THE COMPLETION OF LOCALLY REFINED SIMPLICIAL
PARTITIONS CREATED BY BISECTION

ROB STEVENSON

ABSTRACT. Recently, in [Ste05], we proved that an adaptive finite element
method based on newest vertex bisection in two space dimensions for solving
elliptic equations, which is essentially the method from [SINUM, 38 (2000),
466-488] by Morin, Nochetto, and Siebert, converges with the optimal rate.
The number of triangles N in the output partition of such a method is generally
larger than the number M of triangles that in all intermediate partitions have
been marked for bisection, because additional bisections are needed to retain
conforming meshes. A key ingredient to our proof was a result from [Numer.
Math., 97(2004), 219-268] by Binev, Dahmen and DeVore saying that N—Ny <
CM for some absolute constant C, where Ny is the number of triangles from
the initial partition that have never been bisected. In this paper, we extend
this result to bisection algorithms of n-simplices, with that generalizing the
result concerning optimality of the adaptive finite element method to general
space dimensions.

1. INTRODUCTION

Nowadays, adaptive finite element methods are a popular tool for the numerical
solution of boundary value problems. Compared to non-adaptive finite element
methods, they have the potential to achieve the optimal work-accuracy balance
allowed by the polynomial degree, under much milder smoothness conditions on
the solution of the boundary value problem.

The basic loop of an adaptive finite element method consists of computing the
finite element solution with respect to the current partition; computing an a posteri-
ori error estimator, being a sum of local error indicators associated to the individual
elements; a marking of those elements for refinement which correspond to the largest
error indicators; and finally, the construction of the next partition by refining the
marked elements, generally together with elements in some surrounding in order to
retain structural properties of the partition needed to apply the error estimator in
the next iteration. We refer to this refinement of elements in the surrounding of
the marked ones as the completion of the partition.

In this paper, we confine ourselves to partitions into n-simplices, as basic re-
finement step we use bisection, and as the structural property of the partition we
require conformity, meaning that the intersection of any two different simplices in
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the partition is either empty or a common hyperface of both simplices. In this set-
ting, in order to retain conformity, a bisection of a simplex has to be complemented
by bisections of some of its neighbours, which in turn may induce bisections of their
neighbours and so on. The complexity of this completion process is being studied
in this paper. The advantage of the sketched approach is that highly locally refined
partitions can be generated, the arising simplices are uniformly shape regular, and
that finite element spaces with respect to refined partitions are nested. Alterna-
tively, one may consider non-conforming partitions generated by other refinement
strategies. In that case, a valid error estimator will require that the “amount of non-
conformity” is bounded, among other things meaning that the number of hanging
vertices per element has to be uniformly bounded. So also then refinements cannot
be made on a purely individual element basis, and similar questions arise as with
the approach studied here.

In [BDDO04], considering conforming partitions into triangles generated by the
so-called newest vertex bisection rule starting from some fixed initial conforming
triangulation, Binev, Dahmen and DeVore showed that the total number of tri-
angles in the partition at termination of the adaptive finite element method is
bounded by some absolute multiple of the number of triangles that were marked
for refinement in all iterations. In other words, all additional bisections to retain
conformity of all intermediate partitions inflate the final number of triangles by not
more than a constant factor. In [Ste05], we used this result to prove optimal com-
putational complexity of an adaptive linear finite element method, essentially the
method introduced in [MNS00], in the following sense: Whenever for some s > 0,
the solution can be approximated within a tolerance € > 0 in energy norm by a
continuous piecewise linear function with respect to a partition generated by newest
vertex bisection with @(¢~1/#) triangles, and one knows how to approximate the
right-hand side in the dual norm with the same rate with piecewise constants, then
this adaptive method produces approximations that converge with this rate, using
a number of operations that is of the order of the number of triangles in the output
partition. This result can be generalized to higher order elements and/or more
than two space dimensions, for the latter generalization assuming that the result
of Binev, Dahmen and DeVore concerning newest vertex bisection of triangles can
be generalized to more space dimensions, which is the topic of this paper.

