Bogoliubov and Mitropolsky (1961) using basically continua-
tion of quasiperiodic motion under perturbations; for a summary and other
references see also Bogoliubov and Mitropolsky (1963). Another survey to-
gether with new results can be found in Hale (1969); see the references there.
A modern formulation in the more general context of bifurcation theory can
be found in Chow and Hale (1982).
We present several theorems from Hale (1969) in an adapted form; see also
Hale (1963).
Theorem 1
Consider the system S

θ̇ = ω(t, θ) + εω1(t, θ, x, y) + ε2 · · · ,

ẋ = A(θ)x + εA1(t, θ, x, y) + ε2 · · · ,

ẏ = B(θ)y + εB1(t, θ, x, y) + ε2 · · ·
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with θ ∈ Rk, x ∈ Rn, y ∈ Rm; all vector functions on the righthand side are
periodic in θ and t.
Such a system arises naturally from local perturbations of differential equa-
tions in a neighbourhood of an invariant manifold where the ’unperturbed’
system

θ̇ = ω(t, θ), ẋ = A(θ)x, ẏ = B(θ)y

is assumed to have an invariant manifold M0 given by

M0 = {(t, θ, x, y) : x = y = 0}.

We also assume for system S that

1. All vector functions on the righthand side are continuous and bounded;
the ε2 · · · terms represent vector functions which are smooth on the
domain and which can be estimated O(ε2).

2. The functions on the righthand side are Lipschitz-continuous with re-
spect to θ, the function ω(t, θ) with Lipschitz constant L.

3. The functions A1, B1, ω1 are Lipschitz-continuous with respect to x, y.

4. There exist positive constants K and α such that for any continu-
ous θ(t) the fundamental matrices of ẋ = A(θ)x, ẏ = B(θ)y can be
estimated by Ke−αt,Keαt respectively.

5. α > L (normal hyperbolicity)

then there exists an invariant manifold M of system S near M0 with Lipschitz-
continuous parametrization which is periodic in θ.

Note that although α and L are independent of ε the difference may be
small. In the applications one should take care that ε = o(α− L).
Another remark is that Hale’s results are much more general. For instance
the vector functions need not be periodic in θ but only bounded. If the vec-
tor functions are almost periodic the parametrization of M inherits almost
periodicity.
Even more importantly the perturbations εA1, εB1 in the equations for x
and y can be replaced by O(1) vector functions. However, this complicates
the conditions of the corresponding theorem. Also, to check the conditions
in these more general cases is not so easy.
We turn now to a case arising often in applications.
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5 The case of parallel flow

In a number of important applications the frequency vector ω(t, θ) of sys-
tem S is constant; this will cause the flow on M0 to be parallel. In this case
L = 0 and the fifth condition of theorem 1 is automatically satisfied.
In addition the case of parallel flow makes it easier to consider cases where
the attraction or expansion is weak:

Theorem 2
Consider the system Sw

θ̇ = ω + εω1(t, θ, x, y) + ε2 · · · ,

ẋ = εA(θ)x + εA1(t, θ, x, y) + ε2 · · · ,

ẏ = εB(θ)y + εB1(t, θ, x, y) + ε2 · · ·

with constant frequency vector ω. As before this t- and θ-periodic system
is obtained by local perturbation of an invariant manifold M0 in the system

θ̇ = ω, ẋ = εA(θ)x, ẏ = εB(θ)y

for x = y = 0. In the equations for x and y, A(θ)x and B(θ)y represent the
linearizations near (x, y) = (0, 0) so A1, B1 are o(‖x‖, ‖y‖). Assume that

1. All vector functions on the righthand side are continuous and bounded;
the ε2 · · · terms represent vector functions which are smooth on the
domain and which can be estimated O(ε2).

2. The functions on the righthand side are Lipschitz-continuous with re-
spect to θ, the function ω1 with Lipschitz constant η.

3. The functions ω1, A1, B1 are Lipschitz-continuous with respect to x, y.

4. There exist positive constants K and α such that for any continuous
θ(t) the fundamental matrices of ẋ = εA(θ)x, ẏ = εB(θ)y can be
estimated by Ke−εαt,Keεαt respectively.

5. α > η (normal hyperbolicity at higher order)

then there exists an invariant manifold M of system Sw near M0 with
Lipschitz-continuous parametrization which is periodic in θ.

To facilitate the analysis we introduce a normal form technique based on
averaging; for an introduction see Verhulst (2000).
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The frequency vector being constant in system Sw enables us to introduce
slowly varying phases by putting

θ(t) = ωt + ψ(t).

