
Torus Breakdown and Chaos in a System of Coupled

Oscillators

T. Bakri

12th July 2005

Abstract

In this paper, we consider a simple system of two nonlinearly coupled oscillators using av-
eraging and numerical bifurcation techniques. Assuming the internal resonance 1:2 and the
coupling terms having opposite sign we establish the existence of a 2π-periodic solution which
undergoes a supercritical Neimark-Sacker bifurcation, yielding a stable fixed symmetric torus.
Through one route in the parameter space, we numerically show how the torus gets destroyed
by numerically following the changes in the involved manifolds [10]. We detected a cascade of
period doubling within the 1:6 resonance tongue yielding a strange attractor. Other periodic
regimes present in this system are also studied. It seems these two different regimes interact
with each other, yielding yet another type of strange attractor. All this happens quite far
from the origin. Most of the results in this region are numerical. Still interesting phenomena
were captured by the numerical packages content[5], auto[6] and matcont[7] showing the
complex character of the dynamics in this simple system of coupled oscillators.

1 Introduction

In this paper we continue the study we initiated in [1]. There we have established with great
accuracy, using the method of averaging, that under specific conditions the periodic solution of
the system undergoes a Neimark-Sacker bifurcation. The study was focused on how to implement
the averaging method to pinpoint efficiently this kind of bifurcations. Also a comparison between
the harmonic balance method and averaging was given. The aim of the present article is to study
the dynamics after the Neimark-Sacker bifurcation has occurred. We will restrict our study in
this paper to the autonomous case i.e. with no parametric excitation. In this case, there is a
periodic orbit which undergoes a Neimark-Sacker bifurcation. Unfortunately this bifurcation is
not captured by the averaging method as it occurres too far from the origin. Nevertheless a
numerical study using the software packages auto [6] and content [5] shows, through one route
in the parameter space, how the emerging torus becomes unsmooth before it breaks down. This
occurs after the torus becomes resonant and undergoes one period doubling. Due to a cascade of
period doublings in the 1:6 resonant tongue, a nontrivial limit set emerges and a strange attractor
is born. This is one of the known routes to chaos. Of course there are other scenarios of torus
breakdown through other routes in the parameter space which are not covered here. For a detailed
analysis of the so far known scenarios of torus breakdown, we refer to Afraimovich and Shilnikov
[2] and Shilnikov [3].
After giving a brief description of the equations of motion, we proceed in the next section by
studying the flow in the vicinity of the critical points. In section 3, we perform scaling and first
order averaging to the equations of motion. We find one periodic orbit of which we analytically
determine the stability. Section 4 deals with the numerical study of the original system. We
find an attracting torus by a Neimark-Sacker bifurcation. The bifurcation diagram in Figure 5
shows the presence of a 1:6 resonant tongue in the parameter region of our interest. The Poincaré
section is examined. It explicitly shows how the torus is destroyed by following the changes in the
involved manifolds. Other periodic regimes present in the system are analysed and a bifurcation
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diagram is given in section 5. As mentioned above, we explored in our numerical study only one
route in the parameter space. In this respect the study is not quite complete, however the results
are interesting and somewhat surprising in the way that such a simple system can have such a
complex dynamics.
Let’s begin by writing down equations of motion:

{
ẍ + δx2ẋ + x + γx3 + axy = 0,

ÿ + κẏ + 4y + bx2 = 0.
(1)

This is a system of two coupled oscillators in 1:2 resonance, nonlinearly coupled. We shall in the
numerical study presented here, focus on the case ab < 0. In this case one oscillator gets excited
by the other through the coupling terms which were chosen as simple as possible.
If a = 0, the term x2 + γx3 represents the restoring force of the x-oscillator. As the bifurcation
phenomena, discussed in what follows, take place for small values of γ, we do not expect much
different behavior for other restoring forces. For the damping coefficients we have δ, κ ≥ 0,
furthermore γ ≥ 0. Adding linear damping to the first oscillator will not affect qualitatively
the breakdown scenario described below. We therefore omit it in what follows. Linear damping
does however affect the stability of the origin and trigger an extra (unstable) periodic solution.
For more details about the origin and the applications of this system, we refer to [1]. For more
references on the subject of nonlinearly coupled oscillators see for example [11]. Note that this
system possesses a Z2 symmetry i.e. it is invariant with respect to the transformation:

T :
(

x
y

)
7→

( −x
y

)
.

