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Abstract

In this paper we describe a one-dimensional adaptive moving mesh method and its
application to hyperbolic conservation laws from magnetohydrodynamics (MHD).
The method is robust, because it employs automatic control of mesh adaptation
when a new model is considered, without manually-set parameters. Adaptive meshes
are a common tool for increasing the accuracy and reducing computational costs
when solving time-dependent partial differential equations (PDEs). Mesh points
are moved towards locations where they are needed the most. To obtain a time-
dependent adaptive mesh, monitor functions are used to automatically ‘monitor’ the
importance of the various parts of the domain, by assigning a ‘weight’-value to each
location. Based on the equidistribution principle, all mesh points are distributed
according to their assigned weights. We use a sophisticated monitor function that
tracks both small, local phenomena as well as large shocks in the same solution.
The combination of the moving mesh method and a high-resolution finite volume
solver for hyperbolic PDEs yields a serious gain in accuracy at relatively no extra
costs. The results of several numerical experiments — including comparisons with h-
refinement — are presented, which cover many intriguing aspects typifying nonlinear
magnetofluid dynamics, with higher accuracy than often seen in similar publications.
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1 Introduction

Adaptive techniques have become common use in many solvers for partial
differential equations (PDEs) over the past decades. Finite volume methods
are often enhanced with local mesh refinement. Moving mesh techniques have
mainly been used in combination with finite element and finite difference meth-
ods in the past. We combine a high-resolution finite volume solver with a mov-
ing mesh method, further improved by a sophisticated monitor function. This
results in a robust method for solving hyperbolic systems of nonlinear PDEs:
little user input is needed, the solver automatically adapts itself to the consid-
ered problem. The method was successfully used on hyperbolic macroscopic
traffic flow models, and gas dynamics [22]. In this paper we solve a range
of problems from magnetohydrodynamics (MHD), including interesting, often
ignored, physical aspects of the solutions.

Many interesting phenomena in plasma fluid dynamics can be described within
the framework of magnetohydrodynamics (MHD). Numerical studies in plasma
flows frequently involve simulations with highly varying spatial and temporal
scales. As a consequence, numerical methods on uniform meshes may be inef-
ficient to use, since a very large number of mesh points is needed to resolve
the spatial structures, such as shocks, contact discontinuities, shear layers, or
current sheets. For the efficient study of these phenomena, we need adaptive
mesh methods which automatically track and spatially resolve all of these
structures. The problems considered here come from previous work by Tóth
et al. [21,20], Keppens [11], Torrilhon [19], and Zegeling et al. [27].

Research in adaptive methods has many aspects. Firstly, there are several
different methods. Local mesh refinement, or h-refinement, adapts the mesh
by locally adding or removing mesh points. This technique has gotten the
most attention, as the refinement is easily prescribed, and error analysis is still
carried out fairly easily. Moving mesh methods, or r-refinement, relocate mesh
points to refine the mesh where needed. Although the governing equations for
mesh adaptation are more complex, this method has distinct advantages over
h-refinement. In principle, it is easy to implement; no mesh points are added
or removed, so that administration is no issue here. In its uncoupled form,
which we use here, it can be combined with any existing PDE solver without
necessary changes. Finally, moving the mesh points to any location provides
more freedom in adaptation than inserting new points at discrete locations.

Huang et al. [8] prescribe mesh movement by a moving mesh PDE (MMPDE),
which is solved simultaneously with the physical PDEs for one-dimensional
models. Although this avoids solution interpolation, the coupled system may
be hard to solve due to differences in time scales and desired error tolerances.
For two-dimensional models the MMPDE and physical PDEs are often de-
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coupled and solved in an alternating way, as Huang and Russell [9] show.
Stockie et al. [12] also use an MMPDE-based decoupled approach for solving
one-dimensional hyperbolic systems of conservation laws. It is similarly based
on the equidistribution principle that follows from a variational formulation
of mesh energy minimization. Tang et al. [15] extend this approach to two-
dimensional domains, but use a stationary description for the mesh movement,
hence a decoupled approach by definition. Their monitor function still needs
parameterization for each new problem by hand, though. In this paper, we
take the latter approach, with an improved monitor function. Zegeling et al.
[26] have recently used a similar method for two-dimensional hydrodynamic
problems. The smoothness of mesh distribution is important for decreasing
interpolation errors in the decoupled approach. The most powerful means for
this is a good choice of monitor function. Huang has done much research on
different monitor functions [5, with Cao and Russell], monitor quality [6], and
mesh quality [7]. Error analysis quickly becomes complicated for moving mesh
methods, but Beckett and Mackenzie [1,2] have done some convergence studies
for these methods. Tang [16] recently presented an interesting overview paper
on moving mesh methods for computational fluid dynamics. Zegeling et al.
[27] also employ a moving mesh method, but it is fully coupled and solved
using the method of lines and an implicit time solver. Although their mesh
movement is fairly sophisticated, ensuring mesh-consistency and smooth mesh
movement, it still needs manually-set adaptivity parameters. Furthermore, an
artificial diffusion term is added in order to handle discontinuities in the phys-
ical solution. To avoid these artificial terms, we use a high-resolution finite
volume method with MUSCL-type flux-limiters as proposed by Van Leer [25].

The layout of this paper is as follows. In the next section we present the full
set of MHD equations and their physical meaning. In Section 3 we describe
the adaptive moving mesh method, based on the equidistribution principle,
including a conservative solution interpolation. This is followed by details on
the high-resolution finite volume method. Special attention is also given to
a more sophisticated monitor function. Numerical experiments are presented
in Section 4. Not only accuracy is considered, but also computational effi-
ciency, in comparison with uniform methods. Also, some experiments com-
pare r-refinement with h-refinement. Besides, interesting physical aspects of
MHD are studied, such as pseudo-convergence to incorrect critical solutions,
propagation of Alfvén waves, and high speed magnetosonic effects. Section 5
presents conclusions and suggestions for improvement.

2 The equations of magnetohydrodynamics

The MHD equations govern the dynamics of a charge-neutral ionized gas, or
‘plasma’. Just as the conservative Euler equations provide a continuum de-
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scription for a compressible gas, the MHD equations express the basic phys-
ical conservation laws a plasma must obey. Because plasma dynamics are
influenced by magnetic fields through the Lorentz-force, the needed additions
in going from hydrodynamic to magnetohydrodynamic behavior consist of a
vector equation for the magnetic field evolution and extra terms in the Euler
system that quantify the magnetic force and energy density.