The resulting system Sw is of the form

Ẋ = εF (t, x) + ε2 · · · ,

where we have replaced (ψ, x, y) by X. The system is quasi-periodic in t.
The near-identity transformation

X(t) = z(t) + εu(t, z(t)), u(t, z(t)) =
∫ t

0
(F (t, z(t))− F0(z(t)))dt

with F0(z(t)) the average over the periods of F in t leads to the equation

ż = εF0(z) + ε2 · · · .

Note that as yet we have not introduced any approximation. Usually we
can relate theorem 2 to the equation for z which will in general - at least to
O(ε) - be much simpler than the system Sw.
We will present a few illustrative examples.

Example 5.1
Consider the system

ẍ + x = ε(2x + 2ẋ− 8
3
ẋ3 + y2x2 + ẏ2x2) + ε2R1(x, y),

ÿ + ω2y = ε(ẏ − ẏ3 + x2y2 + ẋ2y2) + ε2R2(x, y).

R1 and R2 are smooth, bounded functions. This looks like a bad case:
if ε = 0 we have a family of (nonhyperbolic) 2-tori in 4-space. We in-
troduce amplitude-angle coordinates by x = r1 cos θ1, ẋ = −r1 sin θ1, y =
r2 cosωθ2, ẏ = −ωr2 sinωθ2. The system transforms to

θ̇1 = 1− ε(2 cos2 θ1 − sin 2θ1 +
8
3
r2
1 sin3 θ1 cos θ1 +

r1r
2
2 cos3 θ1(cos2 ωθ2 + ω2 sin2 ωθ2)) + ε2 · · · ,

θ̇2 = 1 + ε(
1
2ω

sin(2ωθ2) + ωr2
2 sin3 ωθ2 cosωθ2 − r2

1r2

ω2
cos3 ωθ2) + ε2 · · · ,

ṙ1 = ε(−r1 sin 2θ1 + 2r1 sin2 θ1 − 8
3
r3
1 sin4 θ1 −

r2
1r

2
2 sin θ1 cos2 θ1(cos2 ωθ2 + ω2 sin2 ωθ2)) + ε2 · · · ,

ṙ2 = ε(r2 sin2 ωθ2 + ω2r3
2 sin4 ωθ2 − r2

1r
2
2

ω
sinωθ2 cos2 ωθ2) + ε2 · · · .
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Putting θ1 = t + ψ1, θ2 = t + ψ2 and using the near-identity transformation
introduced above but keeping - with some abuse of notation - the same
symbols we find the much simpler system

ṙ1 = εr1(1− r2
1) + ε2 · · · , ψ̇1 = −ε + ε2 · · · ,

ṙ2 = ε
r2

2
(1− 3

4
r2
2) + ε2 · · · , ψ̇2 = ε2 · · · .

The part of (x, y) = (0, 0) is played by (r1, r2) = (1, 2√
3). The averaged

(normalized) equations contain a torus in phase-space approximated by the
parametrization

xa(t) = cos(t− εt + ψ1(0)), ẋa(t) = − sin(t− εt + ψ1(0)),

ya(t) =
2
3

√
3 cos(ωt + ψ2(0)), ẏa(t) = −2ω

3

√
3 sin(ωt + ψ2(0)).

From linearization of the averaged equations it is clear that the torus is
attracting: it is normally hyperbolic with attraction rate O(ε). If the ratio
of 1 − ε and ω is rational, the torus is filled up with periodic solutions. If
the ratio is irrational we have a quasi-periodic (two-frequency) flow over
the torus. Theorem 2 tells us that in the original equations a torus exists
in an O(ε) neighbourhood of the torus found by normalization. It has the
same stability properties. The torus is two-dimensional and the timescales
of rotation are in both directions O(1).

In the next example we return to the forced van der Pol-equation from
example 2.2.

Example 5.2
Consider the equation

ẍ + x = ε(1− x2)ẋ + a cosωt

with a and ω constants. The difference with example 2.2 is that the nonlin-
earity is small and the forcing can be O(1) as ε → 0.

1. Case a = O(ε).
If ω is ε-close to 1, standard averaging leads to the existence of pe-
riodic solutions only. If ω takes different values first order averaging-
normalization is not conclusive but see the remark below.

2. Case a = O(1), ω is not ε-close to 1 (if ω is near to 1 the solutions
move away from an O(1) neighbourhood of the origin because of linear
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resonance). We introduce the transformation x, ẋ → r, ψ

x = r cos(t + ψ) +
a

1− ω2
cosωt, ẋ = −r sin(t + ψ)− aω

1− ω2
sinωt.