Written as a system of first order ODE’s, system(1) becomes:




ẋ1 = x2,

ẋ2 = −x1 − δx2
1x2 − γx3

1 − ax1y1,

ẏ1 = y2,

ẏ2 = −4y1 − κy2 − bx2
1.

(2)

2 Study of the flow in the vicinity of the equilibria

There are two cases which should be distinguished, namely the case ab > 0 and the case ab < 0.
The case ab = 0 is not interesting in our study because then we loose the coupling between the
two oscillators. Every motion will end up at the origin because of the damping terms.

2.1 The case ab > 0

This case is simple because dynamically speaking no interesting bifurcations occur. Nevertheless
we shall give a brief description of the dynamics.
When ab > 0 and provided ab > 4γ, there are three critical points namely:

(0, 0, 0, 0), and (±2/
√

ab− 4γ, 0,−b/(ab− 4γ), 0).

The origin has the following eigenvalues:

λ1,2 =± i,

λ3,4 =
− κ±√κ2 − 16

2
.

So the stability is not conclusive from linear analysis. We shall therefore reduce the flow to the
centre manifold and normalise it.
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2.2 Centre manifold computation for the origin

For this aim, we consider system (2) in the vicinity of the origin and write it in the following form:

Ẋ = AX + F (X), X ∈ R4, (3)

where X = (x1, x2, y1, y2)T , F (X) = (0,−γx3
1 − δx2

1x2 − ax1y1, 0,−bx2
1)

T = O(‖x‖2) and

A =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −4 −κ


 .

In this case A has a simple pair of complex eigenvalues on the imaginary axis: λ1,2. These are
the only eigenvalues of A on the imaginary axis for positive κ as λ3,4 = 1

2 (−κ ±√κ2 − 16). The
usual steps for centre manifold computation are described in [8] chapter 5. We therefore will not
go into all the technical details.
In order to reduce the flow to the centre manifold, we use the eigenvectors corresponding to the
‘critical’ eigenvalues λ1,2 of the matrix A and its transpose AT to “project” the system into the
‘critical’ eigenspace and its complement. Let q be a complex eigenvector corresponding to λ1.
Then we have:

Aq = iq, Aq̄ = −iq̄.

We introduce the corresponding adjoint eigenvector p such that:

AT p =− ip, AT p̄ = ip̄

and satisfying the normalisation condition

〈p, q〉 =1

where 〈p, q〉 =
∑4

i=1 p̄iqi is the standard inner product in C4. In our case we have

q = [−i, 1, 0, 0], p =
1
2
[−i, 1, 0, 0].

After some manipulations, and using the polar representation (z = ρeiφ), the reduced system
to the centre manifold is smoothly orbitally equivalent to

{
ρ̇ = sgn(l1(0))ρ3 + O(ρ4),
φ̇ = 1

(4)

where l1(0) denotes the first Lyapunov coefficient and is given below

l1(0) =
1
2
Re

[〈p, C(q, q, q̄)〉 − 2〈p,B(q,A−1B(q, q̄))〉+ 〈p,B(q̄, (2iE −A)−1B(q, q))〉] ,

with

Bi(x, y) =
4∑

j,k=1

∂2Fi(ξ)
∂ξj∂ξk

∣∣∣∣∣∣
ξ=0

xjyk,

Ci(x, y, z) =
4∑

j,k,l=1

∂3Fi(ξ)
∂ξj∂ξk∂ξl

∣∣∣∣∣∣
ξ=0

xjykzl,
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where i = 1 · · · 4. and E the identity matrix in R4.

In our case, this reduces to

l1(0) = − ab

4κ
. (5)

Clearly we have l1(0) < 0 in the case ab > 0, The origin is hereby nonlinearly locally stable.

The two symmetrical fixed points are of saddle type, the expressions for the eigenvalues are too
long to write down explicitly. The phase portrait is roughly sketched in Figure 1 below. When
ab < 4γ the two symmetrical critical points disappear by going to infinity.