Bisection of n-simplices has been studied in [B&n91, Kos94, AMP00] for n = 3,
and in [Mau95, Tra97] for general n, and this work has been inspired by all of these
references. In order to be able to generalize the result from [BDDO04], it will be
important that each uniform refinement of the fixed initial conforming partition
is conforming. Here with a uniform refinement, we mean a partition in which all
simplices have been created by an equal number of bisections. Conformity of all
uniform refinements is not guaranteed for the methods from [Ban91, AMP00]. The
other methods require conditions on the initial partition in addition to conformity.
In this paper, we develop a method that requires less stringent conditions on the
initial partition than those from [Mau95, Tra97], although also with our method
for n > 2 conformity alone is not sufficient. Due to the different way of formulating
such conditions, it is not completely clear how our conditions for n = 3 compare
to those from [Kos94]. For n = 2, our method is equal to newest vertex bisection,
and thus applies to any conforming initial triangulation. We show that in any case
any conforming partition of n-simplices can be refined to a valid initial partition for
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our bisection method. For our bisection method being applied inside an adaptive
finite element method, we show that the result from [BDDO04] generalizes to n-
dimensions: The total number of n-simplices in the partition at termination of the
method can be bounded by some absolute multiple of the number of n-simplices
that were marked for refinement in all iterations.

This paper is organized as follows: In §2, we study recurrent bisections of a single
n-simplex, and show that all its descendents fall into n congruency classes modulo
scalings. Under a connectivity condition on the domain, in §3, we show that in
order to verify conformity of a partition, we only have to check whether (n — 1)-
dimensional hyperfaces match to (n — 1)-dimensional hyperfaces, and thus may
ignore lower-dimensional hyperfaces. In §4, under some conditions on the initial
partition, we show that all uniform refinements are conforming. In Appendix A,
we show that these conditions can always be satisfied by some initial refinement
of any given conforming subdivision into n-simplices. In §5, we demonstrate how
local refinements can be made while retaining conformity. Finally, in §6, we prove
that the result of Binev, Dahmen and DeVore generalizes to n-dimensions.

2. BISECTION OF A SINGLE SIMPLEX

Let 2 < n < m. An n-simplex, or briefly, simplex T in IR™ is the convex hull of
n+ 1 points xg, ..., x, € IR™ that do not lie on a (n — 1)-dimensional hyperplane.
We will identify T" with the set of its vertices {zo,...,x,}. For 0 < k<n -1, a
simplex spanned by k + 1 vertices of T is called a hyperface of T. For k =n—1, it
will be called a true hyperface, and for k < n — 2 it will called a lower dimensional
hyperface.

Corresponding to a simplex {xo, ..., z,}, we will identify %(n + 1)! tagged sim-
plices given by all possible ordered sequences ({xo,x1},x2,...,x,). Although, for
convenience, in the following we will write a tagged simplex as (xg, 1,22, ..., Zn),
the ordering of the first two coordinates is arbitrary.

Given a tagged simplex T = (xg,x1,%2,...,Zy), its children are the tagged
simplices (g, z2, ..., Tn, I“;zl) and (21,Za,...,%n, I“;r—”“) So these children are
generated by bisecting the edge {xo, 21} of T, i.e., by connecting its midpoint with
the other vertices o, ..., z,. See Figure 1 for an illustration. The edge {z¢,z1}

N

FIGURE 1. Bisection of a tagged tetrahedron
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is called the refinement edge of T. In the n = 2 case, the vertex opposite to this
edge is known as the newest verter. A tagged simplex that is created by applying ¢
recursive bisections to T is called a level ¢ descendent of T'. Every different tagging
of a simplex creates a different set of descendents.