Using the conservative variables density ρ, momentum density m ≡ ρv (with
velocity v), magnetic field B, and total energy density e, the ideal MHD
equations can be written as follows (cfr. [4], [21], [20]):

Conservation of mass:
∂ρ

∂t
+∇ ·m = 0. (1)

Conservation of momentum:

∂m

∂t
+∇ · (ρvv −BB) +∇ptot = 0. (2)

Magnetic field induction:

∂B

∂t
+∇ · (vB−Bv) = 0. (3)

Conservation of energy:

∂e

∂t
+∇ · (ev + vptot −BB · v) = 0. (4)

Hereafter, we will abstract from the above four quantities by introducing the
solution vector q(x, t), where x ≡ [x, y]T or x ≡ [x, y, z]T . In (2) and (4) the
total pressure ptot consists of both a thermal and a magnetic contribution, as
given by:

ptot = p +
B2

2
, where p = (γ − 1)(e− ρ

v2

2
− B2

2
) (5)

is the thermal pressure (B2 ≡ B · B). The adiabatic constant γ is the ratio
of specific heats of the plasma. This set of equations must be solved in con-
junction with an important condition on the magnetic field B, namely the
non-existence of magnetic ‘charge’ or monopoles. Mathematically, it is easily
demonstrated that this property can be imposed as an initial condition alone,
since

∇ ·B|t=0 = 0 =⇒ ∇ ·B|t≥0 = 0. (6)

In multi-dimensional numerical MHD, the combined spatio-temporal discretiza-
tion may not always ensure this conservation of the solenoidal character of the
vector magnetic field. Note that in our 1D applications this solenoidal property
is satisfied automatically by construction (see below).

4



2.1 Derivation of 1.5D and 1.75D models

If we restrict the MHD model (1)–(6) to variations in one spatial dimension
x, i.e. ∂q/∂y = 0, with possibly non-vanishing y-components for the vector
quantities, we obtain a 5-component PDE system in 1D, which is sometimes
referred to as ‘1.5D’. If we also include possibly non-vanishing z-components
of the vector quantities, but still keep ∂/∂z = 0 for the flux, we obtain a
7-component PDE system in 1D, which is sometimes referred to as ‘1.75D’.
This system is formally written as

∂

∂t
q +

∂

∂x
f(q) = 0, x ∈ [xL, xR], t > 0. (7)

Here, q = (ρ, m1, m2, m3, B2, B3, e)
T is the vector of conserved variables (m1,

m2 , m3 are now the x-, y- and z-components of the momentum vector and
B2 and B3 denote the y- and z-component of the magnetic induction), with
the flux-vector f = (f1, . . . , f7)

T given by

f1 = m1,

f2 =
m2

1

ρ
− B̄1

2
+ (γ − 1)e

−(γ − 1)
m2

1 + m2
2 + m2

3

2ρ
+ (2− γ)

B̄1
2
+ B2

2 + B2
3

2
,

f3 =
m1m2

ρ
− B̄1B2,

f4 =
m1m3

ρ
− B̄1B3,

f5 = B2
m1

ρ
− B̄1

m2

ρ
,

f6 = B3
m1

ρ
− B̄1

m3

ρ
,

f7 =
m1

ρ

γe− (γ − 1)
m2

1 + m2
2 + m2

3

2ρ
+ (2− γ)

B̄1
2
+ B2

2 + B2
3

2


−B̄1

(
B̄1

m1

ρ
+ B2

m2

ρ
+ B3

m3

ρ

)
. (8)

For notational convenience we do not use explicit vector notation for q and
f : only for the physical MHD quantities we do so (e.g. m and B). The first
component of the magnetic induction vector is kept at a constant value B̄1.
The vanishing divergence of the magnetic field is thereby trivially satisfied in
this model situation. The remaining set of 7 PDEs given by (7) constitutes
the physical model used for the ‘1.75D shock tube’ simulation found hereafter.
Furthermore, several 1.5D simulations are shown; these are again described by
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(7), where f4 and f6 drop out of the flux formulae, as well as all terms involving
m3 and B3. Keppens [11] also derives these two models and solves two shock
tube problems on uniform meshes.

We first indicate how this system is further manipulated and discretized to
solve alternately for the adaptive mesh with its corresponding solution.

2.2 Eigen-structure for MHD

The eigenvalues of the flux Jacobian fq ≡ ∂f/∂q represent the speeds at which
the various waves of an MHD Riemann solution move. In 1.5D these are an
entropy wave (v1), two fast (v1 ± cf ) and two slow (v1 ± cs) magnetosonic
waves, where

c2
f,s =

1

2

γp + B2

ρ
±

√√√√(γp + B2

ρ

)2

− 4
γp

ρ

B̄1
2

ρ

 . (9)

For the full system of MHD equations, i.e. 1.75D, two additional eigenvalues
represent Alfvén waves with speed v1± ca, where ca = B1/

√
ρ. In general, the

following ordering holds: cs ≤ ca ≤ cf . Figure 1 shows the wave structure of a
1.75D MHD Riemann problem.

x

qR

v + cf

v + ca

v + cs

v

t

v − cs

v − ca

v − cf

qL

Fig. 1. Wave structure of a 1.75D MHD Riemann problem.
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3 The moving mesh method

This section describes the moving mesh finite volume approach as introduced
by Tang et al. [15]. For increased robustness, we use a more sophisticated
monitor function, originally proposed by Beckett et al. [3]. This combination
yields a powerful solver that tracks and resolves both small, local and large
solution gradients automatically. No parameter adaptation by hand using prior
knowledge on the eventual shape of the solution is necessary. Hence, the solver
can be quickly applied to problems from entirely different application areas.

The numerical algorithm is shown below. The symbol Qj+1/2 represents the
numerical solution for q, as will be introduced in (11). Each time step consists
of a mesh moving step and a physical PDE solving step. The next two sections
describe these separate steps. Finally, Section 3.3 deals with monitor functions
in more detail.

Algorithm 1 mmfvsolve – 1D moving mesh finite volume PDE solver.

Generate an initial uniform mesh: x0
j = xL + j · xR−xL

N
, j = 0, . . . , N .

Compute initial values Q0
j+1/2 based on cell average of q(x, 0).

while tn < T do
repeat

ν = 0; x
[0]
j = xn

j ; Q
[0]
j+1/2 = Qn

j+1/2, j = 0, . . . , N .

Move grid
{
x

[ν]
j

}
to
{
x

[ν+1]
j

}
, using a Gauss-Seidel iteration (12).

Compute the solution
{
Q

[ν+1]
j+1/2

}
on the new mesh, using (13).

until ν ≥ νmax or
∥∥∥x[ν+1] − x[ν]

∥∥∥ ≤ ε

Compute Qn+1 using high-resolution finite volumes (14).
end while

3.1 Mesh adaptation in 1D

The solution of the MHD equations, denoted by q ∈ Rm, is defined on the
physical domain Ωp ≡ [xL, xR] ⊂ R with coordinate x. Introducing a fixed
computational domain Ωc ≡ [0, 1] ⊂ R, with coordinate ξ, a coordinate trans-
formation, or one-to-one mesh map, is defined by:

x = x(ξ), ξ ∈ Ωc,

or its inverse
ξ = ξ(x), x ∈ Ωp.

In a variational approach, finding the most appropriate mesh map x(ξ) for
some solution profile is equivalent to finding a ξ that minimizes a mesh energy
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Qj+ 1

2

x0x
−1x

−2

xRxL

xj xj+1 xN xN+1 xN+2

Fig. 2. The discretized spatial domain with ‘beyond-boundary’-points.

functional E(ξ). A simple, but effective, mesh energy is:

E(ξ) =
1

2

∫
Ωp

ξ2
x

1

ω
dx,

where ω > 0 is a monitor function, which will be considered in more detail in
Section 3.3. In general, ω is defined in terms of spatial derivatives of q. In a
variational formulation (cf. [17]), minimization of the mesh energy yields the
Euler-Lagrange equation: (

1

ω
ξx

)
x

= 0.