Proposition 1 When 0 < ab < 4γ the origin is a global attractor.

Proof To see this, we introduce the following Lyapunov function

V (x1, x2, y1, y2) = 2x2
1 + 2x2

2 +
4a

b
y2
1 +

a

b
y2
2 + 2ax2

1y1 + γx4
1. (6)

Computing the derivative of this Lyapunov function with respect to the time t yields:

dV

dt
= −4δx2

1x
2
2 −

2κa

b
y2
2

Clearly the orbit derivative is negative when x1, x2 and y2 respectively are not zero. Notice that
the Lyapunov function can also be written in the following way

V (x1, x2, y1, y2) = 2x2
1 + 2x2

2 +
a

b
y2
2 +

(√
ab

2
x2

1 + 2
√

a

b
y1

)2

+
(

γ − ab

4

)
x4

1. (7)

We easily see that in the case ab < 4γ the Lyapunov function is positive definite. To prove global
stability, it is sufficient to show that the second derivative of the Lyapunov function along the
orbits changes sing on the manifold x1 = y2 = 0 and the manifold x2 = y2 = 0. We have the
following expression for the second derivative:

d2V

dt2
= −8δx1x

3
2 − 8δx2

1x2ẋ2 −
4κa

b
y2ẏ2.

We distinguish in what follows between the following cases:

Case A x1 = 0, y2 = 0, x2 = 0
In this case the x-oscillator is at rest i.e. x1 = x2 = 0 for all t and we get for the second derivative
the following expression

d2V

dt2
= −4κa

b
y2ẏ2.

Clearly y2ẏ2 changes sign along the orbits as it is the derivative of y2
2(t) and this has a local

minimum at 0 because y1 6= 0 which implies that y2(t) is not a constant function of the time t.

Case B x1 = 0, y2 = 0, x2 6= 0
In this case the second derivative along the orbits of the Lyapunov function has the following
dominating terms:

d2V

dt2
= −8δx1x

3
2 −

4κa

b
y2ẏ2 = −8δx1ẋ

3
1 −

4κa

b
y2ẏ2.
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Following a reasoning similar to that above, we see that it is impossible in the case 0 < ab < 4γ
to have both x1 and y2 to be independent of the time t. we conclude that in this case as well the
second derivative of the Lyapunov function changes sign along the orbits tangent to this manifold.

Case C x2 = 0, y2 = 0, x1 6= 0
In this case the dominating terms of the second derivative are as follows:

d2V

dt2
= −8δx2

1x2ẋ2 −
4κa

b
y2ẏ2.

Suppose we hit the manifold at t = 0. then we cannot have the following situation: ẋ2(0) =
ẏ2(0) = 0. To show this we solve the first equation ẋ2(0) = 0. This yields

y1(0) = −1
a
− γ

a
x1(0)2.

The second equation yields:

y1(0) = − b

4
x1(0)2.

Because of the condition 0 < ab < 4γ, we see that it is impossible to have ẋ2(0) = ẏ2(0) = 0.
From this we conclude that the second derivative of the Lyapunov function changes sign along
the orbits crossing this manifold in this case as well. This concludes the proof that the origin is a
global attractor. 2

These are all the scenarios that can occur in the case ab > 0.

x1

x2

Figure 1: Phase portrait in the case ab > 4γ

2.3 The case ab < 0

When ab < 0 the two saddles disappear and the dynamics becomes much richer as we shall see.
The origin is in this case nonlinearly unstable as the first Lyapunov coefficient l1(0) is positive. See
equation (5). System (2) is dissipative and because the origin is unstable, one might expect the
presence of invariant manifolds. We therefore look first for periodic solutions in the neighborhood
of the origin. For this purpose we shall use the method of averaging which enables us to locate
periodic solutions and for which precise error estimates are known. To make this more explicit,
we introduce the following scaling.
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3 Scaling and first order averaging

We consider system (1) in the vicinity of the origin and introduce the following scaling. For more
details about this specific scaling see [1].

x =
√

εx̄, y =
√

εȳ, a =
√

εā, b =
√

εb̄, κ = εκ̄.

