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Abstract

A self-excited three-mass chain system is here considered. For a self-excitation of van
der Pol type, the possibility of multi-frequency oscillations is investigated. Both analytical
approximate solutions and numerical simulation are used. The averaging method is used
to establish existence and stability of the normal modes, the two-frequency modes as well
as the three-frequency oscillations solutions. We found at first that the single mode seems
to prevail. However a three-frequency solution can be stabilised by adapting the system
slightly. A generic bifurcation diagram is given where all the possible phase portraits are
sketched. The flow turns out to be quite predictable. There is no “room” for chaos or
strange attractors. This behavior is not typical for systems of coupled oscillators.
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1 Introduction

Self-excited vibrations represent an important phenomenon. Although much effort has been

given to the research in this field there are still some questions to be answered.

In most self-excited systems either the equilibrium position or the steady-state is unstable

and, theoretically, both single- and multi-frequency vibrations could be initiated. This can

be met e.g. in structures induced by flow. In general, it does not be the vibration mode

corresponding to the lowest natural frequency, although this is the most common case since

the lowest vibration mode prevails in many real systems. When different vibration modes are

possible, some questions arise, especially whether single- or multi-frequency vibrations will

finally set up.

That the single-frequency self-excited vibration prevails has been found in the research of

self-excited vibration of systems having more degrees of freedom [1]. A similar behavior was

found in some rotor systems where the self-excited vibration was induced due to the action

of oil bearings [2,3]. To contribute to the elucidation of this problem is the aim of this paper.
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Figure 1: Schematic representation of the basic system.

2



2 Equations of motion

Let us consider a three-mass chain system the scheme of which is shown in Figure 1. Here

the upper mass m0, the central and lower masses m represent reduced concentrated masses of

structural elements while the connecting springs (having constant stiffness k) simulate their

elasticity. Let the central and the upper masses are self-excited, e.g. by flow, which can be

described by van der Pol terms. The linear viscous damping of the lower mass has coefficient

b3. The deflections from equilibrium positions are yj (j = 1, 2, 3). Thus, the considered

system is governed by the following differential equations of motion:











m0ÿ1 −
(

b1 − d1y
2

1

)

ẏ1 + k (y1 − y2) = 0 ,

mÿ2 −
(

b2 − d2y
2
2

)

ẏ2 + 2ky2 − k (y1 + y3) = 0 ,

mÿ3 + b3ẏ3 + ky3 + k (y3 − y2) = 0 .

(1)

Here b1, b2, b3, d1, d2 and k are positive constants. Using the time transformation τ = ω0t,

where ω0 =
√

k/m, equations (1) get the new form:











ÿ1 −
(

β1 − δ1y
2
1

)

ẏ1 + q2 (y1 − y2) = 0 ,

ÿ2 −
(

β2 − δ2y
2
2

)

ẏ2 + 2y2 − (y1 + y3) = 0 ,

ÿ3 + κẏ3 + 2y3 − y2 = 0 ,

(2)

where q2 = k/m0ω0
2 = m/m0, κ = b3/mω0, β1 = b1/m0ω0, β2 = b2/mω0, δ1 = d1/m0ω0

and δ2 = d2/mω0, respectively. For sake of simplicity, the usual notation for time and time

derivatives has been maintained in equation (2), as well as in further analysis.

In order to simply solve the characteristic equation of system (2):
∣

∣

∣

∣

∣

∣

q2 − Ω2 −q2 0
−1 2 − Ω2 −1
0 −1 2 − Ω2

∣

∣

∣

∣

∣

∣

=
(

q2 − Ω2
)

[

(

2 − Ω2
)2 − 1

]

− q2
(

2 − Ω2
)

, (3)

we assume m0 = m/2, and thus q2 = 2. The resulting normal-mode frequencies are:











Ω1 =
√

2 −
√

3 ' 0.5176 ,

Ω2 =
√

2 ' 1.4142 ,

Ω3 =
√

2 +
√

3 ' 1.9319 .

(4)

Equations (2) can be transformed into quasi-normal form using the linear transformation:











y1 = x1 + x2 + x3 ,

y2 =
√

3

2
x1 −

√
3

2
x3 ,

y3 = 1

2
x1 − x2 + 1

2
x3 .