This is equivalent to the equidistribution principle in 1D, ωxξ = constant, or:

(ωxξ)ξ = 0. (10)

Now that the adaptive mesh is implicitly prescribed, a numerical algorithm
can be set up, that determines the new mesh and updates the solution on it.

Domain discretization To facilitate differential operators with stencils up
to size 5, a domain discretization as depicted in Figure 2 is used. The domain
Ωp ≡ [xL, xR] is discretized using N +1 mesh points, with two additional mesh
points on both sides outside Ωp. The computational domain Ωc is discretized
with N + 1 uniform coordinates ξj = j/N (0 ≤ j ≤ N).

As the finite volume solver uses cell averaged solution values, the discrete
solution Qj+1/2 is defined on the cell center:

Qj+ 1
2
≈ 1

∆xj+1/2

∫ xj+1

xj

q(x) dx, 0 ≤ j ≤ N − 1, (11)

where the local cell size, or mesh width is given by

∆xj+1/2 ≡ xj+1 − xj.

Mesh redistribution For every time t > 0, the new mesh should satisfy
the redistribution equation (10). Using central differences for (xξ)j+1/2, and
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inserting the current solution and monitor values yields a linear system in
[x1, . . . , xN−1]

T , which is solved with a Gauss-Seidel (GS) iteration:

x
[ν+1]
j =

ω
(
u

[ν]
j−1/2

)
x

[ν+1]
j−1 + ω

(
u

[ν]
j+1/2

)
x

[ν]
j+1

ω
(
u

[ν]
j−1/2

)
+ ω

(
u

[ν]
j+1/2

) , (12)

where x
[ν+1]
j (ν = 0, 1, . . .) denotes the updated mesh point. Typically a mere

three to five steps are performed before the mesh adaptation is considered ap-
propriate (νmax = 3 to 5, ε = 10−6). In most cases the νmax-bound is reached
before the ε-bound. Each mesh moving step also involves a solution interpo-
lation, as described hereafter. The small number of GS steps keeps the costs
of this interpolation low. Many, more advanced solvers exist, but accuracy of
mesh movement is not the most critical aspect here. Tang et al. give proof [15]
of the preservation of monotonic order of x[ν]:

x
[ν]
j+1 > x

[ν]
j =⇒ x

[ν+1]
j+1 > x

[ν+1]
j , 0 ≤ j ≤ N,

or, equivalently: xξ is strictly monotonically increasing. This is desirable, since
otherwise mesh points might collapse and solution gradients could blow up.

Solution updating on the new mesh In each redistribution step, mesh
points x are moved to a new location x̃. Also, the solution Q needs to be
updated on the new mesh, yielding Q̃. A conservative interpolation technique
is used, to maintain physically correct solutions. Tang et al. [15] introduce a
conservative interpolation technique.

Assuming that the difference c(x) between the old mesh x and new mesh
x̃ ≡ x − c(x) is small, using a perturbation method eventually yields the
interpolation relation:

Q
[ν+1]
j+1/2 =

(
x

[ν]
j+1 − x

[ν]
j

)
Q

[ν]
j+1/2 −

(
(cQ)[ν]

j+1 − (cQ)[ν]
j

)
x

[ν+1]
j+1 − x

[ν+1]
j

, (13)

where the upwinding (cf. Van Leer [23, Eq. (12)]) numerical fluxes are approx-
imated by:

(cQ)j =
cj

2

(
Q+

j + Q−
j

)
− |cj|

2

(
Q+

j −Q−
j

)
.

This method uses the ‘wave speed’ c
[ν]
j = x

[ν]
j − x

[ν+1]
j , and Q+

j and Q−
j , which

approximate Qj at a cell edge, are defined by (18). The interpolation relation
(13) is in a conservative flux-differencing form, hence the interpolation satisfies
the following conservation property:∑

j

∆x̃j+ 1
2
Q̃j+ 1

2
=
∑
j

∆xj+ 1
2
Qj+ 1

2
.
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The updating of the solution is preceded by a single mesh redistribution step;
the combination of the two forms the body of the GS iteration.

3.2 Finite volume solver for physical PDEs

On the redistributed mesh, the physical PDEs can be solved by any PDE
solver that accepts nonuniform discretizations. We use a second order finite
volume method. In the following, the mesh at time tn is given by xn := x[ν+1].

One-dimensional hyperbolic systems of conservation laws are described by the
PDE system in (7). Integrating the PDE over the control volume [tn, tn+1〉 ×[
xn

j , x
n
j+1

]
leads to the following explicit finite volume method (we improve the

time integration in (20)):

Qn+1
j+1/2 = Qn

j+ 1
2
− tn+1 − tn

xn
j+1 − xn

j

(
F n

j+1 − F n
j

)
(14)

=: Qn
j+ 1

2
+ ∆tn Lj+ 1

2
(Qn), (15)

where the cell average Qn+1
j+1/2 is defined in (11) and F n

j is some numerical flux
satisfying

F n
j = F

(
Qn,−

j , Qn,+
j

)
, F (Q, Q) = f(Q). (16)

We use a local Lax-Friedrichs (LF) flux

F (Qa, Qb) =
1

2

[
f(Qa) + f(Qb)− max

Q∈{Qa,Qb}
{|fq|}(Qb −Qa)

]
, (17)

where the largest absolute eigenvalues of the Jacobian fq ≡ ∂f/∂q are used.
Local LF is less diffusive than normal LF, since it locally limits the numerical
viscosity instead of having a uniform viscosity on the entire domain.

To determine flux values at cell boundaries, the solution values Qj are approx-
imated using values from the cell centers at both the left and right side. In
(16), Qn,±

j are defined using the initial reconstruction technique:

Qn,±
j = Qj±1/2 +

1

2

(
xn

j − xn
j±1

)
S̃j±1/2, (18)

where S̃j+1/2 is an approximation of the slope qx at xn
j+1/2, defined by:

S̃j+1/2 =
(
sign

(
S̃+

j+1/2

)
+ sign

(
S̃−

j+1/2

)) ∣∣∣S̃+
j+1/2S̃

−
j+1/2

∣∣∣∣∣∣S̃+
j+1/2

∣∣∣+ ∣∣∣S̃−
j+1/2

∣∣∣ , (19)
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with

S̃+
j+1/2 =

Qn
j+3/2 −Qn

j+1/2

xn
j+3/2 − xn

j+1/2

, S̃−
j+1/2 =

Qn
j+1/2 −Qn

j−1/2

xn
j+1/2 − xn

j−1/2

.

The above is a MUSCL-type method, where the slope approximation (19) uses
a monotonicity preserving slope limiter as formulated by Van Leer [24, Eq.
(67)].

To obtain a higher accuracy in the time range, the standard one-step finite
volume formulation (15) is replaced by a second-order Runge-Kutta scheme:

Q∗
j+1/2 = Qn

j+ 1
2

+ ∆tn Lj+ 1
2
(Qn),

Qn+1
j+1/2 =

1

2

(
Qn

j+ 1
2

+ Q∗
j+ 1

2
+ ∆tn Lj+ 1

2
(Q∗)

)
.