The parameters δ and κ are assumed to be O(1) with respect to ε. Introducing this scaling into
system (1) and omitting the bars yields:

{
ẍ + x + εaxy + ε(δx2ẋ + γx3) = 0,

ÿ + 4y + εκẏ + εbx2 = 0.
(8)

The next steps are the usual ones in averaging approximations; see for instance [4], chapter 11.
We introduce the following transformation:

{
x(t) = R1(t) cos(t + φ(t)) ẋ(t) = −R1(t) sin(t + φ(t))
y(t) = R2(t) cos(2t + ψ(t)) ẏ(t) = −2R2(t) sin(2t + ψ(t))

Averaging the resulting system yields:




Ṙ1 = εR1{a
4R2 sin(2φ− ψ)− δ

8R2
1}

φ̇ = ε{a
4R2 cos(2φ− ψ) + 3

8γR2
1}

Ṙ2 = ε
2R2{−bR2

1/(4R2) sin(2φ− ψ)− κ}
ψ̇ = ε

2{bR2
1/(4R2) cos(2φ− ψ)}

(9)

The dimension of this system can be reduced by introducing the phase variable θ = 2φ− ψ. The
system becomes





Ṙ1 = εR1{a
4R2 sin θ − δ

8R2
1}

Ṙ2 = ε
2R2{−bR2

1/(4R2) sin θ − κ}
θ̇ = ε{a

2R2 cos θ + 3
4γR2

1 − bR2
1/(8R2) cos θ}

(10)

3.1 The periodic solutions

Equating the right-hand side of system (10) to zero yields the nontrivial critical points of these
equations which correspond with 2π-periodic solutions of the original system (8). First, we remark
that equating the first two equations to zero and looking for nontrivial solutions is equivalent to
the following system:

A

(
R2

1

R2

)
=

(
0
0

)

with the matrix

A =
( −δ/8 a/4 sin θ
−b/4 sin θ −κ

)
.

If the matrix A is invertible then it is clear that the trivial solution is the only solution. We
therefore require that det(A) = 0. A necessary condition for the existence of nontrivial solutions
to the reduced system (10) reduces then to

sin θ = ±
√
− 2κδ

ab
.
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Remark

System (10) can have nontrivial equilibrium solutions only if ab < 0. One also may assume without
loss of generality that sin θ ≥ 0 and b < 0. We shall adopt this assumption in what follows.

Solving this system of equations yields:




R2 = − b

4κ
R2

1 sin θ

R1 =

√
− 8κ2 cot θ

12κγ − ab sin 2θ

(11)

provided the damping terms κ, δ > 0. If κ = 0, and δ 6= 0 then system (10) has a continuous
family of nontrivial critical points and therefore we cannot deduce from this the existence of
periodic solutions. However one can easily see from the equations of motion (1) that a family of
semitrivial solutions exists. The x−oscillator is at rest while the y−oscillator is a simple harmonic
oscillator. On the other hand, if δ = 0, and κ 6= 0 then there is a family of semitrivial solutions
where the y−oscillator is at rest while the x−oscillator oscillates. The period is in this case
dependent on the initial condition. System (2) becomes Hamiltonian in the case κ = δ = 0. Its
Hamiltonian takes the standard structure after the following transformation of coordinates

(x̃1, x̃2, ỹ1, ỹ2) = (x1, bx2, y1,
ay2

2
).

In these new coordinates and omitting the tildes, the Hamiltonian has the following form

H(x1, x2, y1, y2) =
b

2

(
x2

1 +
(x2

b

)2
)

+
a

4

(
4y2

1 +
(

2y2

a

)2
)

+
γb

4
x4

1 +
ab

2
x2

1y1

Conclusion

The original system (8) has an isolated 2π−periodic solution provided γ is large enough, κ, δ > 0
and θ ∈ (π/2, π).