The resulting slowly varying system can be averaged, producing peri-
odic solutions in which various values of ω play a part. Returning to
the corresponding expressions for x and ẋ we conclude to the presence
of tori in the extended phase space.

Remark:
In some of the cases near-identity transformation leads to a slowly varying
system of the form

ṙ = ε
1
2
r(1− 1

4
r2) + ε2 · · · ,

ψ̇ = ε2 · · · .

Instead of computing higher order normal forms to establish the behaviour
of ψ we can apply slow manifold theory to conclude the existence of a slow
manifold ε-close to r = 2. In the case of a = O(1) the corresponding
solutions will be ε-close to the torus described by

x = 2 cos(t + ψ0) +
a

1− ω2
cosωt, ẋ = −2 sin(t + ψ0)− aω

1− ω2
sinωt.

6 Tori created by Neimark-Sacker bifurcation

Another important scenario to create a torus arises from the Neimark-Sacker
bifurcation. For an instructive and detailed introduction see Kuznetsov
(2004). Suppose that we have obtained an averaged equation ẋ = εf(x, a)
with dimension 3 or higher by variation of constants and subsequent aver-
aging; a is a parameter or a set of parameters. It is well-known that if this
equation contains a hyperbolic critical point, the original equation contains
a periodic solution. The first order approximation of this periodic solution
is characterized by the timescales t and εt.
Suppose now that by varying the parameter a a pair of eigenvalues of the
critical point becomes purely imaginary. For this value of a the averaged
equation undergoes a Hopf bifurcation producing a periodic solution of the
averaged equation; the typical timescale of this periodic solution is εt and
so the period will be O(1/ε). As it branches off an existing periodic solu-
tion in the original equation it will produce a torus; it is associated with
a Hopf bifurcation of the corresponding Poincaré map and the bifurcation
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has a different name: Neimark-Sacker bifurcation. The result will be a
two-dimensional torus which contains two-frequency oscillations, one on a
timescale of order 1 and the other with timescale O(1/ε).
A typical example runs as follows.

Example 6.1
A special case of a system studied by Bakri et al. (2004) is

ẍ + εκẋ + (1 + ε cos 2t)x + εxy = 0,

ÿ + εẏ + 4(1 + ε)y − εx2 = 0.

This is a system with parametric excitation and nonlinear coupling; κ is
a positive damping coefficient which is independent of ε. Away from the
coordinate planes we may use amplitude-phase variables by x = r1 cos(t +
ψ1), ẋ = −r1 sin(t+ψ1), y = r2 cos(2t+ψ2), ẏ = −2r2 sin(2t+ψ1); after first
order averaging we find, omitting the subscripts a, the system

ṙ1 = εr1(
r2

4
sin(2ψ1 − ψ2) +

1
4

sin 2ψ1 − 1
2
κ),

ψ̇1 = ε(
r2

4
cos(2ψ1 − ψ2) +

1
4

cos 2ψ1),

ṙ2 = ε
r2

2
(

r2
1

4r2
sin(2ψ1 − ψ2)− 1),

ψ̇2 =
ε

2
(− r2

1

4r2
cos(2ψ1 − ψ2) + 2).

Putting the righthand sides equal to zero produces a nontrivial critical point
corresponding with a periodic solution of the system for the amplitudes and
phases and so a quasi-periodic solution of the original coupled system in x
and y.We find for this critical point the relations

r2
1 = 4

√
5r2, cos(2ψ1−ψ2) =

2√
5
, sin(2ψ1−ψ2) =

1√
5
, r1 = 2

√
2κ +

√
5− 16κ2.

This periodic solution exists if the damping coefficient is not too large: 0 ≤
κ <

√
5

4 . Linearization of the averaged equations at the critical point while
using these relations produces the matrix

A =




0 0 r1

4
√

5
− r3

1
40

0 −κ 1
2
√

5

r2
1

80

r1

4
√

5

r2
1

2
√

5
−1

2 − r2
1

4
√

5

− 2
r1

1 4
√

5
r2
1

−1
2




.
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Another condition for the existence of the periodic solution is that the critical
point is hyperbolic, i.e. the eigenvalues of the matrix A have no real part
zero. It is possible to express the eigenvalues explicitly in terms of κ by
using a software package like MATHEMATICA. However, the expressions
are cumbersome. Hyperbolicity is the case if we start with values of κ just
below

√
5

4 = 0.559. Diminishing κ we find when κ = 0.546 that the real part
of two eigenvalues vanishes. This value corresponds with a Hopf bifurcation
producing a nonconstant periodic solution of the averaged equations. This
in its turn corresponds with a torus in the orginal equations (in x and y)
by a Neimark-Sacker bifurcation. As stated before, the result will be a
two-dimensional torus which contains two-frequency oscillations, one on a
timescale of order 1 and the other with timescale O(1/ε).