(20)

In a method with changing mesh widths, the stability criterion for the time
step is extra important. The standard CFL limit reads∣∣∣∣∣fq∆t

∆x

∣∣∣∣∣ ≤ 1, ∀∆t, ∆x, eigenvalues of fq. (21)

To enforce higher accuracy, the Courant number will here be limited by a
parameter C, thereby limiting the time step to:

∆tn ≤ C min
j

∆xj+1/2∣∣∣fq(Qn
j+1/2)

∣∣∣ , (22)

where 0 < C ≤ 1. Notice how we determine the limit on the time step locally,
instead of using, e.g., ∆tn ≤ minj ∆xj+1/2/ maxj |fq(Q

n
j+1/2)|.

3.3 A sophisticated monitor function

An often seen, most basic choice for controlling adaptivity is the arc length-
type monitor function:

ω(q) =
√

1 + α(∂q/∂x)2, (23)

where the adaptivity parameter α controls the amount of adaptivity. The
value 1 is set as floor on the monitor function to prevent all points from con-
centrating in just the steep parts of the solution. This type of monitor has
two problems. Firstly, α is problem dependent; a problem from gas dynamics
might require an α of an entirely different order than a problem from hyper-
bolic macroscopic traffic flow models. Secondly, α is a constant, whereas the
solution profile might change significantly through time. The chosen α based
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on the solution at the initial time may be far from optimal at some point of
time t > 0.

From now on we will use the term ‘critical’ for parts of the domain where
refinement is especially necessary. For the monitor function (23), ‘critical’ is
equivalent to ‘steep’, because of the first-order derivative. In general, higher
order derivatives may be used as well.

To overcome the before-mentioned disadvantages, Beckett and Mackenzie [1]
introduce a more sophisticated monitor function, which we schematically de-
fine as:

ω(q) = α(q) + φ(q).

It has a solution dependent floor value α(q), where α(q) is defined as an average
value of some function φ(q). Most often, φ will contain solution gradients.
Huang [6] generalizes this monitor function with a parameter β that controls
the ratio of points in critical parts. Here, we furthermore generalize to PDE
systems, i.e. when q has m > 1 components. We define the monitor function
ω(q) ∈ (Ωp × R≥0 → Rm)→ R>0 as:

ω(q) =
m∑

p=1

(1− β)αp(q) + β

∣∣∣∣∣∂qp

∂ξ

∣∣∣∣∣
1/2
 , (24)

where

αp(q) =
∫
Ωc

∣∣∣∣∣∂qp

∂ξ

∣∣∣∣∣
1/2

dξ. (25)

The critical regions are now identified by the computational derivative ∂q/∂ξ,
which is smoother than the physical derivative ∂q/∂x. The solution dependent
α(q) averages this derivative for each component qp separately. Finally, the m
monitor values for all components are summed. Although β is still a user-
defined parameter, we found β = 0.8 a suitable value for a range of different
problems and keep it fixed at that for all numerical experiments in the next
section.

Following the approach of Huang [6], it can be shown that for monitor (24),
β is indeed the ratio of points in critical parts:

β =

∫
Ωp

βφ dx∫
Ωp

(1− β)〈φ〉+ βφ dx
, (26)

where 〈φ〉 is the averaged φ, i.e. α(q). Hence, for our fixed choice of β = 0.8,
approximately 80% of the mesh points is positioned in critical parts of the
domain.

Another technique to prevent the mesh points from being moved too brusquely,
when some local gradient changes rapidly, is to smoothen the monitor function.
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This is done by applying a low-pass filter, possibly multiple times:

ωsmooth
j+1/2 ←−

1

4

(
ωj+ 3

2
+ 2ωj+1/2 + ωj−1/2

)
, (27)

where ωj+1/2 = ω
(
Qj+1/2

)
. Even with the sophisticated monitor (24) we found

a single application of this smoothing operator to be beneficial and sufficient.

4 Numerical experiments

The moving mesh method is now used on a selection of problems from magne-
tohydrodynamics. Although still in one spatial dimension, these problems have
five (m = 5) or even seven (m = 7) model equations, and consequently ex-
hibit a range of shocks, rarefaction waves and contact discontinuities (at most
m). Some problems were also used by Zegeling and Keppens [27] for testing
their adaptive method of lines approach, which is a fully-coupled moving mesh
method.

The numerical results are compared to a reference solution. Solutions to the
shock tube problems (Sections 4.1, 4.2 and 4.3) were obtained with the exact
Riemann solver by Torrilhon [18]. The shear Alfvén problem (Section 4.4) is
compared to a 2500 points adaptive solution. For all problems, solutions by
the widely-used Versatile Advection Code [14] (VAC, see http://www.phys.

uu.nl/~toth) are also considered.

A discrete L1 norm is used for an error measure on adaptive meshes:

EL1 =
N∑

j=1

∆xj

∣∣∣Qj+1/2 − q(xj+1/2)
∣∣∣ , (28)

which is an approximation to the area between the numerical and exact so-
lution profile. Note that E is still a vector in Rm, error measures may later
pick out single components from the solution, e.g. density, or sum them. In
addition to observing the numerical errors (28), we have also checked some
physical properties of the computed solution, such as conservation and posi-
tivity of solution components.

Most problems have homogeneous Neumann boundary conditions, unless stated
otherwise. We expand solution values to the two ghost cells on the left and
right by copying the first value inside the domain (i.e. Q−3/2 = Q−1/2 = Q1/2

at the left). All experiments keep the CFL number at 0.5 for increased ac-
curacy, although values up to 1.2 did not result in instability yet. We used a
Pentium M 1.8GHz notebook for all experiments.
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4.1 MHD shock tube in 1.5D: computational efficiency

One-dimensional shock tube problems are Riemann problems, where an imag-
inary tube contains plasmas in two different states, separated by a diaphragm.
At t = 0 the diaphragm opens and the left and right state start to interact. In
hydrodynamics, Sod’s shock tube is the best known example problem. Here,
we consider the classical MHD shock tube in 1.5D, initially described by Brio
and Wu [4], which now is widely considered a benchmark problem for MHD
simulations.

The problem is set up in the domain [0, 1], with the discontinuity at x = 0.5.
We simulate for times t ∈ [0, 0.1]. The plasma is initially at rest (m = 0),
with γ = 2 and B̄1 = 0.75. The problem is co-planar, i.e. B2,L = −B2,R. The
difference in density and pressure between the two states is: ρL = 8ρR = 1,
and pL = 10pR = 1. In conservation form, the initial conditions are:

[ρ, m1, m2, B2, e]L = [ 1, 0, 0, 1, 1.78125], if x ≤ 0.5,

[ρ, m1, m2, B2, e]R = [0.125, 0, 0, −1, 0.88125], if x > 0.5,
(29)

where subscripts L and R denote the left and right state. Homogeneous Neu-
mann boundary conditions are used for all components.