(5)
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After some mathematical manipulation, required by the insertion of (5) in (2), the following

system of three coupled quasi-normal equations are obtained:



















































ẍ1 + Ω2
1
x1 − 1

3

[

β1 − δ1 (x1 + x2 + x3)
2

]

(ẋ1 + ẋ2 + ẋ3)

−1

2

[

β2 − 3

4
δ2 (x1 − x3)

2

]

(ẋ1 − ẋ3) + 1

3
κ
(

1

2
ẋ1 − ẋ2 + 1

2
ẋ3

)

= 0 ,

ẍ2 + Ω2

2
x2 − 1

3

[

β1 − δ1 (x1 + x2 + x3)
2

]

(ẋ1 + ẋ2 + ẋ3)

−2

3
κ
(

1

2
ẋ1 − ẋ2 + 1

2
ẋ3

)

= 0 ,

ẍ3 + Ω2
3
x3 − 1

3

[

β1 − δ1 (x1 + x2 + x3)
2

]

(ẋ1 + ẋ2 + ẋ3)

+1

2

[

β2 − 3

4
δ2 (x1 − x3)

2

]

(ẋ1 − ẋ3) + 1

3
κ
(

1

2
x′

1
− ẋ2 + 1

2
ẋ3

)

= 0 .

(6)

For the possibility of initiation of self-excited vibration which corresponds to j-th natural

frequency Ωj the value of the coefficient Θjj at ẋj in the j-th equation is decisive. For the

considered system the following expressions are obtained:

{

Θ11 = Θ33 = −1

3
β1 − 1

2
β2 + 1

6
κ ,

Θ22 = −1

3
β1 + 2

3
κ .

(7)

It is evident that, when increasing β1 and β2 from zero value, then Θ11 and Θ33 first reach

negative values. Let us first consider the simple case Θ11 = Θ33 < 0 and Θ22 > 0 then the

case Θ11 = Θ33 < 0 and Θ22 < 0 .

3 Analytical approximations

We look for the approximate solution of the autonomous system of differential equations (6),

which we are going to study using the normal form method of averaging. For this purpose

we introduce a scaling factor
√

ε (ε is a small, positive parameter) and apply the phase-

amplitude transformation. The next steps are the usual ones in averaging approximations,

see for instance [5]. We have:











x1(t) = R1(t) cos(Ω1t + φ1(t)) ,

x2(t) = R2(t) cos(Ω2t + φ2(t)) ,

x3(t) = R3(t) cos(Ω3t + φ3(t)) ,

(8)

and










ẋ1(t) = −R1(t)Ω1 sin(Ω1t + φ1(t)) ,

ẋ2(t) = −R2(t)Ω2 sin(Ω2t + φ2(t)) ,

ẋ3(t) = −R3(t)Ω3 sin(Ω3t + φ3(t)) .

(9)
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After substituting (8), (9) in (6) and averaging, one yields the following:






















Ṙ1 = εR1

(

−1

2
Θ11 − AR2

1
− BR2

2
− 2AR2

3

)

+ O(ε2) ,

Ṙ2 = εR2

(

−1

2
Θ22 − BR2

1
− 1

2
BR2

2
− BR2

3

)

+ O(ε2) ,

Ṙ3 = εR3

(

−1

2
Θ11 − 2AR2

1
− BR2

2
− AR2

3

)

+ O(ε2) ,

φ̇i = 0 , i = 1, 2, 3

(10)

where

A =
B

2
+

3δ2

64
> 0 ,

B =
δ1

12
> 0 . (11)

Looking for nontrivial solutions of (10), one obtains the possible combinations of normal

modes. We shall in what follows distinguish between two cases.

3.1 The case Θ11 = Θ33 < 0 and Θ22 > 0

From the second equation we see that assuming the second mode is nontrivial (i.e. R2 6= 0)

yields the following constraint:

R2

1 +
R2

2

2
+ R2

3 =
2β1 − 4κ

δ1

=
−Θ22

2B
. (12)

Thus in case Θ22 > 0 the second mode cannot exist (R2 = 0). So, from looking for nontrivial

equilibria of system (10), it follows that there can be two different types of solutions:

� Single-frequency solutions with the following amplitudes:






















R1 = R2 = 0 , R3 =

√

−
Θ11

2A
, or

R1 =

√

−
Θ11

2A
, R2 = R3 = 0 .

(13)

The eigenvalues of these two single-frequency solutions are the same and equal to:

λ1 = Θ11 , λ2 =
Θ11

2
, and λ3 = −

Θ22

2
+

B

2A
Θ11 . (14)

Under the assumption that Θ11 = Θ33 < 0 and Θ22 > 0, we see that the single-frequency

solutions are asymptotically stable.