Remark 2.1. The bisection rules in [Mau95, Tra97], and for n = 3 in [Ban91, Kos94],
are not equal to ours. If T has refinement edge {z, 1}, then with our approach the
children have refinement edges {xg,z2} and {1, 22}, whereas in these references,
assuming 7" has level 0, the children’s refinement edges are {xg,z2} and {x1,z,},
which, for n > 2, are not only different from our edges, but also do depend on the
ordering of xg and x1. With our approach children are uniquely determined by the
ordered sequence ({zg,x1},2,...,x,) of vertices, and so there is no need to keep
track of a “type” indicating the depth of refinement.

A result similar to the following theorem can be found in [Mau95, Tra97], however
with more complicated proofs.

Theorem 2.2. Let T be a tagged n-simplex in IR"™, and let Ap(x) denote the
barycentric coordinates of x € IR™ with respect to T. Then, with respect to the
distance function dist(z,y) = |[Ar(x) — M (y)||, all 2° level ¢-descendents of T are
mutually congruent. Moreover, in this metric, the level £ +n descendents are con-
gruent to the level £ descendents up to a magnification factor %

Proof. The children of T are mapped into each other by permuting the first 2
barycentric coordinates. Moreover, since the descendents of the children are the
images under linear maps of the children, all level ¢ descendents of T' come in
pairs that are mapped into each other by this reflection. With the induction hy-
pothesis that the level £ — 1 descendents of either of both children are mutually
congruent, which we thus verified for £ — 1 = 1, we infer that the level ¢ descen-
dents of T are mutually congruent. The proof is completed by the observation that

(zo, ””0—;””2, ce, ””OJFTI") is one of the level n-descendants of T, which is mapped onto
T by the similarity transformation A\ — 2(A — A(z)) magnifying distances to xg
with a factor 2. |

3. PARTITIONS AND CONFORMITY

A locally finite collection P of mutually essentially disjoint n-simplices in IR™ is
called a partition of the domain 2 = Q(P), defined as the interior of the union of
these simplices. A partition P is called conforming when the intersection of any
two different T, T’ € P is either empty, or a hyperface of both simplices. Different
simplices T, T’ that share a true hyperface will be called neighbours.

Next, we will see that under a mild condition on the domain, in order to verify
whether a partition is conforming, we only have to check that there is no true
hyperface of a simplex whose interior has non-empty intersection with a lower-
dimensional hyperface of another simplex.

Theorem 3.1. Let Q = Q(P) be such that for any x € Q, for all sufficiently small
open balls B C IR"™ that contain x, QN B is connected. Then P is conforming if
and only if any two different T,T" € P for which T N'T’ contains a point interior
to a true hyperface of T are neighbours.

Proof. One implication is obvious. For the other, let two different 7,7’ € P with
TNT # () be given. For x € TNT’, let P, be the collection of S € P that contain
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x. Let B > x be an open ball such that £ N B is connected, and contained in
Usep,S. Let X be the subset of 2N B created by removing any point that is on a
lower dimensional hyperface of any of the S € P,. Then X is also connected, and
it contains points y € T', 3/ € T".

Let T = Sp,...,Sp, = T’ be the ordered sequence of simplices in P, that is
passed when traveling along a path in ¥ connecting y and 3. By assumption, and
the construction of X, for any 1 <i < p, S;_1 and §; are neighbours. We will now
show that for 1 < ¢ < p, N]_S; is a hyperface of S;. For ¢ =1 it is true, and let
us assume that it is true for a ¢ —1 > 1. Then NY_,S;, being the intersection of the
hyperfaces ﬂf;olSi and S,_q1 NSy of Sy_1, is a hyperface of S;_; that is contained
in S4—1 NSy, and thus is a hyperface of S,. By applying this result for ¢ = p, we
conclude that z is contained in the hyperface N?_,S; of T’. Since x € T NT’ was
arbitrary, we infer that 7N T’ is the union of hyperfaces of T’, and so, because
T NT is convex, that T NT" is a hyperface of T’, and similarly of T'. O

The above theorem is generally not valid without the condition on 2 as illustrated
in Figure 2.