3.1.1 Stability of the 2π−periodic solution

Linearising the reduced averaged system (10) around the nontrivial critical point and analysing
the corresponding Routh-Hurwitz system of equations yields that the nontrivial equilibrium is
asymptotically stable no matter what the parameters are. This is quite surprising. We refer to the
appendix for more details about the stability analysis. This implies that the corresponding periodic
solution of system (8) is also asymptotically stable provided its amplitude is O(1). However, using
γ as a control parameter, one can numerically see that the amplitudes of the periodic solution
R1 and R2 can become fairly large and consequently grow beyond the domain of validity of the
averaging method. In that case the stability of the periodic solution can be lost due to bifurcations
which are not detected by the normal form. We shall therefore return in what follows to the original
system (2) and study numerically the flow and the bifurcations involved. This study reveals very
rich dynamics including torus break-down, and chaotic behavior as we shall see below.

4 Numerical continuation of the fixed (symmetric) periodic
solution

4.1 The Neimark-Sacker bifurcation

The following representative parameters, with respect to the original system (2), have been used
in our numerical analysis: a = 0.5, b = −0.5, δ = 0.4, κ = 0.1. We use the software package
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content [5] to continue the periodic solution with respect to the parameter γ. Numerical ex-
periments show that interesting phenomena occur for small positive values of the parameter γ;
we therefore start at γ = 0.2 and decrease continuously this parameter. A supercritical Neimark-
Sacker bifurcation has been detected at the critical value γc ' 0.096. Its normal form coefficient,
computed by matcont [7] via periodic normalization, is small but negative CNS = −7.22510−7.
See Figure 2 below. Below but near this critical value of γ a stable smooth torus is present . See
the numerically computed Poincaré section in Figure 3. At the parameter value γ = 0.0892 the
torus is destroyed and a strange attractor emerges. See Figure 4. To understand how the torus is
destroyed, we first analyse the bifurcation diagram in the involved parameter region.
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6.1

6.15

6.2

6.25

6.3

0.08 0.1 0.12 0.14 0.16 0.18 0.2
γ

LPC

LPC

NS

P
e
r
io

d

Figure 2: Figure generated by CONTENT. Plot of the period against the parameter γ. The
periodic solution is continued with respect to the parameter γ (g on the graphic). LPC stands for
Limit Point Cycle (fold) bifurcation and NS stands for Neimark-Sacker bifurcation.
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Figure 3: Poincaré section, using Σ = {(0, x2, y1, y2)T , x2, y1, y2 ∈ R} as cross section, projected
onto the y1y2 plane with γ = 0.092. The closed curve corresponds to the stable torus
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Y1

Y
2

Figure 4: Poincaré section, using Σ = {(0, x2, y1, y2)T , x2, y1, y2 ∈ R} as cross section, projected
onto the y1y2 plane with γ = 0.0892. The closed curve, corresponding with a torus, no longer
exists. A strange attractor emerges instead. Kaplan-Yorke dimension dKY ' 2.32.

4.2 Resonance Tongues and cascade of period doublings

In the parameter region where the smooth torus exists there are regions where phase locking oc-
curs on the torus, the so called Arnold tongues. This happens for example at the parameter value
γ = 0.09 yielding a stable and unstable 1:6 periodic solutions on the surface of the torus. Using
the software package auto [6] and taking the coupling parameter b as a second control parameter
we were able to compute the bifurcation diagram presented below.
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-0.5