� One two-frequency solution with the following amplitudes:

R1 = R3 =

√

−Θ11

6A
, R2 = 0 . (15)
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While there are no particular remarks on single-frequency vibrations, we shall now focus

our attention on the existence of two-frequency vibrations. Thus, to study the stability of the

two-frequency solution we linearise system (10) around the two-frequency solution. After a

translation of the origin to this solution, the linearised system becomes:

d

dt





R1

R2

R3



 = εC





R1

R2

R3



 , (16)

where:

C =















Θ11

3
0

2Θ11

3

0 −
Θ22

2
+

B

3A
Θ11 0

2Θ11

3
0

Θ11

3















. (17)

We obtain for the eigenvalues λi of the matrix C the following expressions:























λ1 = −
Θ11

3
> 0 ,

λ2 = Θ11 < 0 ,

λ3 = −
Θ22

2
+

B

3A
Θ11 .

(18)

One comes to the conclusion that the two-frequency solution is, when it exists, always unstable

no matter what the parameters are since one of the eigenvalues is positive. This confirms the

fact that in most real systems the single-frequency self-excited vibration prevails [1]. In other

words, it is very difficult to spot this solution numerically as it has a saddle character.

3.2 The case Θ11 = Θ33 < 0 and Θ22 < 0

Applying the same approach as in the previous case, we find the following types of solutions:
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� Three single-frequency solutions with the following amplitudes and stability:

• R1 =

√

−
Θ11

2A
, R2 = R3 = 0 , with eigenvalues

λ1 = Θ11 , λ2 = −Θ22

2
+

B

2A
Θ11 and λ3 =

Θ11

2
. (19)

• R3 =

√

−
Θ11

2A
, R1 = R2 = 0, with eigenvalues

λ1 = Θ11 , λ2 = −Θ22

2
+

B

2A
Θ11 and λ3 =

Θ11

2
. (20)

• R2 =

√

−
Θ22

B
, R2 = R3 = 0 , with eigenvalues

λ1 = Θ22 , λ2 = λ3 = Θ22 −
Θ11

2
. (21)

We see that the first and the third single mode solutions are asymptotically stable if

B

2A
Θ11 −

Θ22

2
< 0 , (22)

while the second mode is asymptotically stable if

Θ22 −
Θ11

2
< 0 . (23)

� Three two-frequency solutions with the following amplitudes and stability:

• R2 = 0 , R1 = R3 =

√

−Θ11

6A
. (24)

From the previous section, we see that this solution is always unstable as Θ11 = Θ33 < 0.

• R1 = 0 , R3 =

√

Θ22 − Θ11/2

A − 2B
, R2 =

√

Θ11 − AΘ22/B

A − 2B
. (25)

• R3 = 0 , R1 =

√

Θ22 − Θ11/2

A − 2B
, R2 =

√

Θ11 − AΘ22/B

A − 2B
. (26)

Analysis of the eigenvalues yield that these two solution exist and are unstable if

Θ22 −
Θ11

2
< 0 and A − 2B < 0 , (27)

and asymptotically stable if

Θ22 −
Θ11

2
> 0 and A − 2B > 0 . (28)

� One unstable three-frequency solution with the following amplitudes:

R2 =

√

2Θ11 − 3AΘ22/B

3A − 4B
, R1 = R3 =

√

Θ22 − Θ11/2

3A − 4B
. (29)
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3.3 Results

Under the assumption Θ11 = Θ33 < 0 and Θ22 < 0 we found two asymptotically stable two-

frequency solutions, see Figure 2. The region in the parameter space where the two-frequency

solution is stable is small, as we shall see in Figure 4, region b
�

below, but has measure

bigger than zero. So it is likely to hit this set by chance. In spite of the three oscillators being

self-excited in this case, the three-frequency solution does not prevail as it is always of the

saddle type. Now that enough is known about the stability of these modes, we shall proceed

by giving the generic bifurcation diagram.
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Figure 2: Vibration records of x1, x2 and x3 corresponding to system (6) as a function of
time with β1 = 0.3; β2 = 0.15; δ1 = 0.5; δ2 = 4.0; κ = 0.1; x1(0) = 1.818; x2(0) = 0.997;
x3(0) = 0.589; ẋ1(0) = ẋ2(0) = ẋ3(0) = 0 showing the presence of a stable two-frequency
solution.
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4 Bifurcation diagrams

For details on the bifurcation diagram in the two-dimensional case, we refer to [4], see in

chapter 8 the section on Hopf-Hopf bifurcation. Here, more or less the same notation as in

[4] will be adopted.