4.1.1 Numerical results

First, we compare our moving mesh method to the same method with a uni-
form mesh. Also, a finite volume solver from the VAC package is considered;
we use it with a similar TVD Lax-Friedrichs flux and Van Leer flux limiter
for a fair comparison. We sum all five components of EL1 to study the overal
error. Figure 3 shows the density and v1 component of the velocity on the
first row. The moving mesh and uniform solutions have N = 250 mesh points,
and the uniform VAC solution has N = 1500 (both take equal running time
approximately). The bottom left diagram focuses on the middle three waves.
The uniform solution is quite diffusive, a known property of Lax-Friedrichs-
type methods. VAC with 1500 points has a much higher resolution, especially
at the compound wave. Our moving mesh result is slightly more accurate for
all shocks. Its overall error is 9.1 ·10−3, and the VAC result has an overall error
of 1.3 · 10−2. The top right diagram shows the v1 component of the velocity.
It is very accurate and does not suffer from the dispersive effects observed by
Zegeling and Keppens [27, Fig. 2]. Finally, the bottom right diagram shows
the mesh movement through time. Note how the rightmost fast rarefaction
fan is also properly detected.
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Fig. 3. Solutions to the Brio and Wu problem.
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Computational efficiency The increased accuracy comes at a price: the
mesh movement and conservative interpolation take about 50% of the total
running time. The amount of mesh points needed is seriously smaller, though,
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so the moving mesh method should be more efficient on the whole. To test
this, the Brio and Wu problem was solved with N = 250, 500, 1000, 2000,
4000, 6000, 8000, 12,000, 24,000, and 48,000. The error was determined using
(28) and summing all five components, as we are interested in overall accuracy
here.

The diagram in Figure 4 sets out these errors on the horizontal axis and the
running time on the vertical axis. The moving mesh method is used with
monitor (24), and twice with the arc length-type monitor (α = 1 and 10).
Since VAC programs are in FORTRAN and our method runs in MATLAB,
the VAC timings are normalized using

tVAC,norm = tVAC · tunif,N=Nnorm/tVAC,N=Nnorm ,

where we normalized with the Nnorm = 8000 measurements. The uniform
lines for MATLAB and VAC now almost coincide for all N , which justifies
the normalization. The arc length runs are never efficient enough to beat uni-
form solutions. With the advanced monitor function, the moving mesh method
becomes a lot more efficient. The gain factor in running time, compared to
uniform runs, is approximately 3. A possible improvement could be to adapt
the mesh every k > 1 time steps. This will reduce the mesh movement and
interpolation costs. In their study of efficiency of h-refinement, Keppens et
al. have an average of 20% additional costs for mesh adaptation in 1D [10].
Also note how for the same amount of points (e.g. N = 500) the obtained
accuracy differs (by almost a factor 10 between adaptive and uniform runs).
When computer memory is an issue, adaptive methods can still compute ac-
curate solutions with relatively small discrete solution vectors. This becomes
a definite advantage in higher dimensional simulations.

r-Refinement vs. h-refinement In this research we perform mesh adap-
tation by points movement (r-refinement). An alternative is local mesh refine-
ment (h-refinement), where mesh cells are split into smaller cells or merged
again. An adaptive version of the previously used VAC package exists: AMR-
VAC [10]. It uses L mesh levels, where level 1 is the initial uniform mesh. We
used AMRVAC with a refinement ratio of 2 on each level (i.e. splitting a cell
into two equal pieces), hence the maximal mesh refinement is 2L−1.

The advantage of h-refinement is its simplicity. The disadvantage is that the
eventual number of mesh points is unknown, which can lead to unexpectedly
long running times. Besides, good results require proper knowledge of the
parameters by which the user controls refinement (initial mesh size, number
of refinement levels, refinement ratios, and the tolerance level for deciding on
local refinement). Our method is virtually free of user-defined parameters and
is problem independent. For proper choices of refinement levels and tolerance,
AMRVAC also produces good results.
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We ran the Brio and Wu problem (29) again. Figure 5 shows the AMRVAC
results. The left diagram shows the density, notice how all shocks are repre-
sented properly on the maximal refinement level. Also, both rarefaction waves
are properly detected and refined. We used Ninitial = 100 and six mesh levels,
with tolerance εtol = 0.002. All solution components are used equally in the
error estimate for deciding on local refinement. The final mesh contains 314
mesh points and has an overall error of 1.4 ·10−2. Running time is 5.1 seconds,
which would roughly scale to 35 seconds in MATLAB. Our N = 250 result
reaches a smaller error in 16 seconds.

The right diagram in Figure 5 compares three AMRVAC results with our
N = 250 result. The smallest mesh cell in our experiment is 13 times smaller
than in the original uniform mesh. This can be compared to five refinement
levels (25−1 = 16). The biggest mesh cells are between two and five times
larger than the initial uniform cells. As AMRVAC does not coarsen its initial
mesh, we start AMRVAC also with smaller mesh sizes (N = 50 and 100). The
diagram also shows the final number of points; only for N = 50 this is less
than 250. Table 1 summarizes the results and lists the overall errors.

Table 1
Brio and Wu problem solved with r- and h-refinement.

method initial N L εtol final N running time
(MATLAB
equivalent)

Overall error

MMFV 250 – – 250 16.5 (16.5) 0.0091

AMRVAC:
TVDLF,
Van Leer
limiter

50 6 0.005 222 2.4 (16.5) 0.0254

100 6 0.002 314 5.1 (35.2) 0.0135

250 5 0.0005 484 7.2 (49.7) 0.0102

AMRVAC contains more powerful methods as well: MUSCL-type solvers that
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Fig. 6. Solution to Keppens’ 1.75D shock tube problem. Left: density and v3 com-
ponent of the velocity. Right: mesh history.

use problem-specific Riemann solvers, and more sophisticated limiters. We
used TVDLF with a Van Leer limiter for an equal comparison with our solver.

4.2 MHD shock tube in 1.75D: physical energy loss

The 1.5D Brio and Wu shock tube of the previous section can be extended to
1.75D. Keppens [11] describes a problem where all seven MHD waves show up.
The problem is set up in the domain [0, 1], with the discontinuity at x = 0.35.
We simulate for times t ∈ [0, 0.08]. The plasma has γ = 5/3 and B̄1 = 1. In
primitive form, the initial conditions are:

[ρ, v1, v2, v3, B2, B3, p]L = [0.5, 0, 1, 0.1, 2.5, 0, 0.1], if x ≤ 0.35,

[ρ, v1, v2, v3, B2, B3, p]R = [0.1, 0, 0, 0, 2, 0, 0], if x > 0.35.
(30)

4.2.1 Numerical results

We use N = 250 mesh points again. The left diagram in Figure 6 shows the
density and the v3 component of the velocity. Note how the Alfvén signals do
not change the density. Similarly, the contact discontinuity, the fast rarefaction
and the fast shock are not reflected in v3. Still, the monitor is based on all
solution components. Indeed, the right diagram in Figure 6 shows that the
mesh movement captures all seven structures in a balanced way. The seven
waves are directly related to the eigen-structure of the 1.75D MHD system,
as depicted in Figure 1.

Throughout rarefaction fans, the entropy s = cv log(p/ργ) should remain con-
stant. We have verified that this is indeed the case here. Also, for increasing
N , the second-order accuracy of the finite volume solver in smooth regions
was confirmed.
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Fig. 7. Solution to the almost co-planar problem (31) with θ = 3. The adaptive
solution uses N = 250 mesh points, and suffers from pseudo-convergence towards
an incorrect c-solution.

A final physical check here is the conservation of solution components. Mass
conservation is satisfied, but energy conservation is not. Between t = 0 and
t = 0.08, a constant decrease of energy yields a total loss of 0.2. This is exactly
right though: at the left boundary the only nonzero part of the energy flux
(8) is B̄1B2v2 = 2.5, whereas at the right boundary it is zero. Integrated over
time, this should indeed cause a total energy loss of 0.08 · 2.5 = 0.2.