FIGURE 2. A nonconforming partition, although there is no face
that contains a point of another tetrahedron in its interior.

4. PARTITIONS CREATED BY REFINEMENTS

In the remainder of this paper, we will exclusively consider partitions of tagged
simplices that can be created by recurrent bisections, as discussed in §2, starting
from some fized initial partition Py of tagged simplices. So whenever we refer to a
partition P, we mean a partition of this kind, and any T' € P is a descendent, with
some level £(T'), of a simplex from Py. A partition P is a uniform refinement of P,
when all its simplices have the same level.

From Theorem 2.2, we infer that all partitions are uniformly shape regular only
dependent on Fy and n, meaning that the ratio of the radii of the smallest circum-
scribed and largest inscribed balls of any T is uniformly bounded, only dependent
on Py and n. More particular, there exist constants d, D > 0, only dependent on
Py and n, such that for any 7',

(4.1) d2—4T) < meas(T), diam(T) < D24/,
We will always assume that Py satisfies the following 8 conditions:

(a) With Q = Q(R), for any = € Q, for all sufficiently small open balls B C IR"
that contain x, 2 N B is connected.

(b) Py is conforming.
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FIGURE 3. Matching neighbours for n = 2, and their level 2 descendents

(c) Any two neighbouring tagged simplices T' = (zg, ..., %), T' = (..., 2},)
from Py match in the following sense: If {zg, 21} or {xf, 2]} is on T NT’, then
{zo, 21} = {x(, )} and z; = z}, for all but one £ € {2,...,n}. Otherwise, z;, = )
for £ € {3,...,n}.

Note that because of (a) and since the domain does not change by refinements, we
can always rely on Theorem 3.1 to check conformity of any P.

For n = 2, (c) is equivalent to the condition that, if, for any two neighbours
T, T, TNT is the refinement edge of either T or 7", then it is the refinement
edge of both. See Figure 3 for an illustration. It is known, see [BDDO04] and the
references therein, that for any conforming partition into triangles there exists a
local numbering of the vertices that satisfies (c).

Remark 4.1. Instead of (c¢), in [Mau95, Tra97] the stronger condition was required
that z, =  for all but one £ € {0,...,n}. As shown in [Tra97], for a simply con-
nected domain, it can be satisfied if and only if each (n — 2)-dimensional hyperface
not on the boundary of the domain is shared by an even number of simplices. So
for n = 2, it means that the valence of any interior vertex should be even.

We do not expect that for n > 2 Condition (c¢) can be satisfied for each partition.
E.g., for n = 3, one may verify that it requires that the total number of tetrahedra,
that shares a refinement edge of some tetrahedron which edge is not on the boundary
of the domain, is even. Therefore, as an alternative, inspired by such a construction
for n = 3 in [Kos94], in Appendix A we show that any conforming partition of n-
simplices can be refined to a conforming partition Py that allows a local numbering
of the vertices that satisfies (c).

We now proceed assuming Py satisfies (a)-(c).

Theorem 4.2. Any uniform refinement P of Py is conforming.

Proof. In addition to the statement we will show that all neighbours in P satisfy
the matching condition (c). Let ¢(T) = ¢ > 1 for all T € P, and assume that
the statement is true for £ — 1. Let T,T’ be two different simplices from P such
that TN T’ contains a point interior to a true hyperface of T. If T, T’ have the

same parent (zo,...,%y), then T = (zq,22,..., 225, T" = (zq,22,..., 2F%)
are matching neighbours.
If T,T" have different parents (zo,...,z,) and (x, ...,z ), then these parents

are matching neighbours by the induction hypothesis. So if {zg,z1} is on the
interface between these parents, then {xg,z1} = {z{,2}}, and z; = 2} for all but
one i € {2,...,n}. Without loss of generality assuming that ¢ = z{, and = = 7,