First we mention that system (10) has four invariant manifolds, namely:

M1 =
{

(R1, R2, R3) ∈ R
3 : R1 = 0

}

,

M2 =
{

(R1, R2, R3) ∈ R
3 : R2 = 0

}

,

M3 =
{

(R1, R2, R3) ∈ R
3 : R3 = 0

}

, (30)

M4 =
{

(R1, R2, R3) ∈ R
3 : R1 = R3

}

.

M4 is an unstable invariant manifold acting as a separatrix. If we start in the region enclosed

by M2, M1 and M4, the flow will evolve towards the invariant manifold M1. If on the other

hand we start in the region enclosed by the manifolds M2, M3 and M4, the flow will evolve

towards the invariant manifold M3. It is therefore sufficient to give the bifurcation diagram

on these four manifolds to completely understand the dynamics. In what follows, we shall

refer to the i−th normal mode by Pi, i = 1, 2, 3, whereas Pij denotes the two-frequency

solution where only the i−th and the j−th component oscillate, the third mode being at rest.

Accordingly, P123 denotes the 3-mode solution. The case Θ11 = Θ33 < 0, Θ22 > 0 as well

as the case Θ11 = Θ33 > 0, Θ22 > 0 are quite straightforward. They yield a rather trivial

bifurcation diagram. We therefore focus in the sequel on the case Θ11 = Θ33 < 0, Θ22 < 0.

One sees from equation (26) that the nontrivial equilibrium P12 collides respectively with

P2 and P3 and disappears on the bifurcations curves:

D1 =

{

(Θ11,Θ22) : Θ22 =
1

2
Θ11, Θ11 = Θ33 < 0

}

, (31)

and

D2 =

{

(Θ11,Θ22) : Θ22 =
B

A
Θ11, Θ11 = Θ33 < 0

}

. (32)

On the other hand, equation (25) shows that the nontrivial equilibrium P23 collides respec-

tively with P2 and P1 on the bifurcation curves D1 and D2. Finally, it follows from equa-

tion (29) that the nontrivial equilibrium P123 collides with P2 and disappears on the bifurca-
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tion curve D1. It also collides with P13 and disappears on the bifurcation curve:

D3 =

{

(Θ11,Θ22) : Θ22 =
2B

3A
Θ11, Θ11 = Θ33 < 0

}

. (33)

The following three topologically different bifurcation diagrams are all one can encounter in

this system under the assumption made on the parameters:

1.
B

A
<

1

2
,

2.
1

2
<

B

A
<

3

4
,

3.
3

4
<

B

A
< 2 .

In all the three cases the flow on the invariant manifold M2 is the same. We shall therefore

for the sake of brevity omit it from the figure with the generic phase portraits, but give it

once in Figure 3. In the drawing we show the approximate solutions R1 and R3 of equation

(10) for R2 = 0. The strait line through the origin and the saddle multi-frequency solution

P13 is a separatrix. It divides the R1R3 plane into two domains of attraction. Starting in

the domain between the R1-axis and the separatrix, the orbits will converge to the single-

frequency solution P1 corresponding to vibrations with frequency Ω1. Starting on the other

hand in the complementary domain, the orbits converge to the single-frequency solution P3

corresponding to vibrations with frequency Ω3. In other words, outside the separatrix, only

single vibrations can occur in the R1R2 plane.

P1 R1

P13

P3

R3

Figure 3: Generic phase portrait on the invariant manifold M2, i.e., R2 = 0.
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The (Θ11,Θ22) parametric portraits corresponding to the cases 1–3 are shown in Figure 4,

while the only possible generic phase portraits are given in Figure 5. In Figure 5 each of

the different types of phase portraits a
�

– f
�

is given as a collection of the three portraits on

the invariant manifolds M1, M3 and M4 which define, as we stated above, completely the

flow. If we take for instance type a
�

we see that in this case the second mode P2 is the

only stable solution the system has, so we will always end up at P2 when doing numerical

simulations. Case b
�

shows the presence of a three-mode P123 which looks stable; however as

it lies in the unstable manifold M4 it is therefore unstable. We have in this case two stable

two-frequency modes namely, P23 and P12. The single modes are all unstable. So combining

the Figures 2 and 3 one can draw out the type of flow there is given the parameters of the

system. We see that the dynamics is quite simple in the sense that the flow behaves, under

all circumstances, in a predictable manner. There are no “exotic” bifurcations nor chaotic

regions in the parameter space.