4.3 Regular and critical solutions

We now consider a more general 1.75D shock tube problem described by Tor-
rilhon [19] to investigate multiple possible solutions. The problem is set up
in the domain x ∈ [−1, 1.5] with the discontinuity at x = 0. We simulate for
times t ∈ [0, 0.4]. In primitive form, the initial conditions are:

[ρ, v1, v2, v3, B2, B3, p]L = [ 1, 0, 0, 0, 1, 0, 1], if x ≤ 0,

[ρ, v1, v2, v3, B2, B3, p]R = [0.2, 0, 0, 0, cos θ, sin θ, 0.2], if x > 0.
(31)

The problem is non-planar if the angle θ between the transversal parts (i.e.
[B2, B3]

T ) of BL and BR is not a multiple of π. Torrilhon describes how θ
affects the possibility of multiple solutions. Regular r-solutions consist only of
shocks or contact discontinuities, whereas critical c-solutions can also contain
non-regular waves, such as compound waves. For critical choices of θ, both
an r- and c-solution are analytically correct simultaneously; θ = π is such
a choice. In the Brio and Wu example indeed the irregular compound wave
from the c-solution showed up. It depends on the amount of numerical diffusion
whether a PDE solver will converge to the r-solution.
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Fig. 8. Convergence to correct solution for the almost co-planar problem (31, with
θ = 3).

4.3.1 Numerical results

We now consider the almost co-planar case θ = 3. Analytically, this has
only one r-solution. However, the numerical solution is attracted towards the
nearby critical solution for θ = π. Figure 7 shows the density and the B2 com-
ponent of the magnetic field. The solutions resemble the one to the Brio and
Wu problem (a c-solution), but are clearly different from the correct r-solution
here.

Increasing the number of mesh points results in smaller mesh cells, hence less
numerical diffusion. We study, for increasing N , the convergence of our numer-
ical solution towards the correct r-solution, just as Torrilhon [19, Sec. 4.2.1]
does. Figure 8 shows the density and the B2 component of the magnetic field
at [−0.35,−0.1] for N up to 2500. The dashed line represents the co-planar c-
solution to which the N = 100 solution clearly is attracted. For larger values of
N , the solutions converge towards the solid black line of the correct r-solution.
At N = 1000 the solution is about as good as the uniform N = 20, 000 solution
by Torrilhon: a considerable improvement.

4.4 Shear Alfvén waves in 1.5D

This test problem was described by Stone and Norman [13] and also used by
Tóth and Odstrčil [21] for their evaluation of different discretization schemes.
A homogeneous, uniformly magnetized plasma state is perturbed with a lo-
calized velocity pulse transverse (v2 := (m2/ρ) 6= 0) to the horizontal (x-
direction) magnetic field. This evolves into two oppositely traveling Alfvén
waves that have associated v2 := m2/ρ and B2 perturbations.

The problem is set up in the domain x ∈ [0, 3], with the velocity pulse on
x ∈ [1, 2]. We simulate for times t ∈ [0, 0.8]. The plasma has an adiabatic
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Fig. 9. Moving mesh solution to shear Alfvén problem at t = 0.8, with N = 250
mesh points. Left: Transverse component B2 of magnetic field. Right: mesh history.

constant γ = 1.4, and B̄1 = 1. In conservation form, the initial conditions are:

[ρ, m1, m2, B2, e] = [1, 0, 10−3, 0, 0.5000005025], for x ∈ [1, 2],

[ρ, m1, m2, B2, e] = [1, 0, 0, 0, 0.5000000025], elsewhere,
(32)

where the difference in total energy e is only caused by the difference in v2.
In primitive form, all quantities but v2 are constant. Homogeneous Neumann
boundary conditions are used for all components.

When considering linear effects, only v2 and B2 will be perturbed, and all other
primitive quantities should remain constant. Quadratic terms in the flux for
m1, however, cause nonlinear effects in the density and energy. Furthermore,
thermal pressure should always be positive.

4.4.1 Numerical experiments

Figure 9 shows the B2 component of the magnetic induction at t = 0.8 from
both the adaptive mesh solution and the reference solution. In the right di-
agram, the mesh history is shown. Again, the N = 250 adaptive solution
compares favorably with the 1000 point VAC solution. Analytic computation
of the exact solution is more complicated than with the shock tube problems,
because of the interacting right- and left-going waves. An N = 2500 adaptive
solution shows the sharp profile here.

The mesh history reveals that some intermediate structures were captured
too, although those are not in the B2 (nor v2) component. A closer look at
the almost zero momentum shows levels slightly off from 0. These are caused
by the nonlinear terms in the m1 flux. The left diagram in Figure 10 shows
multiple levels, instead of a constant value of 0. Not only do the physical
equations justify these levels; changing the number of mesh points to 100 or
1000 results in the same levels. Furthermore, when changing the initial velocity
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Fig. 10. Nonlinear effects in the shear Alfvén problem. Left: Nonlinear effects in m1.
Right: Local errors in density

perturbation from 10−3 to 10−6 changes the momentum offset from O(10−7)
to O(10−13); clearly a quadratic effect.

The right diagram in Figure 10 shows the absolute, local errors in the density
for the N = 250 solution, obtained by subtracting the 2500 points reference
solution from it. At x = 1 and x = 2, local errors are the largest, at 10−4.
Elsewhere, errors are very small, O(10−8), compared to VAC (O(10−3)) and
the adaptive method of lines (O(10−6), cf. Zegeling and Keppens [27, Fig. 4]).

4.5 Oscillating plasma sheet in 1.5D: fast wave effects

To investigate the necessity of an implicit solver, Tóth et al. [20] set up a
problem that leads to a very strict CFL limit, i.e. very small time steps. A
plasma sheet is surrounded by a vacuum which is modeled by a low density,
low pressure plasma. At the left and right boundaries are perfectly conducting
walls with reflective boundary conditions.

The problem is set up on the domain x ∈ [0, 1], with the plasma sheet on
x ∈ [0.45, 0.55]. We simulate for times t ∈ [0, 2]. The plasma has γ = 1.4, and
B̄1 = 0. In primitive form, the initial conditions are:

[ρ, m1, m2, B2, p] =


[10−3, 0, 0, 1.1, 10−4], for x ∈ [0, 0.45],

[ 1, 0, 0, 0.6, 0.3201], for x ∈ [0.45, 0.55],

[10−3, 0, 0, 1.0, 10−4], for x ∈ [0.55, 1].

(33)

In the plasma sheet, the total pressure ptot = p + B2/2 = 0.5001 is in balance
with the pressure in the ‘vacuum’ at the right, and is about 10% less than in
the ‘vacuum’ at the left. Therefore the sheet will start to move rightward until
the changing pressure imbalance reverses the movement leftward. Because of
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conservation of magnetic flux in the left and right ‘vacuum’, this will result in
an ongoing oscillation of the sheet.

A reflective wall means zero flux for all components except for the ones or-
thogonal to the boundary, hence only m1 is nonzero here. The zero fluxes can
not be obtained by setting the values in the ghost cells outside the domain
to zero. As fluxes are computed at cell edges, and solution values are set on
cell centers, interpolation will yield slightly nonzero flux values on the bound-
aries. Instead, we make the m1 values asymmetric around the two boundaries
(i.e. Q−j−1/2 = −Qj+1/2 at the left, see also Figure 2), and impose an exactly
zero flux for all but the first momentum equation on the two boundaries (i.e.
F0 = FN = 0, except for the second component of the flux vector F). Now,
total mass, magnetic field and energy are conserved numerically up to machine
precision.