! ’
either T' = (xg, z2, . . ., I";“) and T' = (z(, z, .. ., Z“;—ml), or similar with 2y and

xg replaced by x1 and ], respectively, showing that T', T’ are matching neighbours.
If {x0, 1} is not on the interface between the parents, then {x{,z}} is not on this
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interface, and z; = 2} for ¢ € {3,...,n}. Without loss of generality we assume
that xg, 2{, are not on the interface, and so {x1,z2} = {z},24}. We conclude that
T = (z1,22,..., 28 and T = (2}, 25,..., ﬂ%), and that they are matching
neighbours. a

Remark 4.3. Given the rule for bisecting a tagged simplex, along the lines of above
proof one may verify that the matching condition (¢) on neighbours in P, is also
necessary for obtaining conformity of all uniform refinements.

Remark 4.4. In [B&n91, AMPO00], algorithms for bisection tetrahedra, i.e., for n = 3,
are formulated that do not require a matching of neighbours in the initial partition.
With these methods, however, Theorem 4.2 is generally not valid; only uniform
refinements with levels divisible by n are guaranteed to be conforming. The result
of Theorem 4.2, however, will be heavily used in the following. An interesting
open question is whether the tetrahedra on level n generated by the algorithms
from [B&n91, AMPO00] can be re-tagged so that (c) is satisfied. For n = 2, starting
with an arbitrary tagging of the triangles, the corresponding statement is valid (see
[BDD04, p229]).

In the following, tagged neighbours will be called compatibly divisible when they
have the same refinement edge. For a partition P, and T € P, we set

N(P,T) := {neighbours 7" of T' in P that contain the refinement edge of T'}.

Corollary 4.5. For any partition P, T € P, and T' € N(P,T), either
o (T =4UT) and T, T" are compatibly divisible, or
o /(T =4(T)—1 and T is compatibly divisible with one of both children of
T'.

Proof. For some p > 2, let T1, T» be neighbours with ¢(T7) = ¢(T3) — p. Then there
is a level p descendent of T3 that contains a point of T5 interior to a true hyperface.
Theorem 4.2 shows that this level p descendent is a neighbour of T3, i.e., that it has
a true hyperface in common with 75 and thus with T;. Since a level p descendent
of T7 has n —p < n — 1 vertices in common with 77, we arrive at a contradiction,
and conclude that the levels of neighbours differ at most one.

Now let 7" € N(P,T) with (T") = £(T')+1. Then again Theorem 4.2 shows that
one of both children of T is a neighbour of T’. However, since T has its refinement
edge on T'NT’ this cannot be the case.

Concerning the two remaining cases, if ¢(T”) = £(T) then T, T’ are indeed com-
patibly divisible, since otherwise the uniform refinement with simplices of level
£(T) + 1 would not be conforming.

If £(T") = ¢(T) — 1, then one of both children of 7" has a point of T interior to
a true hyperface, so that they are neighbours by Theorem 4.2. Since the uniform
refinement with simplices of level £(T')+1 is conforming, we conclude that this child
and T are compatibly divisible. O

5. LOCAL REFINEMENTS WHILE RETAINING CONFORMITY

Let P be a conforming partition, and let M C P be a subset of simplices that
have been marked for bisection. After bisecting the simplices from M, a gener-
ally nonconforming partition P’ arises. To restore conformity, one may apply the
following completion algorithm:
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complete[ P’

for T € P', for which there exists a T' € P’ such that T NT' contains a point
interior to a hyperface of T, whereas T and T’ are no neighbours

do bisect T

until such T do not exist

Since the only way to cure the situation as decribed in the for-statement, or
towards curing it, is to bisect T, complete[P’] outputs the smallest conforming
refinement of P’, assuming that a conforming refinement exists. This, however,
holds true, since with £ = maxyscp/ £(T"), the uniform partition with simplices of
level £ is a conforming refinement of P’. When implementing complete, care has
to be taken to ensure that the computational work is of the order of the number of
bisections that are made.