a

d

e

f

a

c

d

e

1 2 3

b

a

c

D3

D1

D1

D3

D2 D2

D3

D2

D1

d

Θ11

Θ22 Θ22

Θ11

Θ22

Θ11

Figure 4: (Θ11,Θ22) parametric portraits corresponding to system (10).
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a

c
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e

b
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P23

P3 P1

P12

P2 P2

P123
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P2

P1

P2

P13

P2

P2P2 P2

P123

P3 P1

P2P2

R3

P3 P1

P3

P2

P23

P3

P2

P23

P1

P2

P1

P2

P12

P2P2

P13

P123

P13

P2

P1

P2

P1

P2

P3

P2

P23

P3

P2

P23 P12

R3 R1

R2

R1 = R3

R2 R2

R3

R2 R2

R1

R2

R1 = R3

R3

R2

R1

R2

R1 = R3

R2

R2

R1

R2 P2 R2

R1 = R3

R3

R2

R1

R2

R1 = R3

R2

R3

R2

R1

R2

R1 = R3

P13

P13

P13

R2

Figure 5: Generic phase portraits of system (10).
12



5 A system with a stable multi-frequency vibration

Although the spirit of this paper is to stress that single-frequency solutions often prevail, in

the following example we show that this is not always the case. We adapt system (6) by adding

quadratic terms and scaling in the following manner: xi =
√

εxi, βi = εβi, κ = εκ, a =
√

εa.

Omitting the bars yields:











































ẍ1 + Ω2

1
x1 − 1

3
ε
[

β1 − δ1(x1 + x2 + x3)
2
]

(ẋ1 + ẋ2 + ẋ3)

−1

2
ε
[

β2 − 3

4
δ2(x1 − x3)

2
]

(ẋ1 − ẋ3) + 1

3
εκ
(

1

2
ẋ1 − ẋ2 + 1

2
ẋ3

)

− εaẋ3x2 = 0 ,

ẍ2 + Ω2

2
x2 − 1

3
ε
[

β1 − δ1(x1 + x2 + x3)
2
]

(ẋ1 + ẋ2 + ẋ3)

−2

3
εκ
(

1

2
ẋ1 − ẋ2 + 1

2
ẋ3

)

− εaẋ3x1 = 0 ,

ẍ3 + Ω2

3
x3 − 1

3
ε
[

β1 − δ1(x1 + x2 + x3)
2
]

(ẋ1 + ẋ2 + ẋ3)

+1

2
ε
[

β2 − 3

4
δ2(x1 − x3)

2
]

(ẋ1 − ẋ3) + 1

3
εκ
(

1

2
ẋ1 − ẋ2 + 1

2
ẋ3

)

− εaẋ2x1 = 0 .

(34)

This system has under certain circumstances a stable 3-mode, see Figure 6. We can show this

result by averaging the system and studying the averaged flow.

Averaging system (34) and reducing the dimension yields:



















































Ṙ1 = εR1

(

−1

2
Θ11 − AR2

1
− BR2

2
− 2AR2

3

)

+ ε
aΩ3

4Ω1

R2R3 cos θ ,

Ṙ2 = εR2

(

−1

2
Θ22 − BR2

1
− 1

2
BR2

2
− BR2

3

)

+ ε
aΩ3

4Ω2

R1R3 cos θ ,

Ṙ3 = εR3

(

−1

2
Θ11 − 2AR2

1
− BR2

2
− AR2

3

)

+ ε
aΩ2

4Ω3

R1R2 cos θ ,

θ̇ = 1

4
εa sin θ

(

R1R2

R3

Ω2

Ω3

−
R1R3

R2

Ω3

Ω2

−
R2R3

R1

Ω3

Ω1

)

,

(35)

where θ(t) = φ3(t) − φ2(t) − φ1(t). Setting the right-hand side of (35) equal to zero yields a

system of equations, which unfortunately cannot be solved explicitly. The roots can however

be computed numerically quite easily.

5.1 Results of numerical simulation

The differential equations of motion (34) have been used for numerical simulation. For the

sake of comparison with theoretical predictions the quasi-normal deflections xj (j = 1, 2, 3)

have been considered. The following parameter values were used in our numerical analysis:

a = 4, β1 = β2 = 1.5, δ1 = δ2 = 4, ε = 0.01, κ = 1.