4.5.1 Numerical experiments

We first look at the slow oscillation that should set in. The oscillating sheet
can be approximated by a point mass with total mass M = 0.1 at distance
L0 = 0.5 from the walls with some equilibrium value B0 for the magnetic field.
The point mass oscillates around this equilibrium, driven by the difference in
magnetic pressure between the left and right half. By conservation of magnetic
flux (3), the total magnetic flux in the equilibrium and at an extremal position
are equal:

BL(L0 + ∆L) = (B0 −∆B)(L0 + ∆L) = B0L0,

BR(L0 −∆L) = (B0 + ∆B)(L0 −∆L) = B0L0.

A linear approximation gives: ∆B/B0 ≈ ∆L/L0. Describing the oscillation as
x(t) = L0+∆L sin(ωt), and differentiating twice gives x′′(t) = −∆Lω2 sin(ωt).
Inserting this into F = Mx′′ for the rightmost extremum gives: −M∆L =
B2

L/2 − B2
R/2 = −2B2

0/L0∆L. The oscillation is now characterized by its
frequency and amplitude:

ω ≈
√

2B2
0

ML0

, and ∆L ≈ (∆B/B0)L0.

We estimate B0 ≈ 0.5 ·1.1+0.5 ·1 = 1.05 and ∆B ≈ 0.1. This yields ω ≈ 6.64,
i.e. the period T ≈ 0.946. The maximum of the total momentum Mv1 is
Mω∆L ≈ 0.158. Our numerical experiments yield a period of T = 0.942
and a momentum amplitude of 0.15. This is quite accurate, considering the
simplistic approximation sketched above.

A simulation up to t = 2 with N = 250 mesh points takes about 25000 time
steps, and only 220 seconds to run, with the CFL number limited to 0.5.
The right diagram in Figure 11 clearly shows how the adaptive mesh captures
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Fig. 11. Oscillating plasma sheet. Left: density (solid line) and total pressure (dashed
line) at t = 1. Right: mesh history over t ∈ [0, 2].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0  

0.2

0.4

0.6

0.8

1  

x

ρ

0.45

0.5

0.55

0.6

0.65

p to
t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

x

t

Fig. 12. Oscillating plasma sheet, initial details. Left: density (solid line) and total
pressure (dashed line) at t = 0.1. Right: mesh history over t ∈ [0, 0.15].

the oscillation. The left diagram shows the solution profiles of the density ρ
and total pressure ptot at t = 1. The oscillation is driven by the imbalance
in magnetic (and hence total) pressure. In the diagram the sheet is moving
rightward, because of high pressure at the left. The solution profile is much
less diffused than in the results by Tóth et al. [20, Fig. 3] and Zegeling et al.
[27, Fig. 5].

We now focus on fast waves in the solution and simulate for early times t ∈
[0, 0.15]. The right diagram in Figure 12 shows the mesh history in more detail
for early times. Within the sheet, additional waves are tracked repeatedly.
They are initiated by a wave that continuously moves through the ‘vacuum’
between the left wall and the left edge of the sheet; it touches the sheet for
the first time at t ≈ 0.026. The left diagram again shows the density and total
pressure, for t = 0.1. Both show ‘physical staircasing’ on top of their profile,
initiated by three touches of the fast wave. Notice that a similar fast wave
moves through the ‘vacuum’ at the right. The wave is less strong and hence
causes hardly any ‘staircasing’ at first.

To study the formation of the ‘physical staircase’, Figure 13 shows four snap-
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Fig. 13. Oscillating plasma sheet, physical staircasing. Density profiles at t = 0,
t = 0.012, t = 0.023, and t = 0.047. Top row: movement of a fast magnetosonic
wave through the left ‘vacuum’. Bottom row: staircase formation in the high density
sheet.

shots in time of the density profile. The top row shows the left ‘vacuum’
part and the bottom row shows the high density plasma sheet. Not the entire
plasma sheet starts to oscillate at once: first only the left edge of the sheet
slowly moves rightward. This leads to an increased density shock on top of
the sheet that moves towards the right edge. The bottom diagrams show this
expanding shock wave. Only when it touches the right edge, the entire sheet
is in oscillation (not shown). In the meantime, other movement takes place as
well. As the diagrams in the top row of Figure 13 show, a fast magnetosonic
wave moves between the left wall and the left edge of the plasma sheet. The
wave is reflected on both sides because of the reflective wall and the high den-
sity in the plasma sheet. The fast wave speed should be equal to v1 + cf , with
cf as defined in (9). As v1 = 0 here, this yields cf ≈ 34.8 in the ‘vacuum’ at
the left, and cf ≈ 31.6 in the ‘vacuum’ at the right. The wave speed at the
left in our numerical simulation is equal to 34.85, which is very accurate. The
first staircase formation is about to occur in the third column of Figure 13:
the fast wave will soon touch the sheet edge. In the fourth column, the fast
wave has almost completed its second period, and in the meantime the first
step in the staircase has properly formed. This process will continue forever,
although left-moving waves will start to interact after t ≈ 0.11. We stress
that the observed staircasing is definitely physical and should not be confused
with numerical staircasing sometimes seen in finite volume methods. The re-
curring interactions between the fast wave and the plasma sheet are in fact
repeated, distinct shock tube problems which change density and momentum
levels in steps. Local shock tube experiments near the plasma’s edge have also
confirmed this.

Both Tóth et al. [20] and Zegeling et al. [27] have not shown the above fast
wave effects. A probable explanation is their use of implicit time solvers, which
take too big time steps to properly capture the fast waves. We also tested an
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Fig. 14. AMRVAC results for the staircasing effect in the oscillating plasma sheet
problem. Left: AMRVAC solution for the density. Black bars represent mesh re-
finement levels. Right: Comparison of r-refinement with h-refinement, detail of m1

component of moment in the plasma sheet.

explicit AMRVAC solution. Having seen that the staircasing is mainly visible
in the m1 component of the momentum, we base the refinement on m1 by 80%
and on the density by 20%. Again we use the TVDLF solver with a Van Leer
limiter. The initial mesh has N = 100. The refinement tolerance εtol had to
be lowered to 0.0005. Figure 14 shows the results. The left diagram shows the
AMRVAC solution for the density. Notice how the refinement has properly
detected the fast magnetosonic wave in the left vacuum. The right diagram
focuses on the staircase formation in m1 within the plasma sheet. It compares
AMRVAC and our MMFV result. AMRVAC seems more diffused, and the
refinement could be better at the stair steps. Running time was 37 seconds
(FORTRAN), our MMFV run took 36 seconds (MATLAB).

5 Conclusions

Adaptive methods for solving PDE systems are a commonly used technique
to increase numerical accuracy and save computing costs. Often, the adaptive
methods are manually finetuned for the specific problem under consideration.
A truly robust adaptive method should adapt itself to each new problem con-
sidered, without additional fine-tuning. In this paper we considered such a
method. Using a sophisticated monitor function, conservative solution inter-
polation and a robust finite volume solver, the method is suitable for any non-
linear system of hyperbolic PDEs based on conservation laws, where numerical
conservation is guaranteed. After earlier successful application to hyperbolic
traffic flow PDEs and problems from gas dynamics, we now used the method
on a selection of problems from MHD.