-0.48

-0.46

-0.44

 0.087  0.088  0.089  0.09  0.091  0.092  0.093  0.094

PD2

PD

C

C

Ch

NS

C

C

F

b

γ

Figure 5: Bifurcation diagram in the case ab < 0 in the vicinity of the 1:6 resonance tongue. The
tongue is quite narrow and is bounded from below by the period-doubling (PD) curve. The left
and right boundaries of the tongue correspond to fold curves (F). Here the period 6 saddle and
node solutions collide and disappear. (NS) stands for Neimark-Sacker bifurcation, (Ch) stands for
Chenciner bifurcation and (C) corresponds to a cusp bifurcation.
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Figure 5 shows part of the bifurcation diagram. The left and right boundaries of the 1:6 reso-
nance tongue correspond to fold curves. There, the saddle and the node collide and disappear. The
lower boundary of the tongue corresponds to the first period doubling bifurcation. The stable cycle
of period 6 then becomes unstable and a stable period 12 cycle emerges. Because of the symmetry
there are two of these cycles. Keeping the parameter b = −0.5 constant and letting the parameter
γ decrease, we “hit” the 1:6 resonance tongue twice. At the parameter value γ = 0.09184, further
away from the period doubling curve, the Poincaré section shows a smooth closed curve. See Fig-
ure 6. As γ decreases, we leave the tongue. The torus is no longer resonant but still smooth. The
Poincaré section, in this case, shows a closed curve with no saddles or nodes on it. Entering the
tongue for the second time, but now closer to the period doubling curve, at γ = 0.09 the Poincaré
section shows a closed curve which seems to loose its smoothness gradually. See Figure 7. We
hit the period doubling curve at exactly the parameter value γ = 0.0897934. At γ = 0.0897 i.e.
after the first period, the numerically computed Poincaré section shows a closed curve but with
complicated geometry. See Figure 8. When γ drops below this critical value, a cascade of period
doubling follows respectively at γ = 0.08954709, γ = 0.08954241, γ = 0.08954129 etc. yielding the
strange attractor mentioned above. See Figure 4.
One may look at the parameter as a kind of chaos eliminator. Indeed, when the parameter γ
equals to zero, the system is either chaotic or its orbits are unbounded. Note that if a = γ = 0,
we have a synchronous oscillator which is a very degenerate case. Introducing the parameter γ
and a > 0, we couple to an asynchronous oscillator and trigger resonance phenomena which yield
the invariant sets we encountered.
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Figure 6: Numerically computed Poincaré section in the 1:6 resonance tongue: γ = 0.09184. The
closed curve is obtained by numerically computing the unstable manifolds of the saddles.
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Figure 7: Numerically computed Poincaré section in the 1:6 resonance tongue, closer to the period-
doubling curve: γ = 0.09 showing loss of smoothness.
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Figure 8: Numerically computed Poincaré section in the 1:6 resonance tongue, after the period-
doubling has occurred: γ = 0.0897.

4.3 Torus destruction

The torus destruction takes place according to one of Afraimovich-Shilnikov scenarios [2]. Let’s
examine how this happens as a consequence of a period doubling. Before the period doubling
takes place, all the four multipliers of the node are positive and are located inside the unit circle.
At the period doubling one multiplier becomes equal to −1. Somewhere before this happens the
multiplier must become complex. See Figure 7. This means the node becomes a focus. At this
stage the closed curve is no longer homeomorphic to the circle. The torus is no longer smooth as
the unstable manifold of the saddle winds around the focus infinitely many times. Of course the
individual solutions(orbits) remain smooth. After the period doubling has occurred the torus is
completely destroyed. See Figure 8 and Figure 9 for a sketch.
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S

F

Figure 9: After one period doubling of the fixed point F , the closed curve is no longer homeomor-
phic to the circle. The torus is completely destroyed.

5 Other regimes

System (1) has other periodic regimes coexisting with the one studied previously. There is a pair
of symmetrically coupled π−periodic solutions. See Figure (10) below.
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Figure 10: Two symmetrically coupled π-periodic orbits. γ = 0.25.

A backward continuation of the π-cycle yields a fold bifurcation at γ = 0.23935 and at γ =
0.25518, as we hit the left and the right side of the fold curve (Fold2) respectively. The stable cycle
emerging after the second hit undergoes a Neimark-Sacker bifurcation at γ = 0.23189 yielding a
torus. When we perform a forward continuation of the π-periodic solution with respect to the
parameter γ, the cycle undergoes a fold bifurcation at γ = 0.292818. Here, we hit the curve
(Fold1). The unstable cycle emerging after this fold bifurcation undergoes a period-doubling
bifurcation at γ = 0.119460. We use, as in section 4.2, the parameter b as a second control
parameter to generate the bifurcation diagram. See Figure (11) below.
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Figure 11: Bifurcation diagram of the π-periodic cycle.