7 Breakdown and bifurcations of tori

Complementary to the emergence of tori, their breakdown is of great theo-
retical and practical interest. In particular we would like to have a general
idea of how two-dimensional invariant tori break down and how nontrivial
limit sets are created when certain parameters are varied. To obtain insight
the analysis of maps can be very helpful as the phenomena governed by
differential equations are much more implicit. We shall briefly discuss a few
seminal papers playing a part in studies of this topic. More references can
be found in these papers.
A common feature is the presence of stable and unstable periodic solutions in
p/q-resonance on a torus. Breakup can be triggered by heteroclinic tangen-
cies, arising when a parameter is varied. This leads rather quickly to strange,
chaotic behaviour. There are other scenarios producing strange behaviour
where the normal hyperbolicity of the torus decreases more gradually.

7.1 Aronson et al. (1982)

This tutorial paper is a very instructive introduction to the subject. The
analysis centres around the two-dimensional map

xn+1 = yn,

yn+1 = ayn(1− xn)

and its two parameter unfolding

(x, y) 7−→ (y + bx, ay(1− x)).
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However, apart from the technical details of this example, the general theory
is explained throughout the paper. For certain parameter values the map
with b = 0 contains a smooth invariant circle. Changing the parameter
the invariant circles grows and becomes eventually a strange attractor. A
basic question is: what happens at this parameter value and what is the
mechanism in the map dynamics to produce this transformation to chaotic
behaviour.
A key idea is that resonance occurs on the invariant circle if there is a pair
of periodic orbits, one stable and one unstable (sink and saddle). A p/q
resonance occurs if the rotation number of these periodic orbits is p/q with
p and q relative prime. The imbedding in the map with b 6= 0 helps to
understand how these resonances are generated as resonance horns arise in
parameter space; for details of this process see Kuznetsov (2004). When
the invariant manifolds of periodic orbits start crossing in homoclinic or
heteroclinic tangencies the invariant circle looses differentiability and chaotic
dynamics takes over.
This is illustrated in great detail by computer assisted proofs for this map
and its imbedding.

7.2 Afraimovich and Shil’nikov (1991)

This is a paper with stimulating ideas but with quite a few things to be
filled in by the reader. Consider a smooth dynamical system governed by
the equation ẋ = X(x, µ) where µ is a vector parameter. Assume that
the system contains a smooth attracting torus for µ = µ0 and no torus for
µ = µ1(> µ0). Assume furthermore that for µ = µ0 the torus contains
two periodic orbits, one stable and one unstable (of saddle-type with a two-
dimensional unstable manifold), reflecting the p/q-resonance. Adding some
minor assumptions and realising that breakdown of the torus starts with
nonsmoothness of the torus, there are three possibilities:

1. The stable and unstable periodic orbits vanish through a bifurcation.

2. Stable and unstable manifolds of the unstable periodic orbit intersect
tangentially to form a homoclinic orbit.

3. The stable periodic orbit looses stability.

The authors illustrate all three possibilities by the two-dimensional map

xn+1 = (xn + bµ(1 + a sin θn))ν ,

θn+1 = θn − ln(xn + bµ(1 + a sin θn))
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with 0 < xn ≤ x0, θn ∈ R, ν > 1, 0 < µ ≤ µ0, 0 < b < 1, 0 ≤ a < 1.

7.3 Broer, Simó and Tatjer (1998)

This paper studies a rich dissipative family of maps of an annulus into itself,
the so-called fattened Arnold map:

xn+1 = xn + ω + α(yn + sin xn)(mod2π),
yn+1 = β(yn + sin xn)

with real parameters ω, α, β, (xn, yn) ∈ S1 × R.
If β = 0 the circle y = 0 is invariant producing the classical Arnold family
of circle maps which models a basic scenario in mechanics. Using β as a
perturbation parameter the ’fattened’ Arnold map emerges. The Jacobian
of the map is β and the paper is mainly concerned with the dissipative case
|β| < 1.
The detailed and informative analysis is based on analytic perturbation (nor-
mal form) techniques and on numerical bifurcation methods. As the param-
eters move one obtains a number of possible transitions from classical attrac-
tors to complex and chaotic dynamics. As expected one phenomenon here
is the loss of smoothness of the invariant circle followed by its destruction.
In addition there are homoclinic bifurcations, cascades of bifurcations, ho-
moclinic and heteroclinic tangencies. Apart from ’small’ strange attractors
there exist ’large’ strange attractors which are connected with homoclinic
tangency.
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