Each of the example problems has one or more interesting physical features
that were accurately tracked by the adaptive method. The 1.75D shock wave
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problem showed automatic and balanced refinement for all individual solution
components, thanks to the monitor function used. The study of regular and
critical solutions showed how nearby critical solutions are a strong attractor
for numerical solutions. The use of our adaptive method shows convergence
to the correct solution with 20 times fewer mesh points than for a uniform
method. The shear Alfvén problem showed correct tracking and propagation
of Alfvén waves. Moreover, nonlinear effects in the flux terms were accurately
computed, with average errors of O(10−8). Finally, the oscillating plasma sheet
problem challenged the method because of the severe limit on the time step.
Even after a large number of time steps, the important parts in the solution
are tracked by our adaptive method. The oscillation that should set in is
correctly represented. Moreover, the high speed magnetosonic waves in the
two ‘vacuum’ parts turn out to cause a ‘physical staircasing’ in the plasma
sheet. Although this effect can be explained from the physical formulas, it
had not been studied before. The use of an adaptive method increased the
accuracy sufficiently to let these effects show up noticeably in the numerical
results.

The Brio and Wu shock tube problem was used to benchmark our adaptive
method. The gain with respect to a uniform method is at least a factor three.
For two- or higher-dimensional models this gain factor counts exponentially.
The overall accuracy of the finite volume method is first order, due to first
order accuracy of the method at discontinuities. Focusing on smooth parts,
however, correctly shows the second order nature of the method. Also, a short
comparison with h-refinement shows that our r-refinement method can reach
smaller errors more efficiently.

Although Lax-Friedrichs-type methods are known for their numerical viscosity,
the combination of a local Lax-Friedrichs flux in combination with a moving
mesh yields very accurate results, with still good computational performance.
We will extend the use of this robust adaptive technique to higher-dimensional
models. The use of higher-order solvers, and a more accurate solution inter-
polation step during mesh moving, are possible future improvements during
that process.

Acknowledgments

The first author performs his research in the project on ‘Adaptive moving
mesh methods for higher-dimensional nonlinear hyperbolic conservation laws.’,
funded by the Netherlands Organisation for Scientific Research (NWO) under
project number 613.002.055.

The authors wish to thank Rony Keppens at the FOM Institute for Plasma

27



Physics Rijnhuizen, for his valuable help with the physical aspects of ideal
MHD and assistance in using the VAC and AMRVAC packages. They are
also grateful to Manuel Torrilhon at the Hong Kong University of Science and
Technology, for kindly providing exact solutions to the shock tube problems in
Section 4. Huazhong Tang at Peking University gave some additional details
on the numerical scheme used in [15].

References

[1] G. Beckett and J. A. Mackenzie. Convergence analysis of finite difference
approximations on equidistributed grids to a singularly perturbed boundary
value problem. Applied Numerical Mathematics, 35:87–109, October 2000.

[2] G. Beckett and J. A. Mackenzie. On a uniformly accurate finite difference
approximation of a singularly perturbed reaction-diffusion problem using grid
equidistribution. Journal of Computational and Applied Mathematics, 131:381–
405, June 2001.

[3] G. Beckett, J. A. Mackenzie, A. Ramage, and D. M. Sloan. On the
numerical solution of one-dimensional PDEs using adaptive methods based on
equidistribution. J. Comput. Phys., 167:372–392, March 2001.

[4] M. Brio and C. C. Wu. An upwind differencing scheme for the equations of
ideal magnetohydrodynamics. J. Comput. Phys., 75:400–422, April 1988.

[5] Weiming Cao, Weizhang Huang, and Robert D. Russell. A study of monitor
functions for two-dimensional adaptive mesh generation. SIAM J. Sci. Comput.,
20(6):1978–1994 (electronic), 1999.

[6] Weizhang Huang. Practical aspects of formulation and solution of moving mesh
partial differential equations. J. Comput. Phys., 171(2):753–775, 2001.

[7] Weizhang Huang. Measuring mesh qualities and application to variational mesh
adaptation. SIAM J. Sci. Comput., 26(5):1643–1666, 2005.

[8] Weizhang Huang, Yuhe Ren, and Robert D. Russell. Moving mesh partial
differential equations (MMPDES) based on the equidistribution principle.
SIAM J. Numer. Anal., 31(3):709–730, 1994.

[9] Weizhang Huang and Robert D. Russell. Moving mesh strategy based on a
gradient flow equation for two-dimensional problems. SIAM J. Sci. Comput.,
20(3):998–1015, 1999.

[10] R. Keppens, M. Nool, G. Tóth, and J. P. Goedbloed. Adaptive Mesh Refinement
for conservative systems: multi-dimensional efficiency evaluation. Computer
Physics Communications, 153:317–339, July 2003.

[11] Rony Keppens. Nonlinear magnetohydrodynamics: Numerical concepts. Fusion
Science and Technology, 45(2T):107–114, March 2004.

28



[12] John M. Stockie, John A. Mackenzie, and Robert D. Russell. A moving
mesh method for one-dimensional hyperbolic conservation laws. SIAM J. Sci.
Comput., 22(5):1791–1813 (electronic), 2000.

[13] J. M. Stone and M. L. Norman. ZEUS-2D: A Radiation Magnetohydrodynamics
Code for Astrophysical Flows in Two Space Dimensions. II. The
Magnetohydrodynamic Algorithms and Tests. Astrophys. J. Suppl., 80:791–
818, June 1992.
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[21] Gábor Tóth and Dušan Odstrčil. Comparison of some flux corrected transport
and total variation diminishing numerical schemes for hydrodynamic and
magnetohydrodynamic problems. J. Comput. Phys., 128:82–100, October 1996.

[22] Arthur van Dam. A moving mesh finite volume solver for macroscopic traffic
flow models. Master’s thesis, Utrecht University, May 2002.

[23] Bram Van Leer. Towards the ultimate conservative difference scheme III.
Upstream-centered finite-difference schemes for ideal compressible flow. J.
Comput. Phys., 23:263–275, March 1977.

[24] Bram Van Leer. Towards the ultimate conservative difference scheme. IV. A
new approach to numerical convection. J. Comput. Phys., 23:276–299, March
1977.

29



[25] Bram van Leer. Towards the ultimate conservative difference scheme. V. A
second-order sequel to Godunov’s method. J. Comput. Phys., 32:101–136, July
1979.

[26] P.A. Zegeling, W.D. de Boer, and H.Z. Tang. Robust and efficient adaptive
moving mesh solution of the 2-D Euler equations. In Z.-C. Shi, Z. Chen, T. Tang,
and D. Yu, editors, Recent Advances in Adaptive Computation, volume 383 of
Contemporary Mathematics, pages 419–430. American Mathematical Society,
2005.

[27] P.A. Zegeling and R. Keppens. Adaptive method of lines for magneto-
hydrodynamic PDE models. In A. Vande Wouwer, Ph. Saucez, and W.E.
Schiesser, editors, Adaptive Method of Lines, pages 117–137. Chapman &
Hall/CRC Press, 2001.

30