The torus emerging after the Neimark-Sacker bifurcation also becomes resonant and gets de-
stroyed according to a scenario similar to the one described above. Two symmetrically coupled
strange attractors are born. If we continue decreasing the parameter γ, the two attractors begin
to interact yielding the strange attractor shown in Figure (12) below. One identifies the remains
of the two symmetrical tori. The orbits in the strange attractor oscillate randomly between these
two objects. This is geometrically reminiscent of the Lorenz attractor.
The 2π unstable cycle emerging from the period doubling bifurcation becomes a neutral saddle
at γ = 0.08679. We suspect this 2π-cycle interacts somehow with the strange attractor in figure
4 yielding also a Lorenz like attractor see figure 13 below. Further study is yet to be done to
better understand how the strange attractor evolves and which interactions are involved in this
evolution.
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Figure 12: Poincaré section, using Σ = {(0, x2, y1, y2)T , x2, y1, y2 ∈ R} as cross section, projected
onto the y1y2 plane with γ = 0.22. The closed curve no longer exists. A strange attractor emerges
instead. Kaplan-Yorke dimension dKY ' 2.90.
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Figure 13: Poincaré section, using Σ = {(0, x2, y1, y2)T , x2, y1, y2 ∈ R} as cross section, projected
onto the y1y2 plane with γ = 0.089. The strange attractor in Figure 4 interacts with other regimes.
Kaplan-Yorke dimension dKY ' 2.37.
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7 Appendix

7.1 Study of the stability of the periodic solution

Proposition 2 The nontrivial critical point of system (10) is asymptotically stable everywhere in
the parameter space under consideration i.e. κ, δ, a > 0, b < 0.

Proof. We use the Routh-Hurwitz criterion to establish the parameter range within which asymp-
totic stability holds. A necessary and sufficient condition for asymptotic stability reduces in our
case to the following:





∆1 = κ +
δR2

1a

2
> 0;

∆2 = − ab

4κ
+

κ

16
(ab + 8δκ)R2

1a +
δ2κ

16
R4

1a −
abδ2

64κ
R6

1a > 0;

∆3 = b3∆2 > 0.

(12)

Where,

b3 =
ab sin 2θR4

1a

256κ
(12κγ − ab sin 2θ).

One can easily establish that b3 > 0. This follows from system (11) and the fact that θ ∈ (π/2, π).
The first equation is, in our case, automatically satisfied. This way the stability condition reduces
to ∆2 > 0. We will in our proof distinguish between two complementary cases.

The case ab + 8δκ ≥ 0

One can easily see from (12) that in this case the second equation is satisfied as all the coefficients
of R2i

1a, i = 0, · · · , 3 are positive. This yields asymptotic stability of the nontrivial critical point.
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The case ab + 8δκ < 0

We consider here ∆2 as a function of the parameter γ which is hidden in R1a only and estimate
its minimum value with respect to the parameter γ. First We write ∆2 as follows:

∆2 = A−BR1(γ)2 + CR1(γ)4 + DR1(γ)6.

Where A, B, C, and D > 0 and independent of γ. Taking the derivative with respect to the
parameter γ gives:

∆̇2 = 2R1Ṙ1(−B + 2CR2
1 + 3DR4

1).

From equation (11) we see that Ṙ1 < 0. As Ṙ1 < 0 and R1 > 0 for all values of γ, we can easily
show by analysing the sign of ∆̇2 that ∆2, as a function of γ, has one extremum which is a global
minimum. We find, after some simplifications, the following expression for the minimum:

∆min =
− κ2(ab + 2δκ)

72a2b2δ

(
9a2b2 + 2ab(Q− 18δκ) + 12δκ(Q− 6δκ)

)
,

where

Q =
√

3(ab + 4δκ)2 − 12δ2κ2.

Notice that the quantity −κ2(ab + 2δκ)/(72a2b2δ) is positive in the case ab + 8δκ < 0. It is also
easy to show that

6δκ < Q < −
√

3(ab + 4δκ)

This follows essentially from the fact that ab + 8δκ < 0. With these estimates we can give a lower
bound for ∆min. We find

∆min >
− κ2(ab + 2δκ)

72a2b2δ

(
(9− 2

√
3)a2b2 − 2(18 + 4

√
3)κδab

)
> 0

This concludes the proof. 2
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