13



The averaging method gives the first order approximation of the amplitudes R1, R2 and

R3 of the stable 3-mode solution. For the parameter values under consideration we found

R1 = 1.81788, R2 = 0.997464, R3 = 0.588998. The results are summarised in Figure 6.
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Figure 6: Superposition of the vibration records of x1(t), x2(t) and x3(t), corresponding to
system (34), with x1(0) = 1.818; x2(0) = 0.997; x3(0) = 0.589; ẋ1(0) = ẋ2(0) = ẋ3(0) = 0
and their corresponding normal modes Ri cos Ωit for t ∈ [0, 100].

The superposition of the averaged solution and the exact solution is here shown only for

a time scale of order 1/ε. As we can see there is very good agreement between the averaging

method and the numerical simulation. After that time limit the shift in the phase becomes

too important and the averaged solution slowly drifts off from the exact solution as expected,
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see Figure 7. The amplitudes however remain the same. This was expected as well.
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Figure 7: The averaging solution corresponding with the first mode x1(t) (dashed line) drifts
off from the exact solution (full line) for higher values of the time t > O(1/ε).

5.2 Bifurcation analysis

We shall in the sequel restrict the bifurcation study to the case of self-excitation of the first

and the third component only, i.e., Θ22 > 0, Θ11 = Θ33 < 0.

Starting at the parameter value a = 0 we continue all the possible modes found in the

averaged system with respect to the parameter a and see which bifurcations do take place.

The results, which also hold for the original system (34), are summarised in Figure 8. At

a = 0, the normal modes are: P1 = 1.236694 cos Ω1t, P3 = 1.236694 cos Ω3t, and P13 =

0.714 cos Ω1t + 0.714 cos Ω3t.

In this investigation we continued the unstable 2-mode P13 with respect to the parameter a.

When a increases, the unstable 2-mode becomes an unstable 3-mode which evolves according

to the dotted line. At the parameter value ac1 = 0.81 it coalesces with the stable single

mode P3 creating a branching point and then disappears. When a = 0, P3, is asymptotically

stable. Beyond the branching point value ac1 = 0.81, this mode continues to exist but becomes

unstable.

The single mode P1 remains stable as a grows form 0 to ac2 = 1.83. At this critical value

a stable 3-mode emerges from P1 creating a second branching point and making P1 unstable.

The stable 3-mode evolves according to the full line as a increases. No other bifurcations

or interesting phenomena were observed as a increased further. Also no other significant

behaviour occurs if we continue these modes with respect to other parameters.
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Figure 8: Bifurcation diagram of the possible modes, projected onto the R1R3 – plane, with
respect to the parameter a. BP stands for Branching Point bifurcation.

5.3 Remarks

The modes P13 and P123 correspond to quasi-periodic motion in the original system. The

birth of these tori is due to these branching points. This is in averaging a complete different

scenario from the Neimark-Sacker bifurcation, where we also have a birth of a torus, but in

this case the second period of the torus is always O(1/ε) whereas in our system the second

(and third period in the case of P123) are O(1).

The critical values ac1 and ac2 can be computed exactly by monitoring the eigenvalues

of the system obtained by linearising system (35) around P3 and P1 respectively. At the

branching point bifurcation, one of the eigenvalues becomes zero. We find:

ac2 = 2
√

2
√

AΘ22 − BΘ11 , (36)

ac1 =

√

3
√

3 − 5 ac2 . (37)

6 Conclusion

Using the normal form method of averaging, we were able to explore the system deeply. We

come, after producing the bifurcation diagram, to the conclusion that the system behaves in

a quite predictable manner. No complicated dynamics like strange attractors or chaotic be-
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havior were found as one would have expected. There are many examples of even two-coupled

oscillators where very complicated dynamics occur including torus breakdown, strange attrac-

tors and chaos. See for example [6]. Also we were able to answer the question whether the

single mode always prevails in this type of coupled oscillators. We found the two-frequency

solution of the original quasi-normal self-excited system is, when it exists, always unstable

no matter what the parameters are. Adding, however a specific quadratic term to the basic

system (6) to obtain system (34), we were able to destabilise the single modes and stabilise a

3-mode solution leading to the conclusion that in a slightly modified system the single mode

does not always prevail.

Acknowledgment

The authors would like to thank F. Verhulst, Mathematic Institute Utrecht University the

Netherlands, for his useful remarks.

References

[1] Tondl, A., Self-Excited Vibrations. National Research Institute for Machine Design, Mono-

graph and memoranda No. 9, Prague (1970).

[2] Tondl, A., Notes on the Problem of Self-Excited Vibrations and Nonlinear Resonances of

Rotors Supported on Several Journal Bearings, Wear 8, 349-357 (1965).
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