An alternative for first bisecting all simplices in M and then restoring conformity
by a call of complete, is, when running over all T € M, for each T to replace
the current partition P by its smallest conforming refinement in which 7" has been
bisected. A call of the routine refine[P, T'] given below determines such a partition.
Since it bisects generally more simplices than only T, it may happen that it bisects
T’ € M for which a call has not yet been made, which call thus then can be skipped.
In other words, the number of calls of refine is never larger than the number of
marked simplices. Since also with this approach, only simplices are bisected that
either are marked, or whose bisection is unavoidable for obtaining a conforming
partition, again we end up with the smallest conforming partition in which all
marked simplices are bisected.

The following routine refine[P, T is a generalization to n-dimensions of such a
routine by Kossaczky in [Kos94] for bisecting tetrahedra. Based on Corollary 4.5,
the idea is to determine, possibly by recursive calls, a closed set of compatibly
divisible neighbours that share the refinement edge with T, after which this set of
simplices can be simultaneously bisected without introducing non-conformities.
refine[P,T| — P':

% P is a conforming partition and T € P.
K:=0;F= {T}
do Fnew :=10
forall 7/ € F do
forall 7" € N(P,T") with T" ¢ F UK do
if T" compatibly divisible with T'
then Fnew := Fnew U {T"}
else P :=refine[P,T"]
add to Fnew the child of T" that is a neighbour of T’
endif
endfor

endfor

K=KUF

F = Fnew
until F =0
create P’ from P by simultaneously bisecting all T' € K

Theorem 5.1. P’ := refine[P,T] terminates, and P’ is smallest conforming re-
finement of P in which T has been bisected. If T’ € P’ is newly created by the call,
then ¢(T") < ¢(T) + 1.
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Proof. Let £(T") = 0. Then Corollary 4.5 shows that there will be no recursive calls
of refine, and that just before any evaluation of the until-statement, all T/ € K
have the same refinement edge as T', and satisfy £(T") = ¢(T) and N(P,T') C KUF.
If I # (), then in the next iteration of the do-until loop, the set K will be
extended. Since, on the other hand, from the uniform shape regularity we know
that the cardinality of K is bounded, we conclude that this loop terminates. After
termination, F' = (), and so for all T’ € K, N(P,T’) C K, by Theorem 3.1 meaning
that by bisecting all 7/ € K conformity is retained. It is clear that we cannot
confine bisection to a smaller set of simplices, and that ¢(T') = ¢(T) + 1 for any
newly created T".

Assuming that for some ¢ — 1 > 1, the statement is true for T with ¢(T) =
¢ — 1, let us consider T with ¢(T') = ¢. Possible recursive calls of refine[P,T"]
are unavoidable, where Corollary 4.5 shows that £(T") = ¢(T) — 1. The induction
hypothesis then shows that such a call outputs the smallest conforming partition
in which 7" has been bisected, and moreover, that it does not bisect any simplex
that is already in K U F, since that would create simplices with levels larger than
(T)=£(T") + 1. Now the proof is completed using the same arguments as in the
0(T) =0 case. O

Assuming that the datastructures allow that the determination of N(P,T') re-
quires not more than an absolute constant number of operations, note that the
number of operations needed for P’ := refine[P, T| is O(#P’ — #P).

In addition to the properties of refine shown in Theorem 5.2, we have

Theorem 5.2. With the constant D from (4.1), any newly created T' by the call
refine[P, T'| satisfies

o Dal/n /
D) il = < 0 3 2 (<),
' €T’ xe _9—1/n
k=£(T")

Proof. For {(T) = 0, any newly created 7" is a child of a T that has its refinement
edge on 0T, so that d(T’,T) = 0. Note that in this case the sum over k is empty
since £(T") = ¢(T) + 1.

Assuming that the theorem holds for ¢(T) = ¢ — 1 > 0, let us consider T' with
UT) = ¢. If T" is created by bisection of any simplex from the set K, then the
statement is proven as in the £(T) = 0 case. If T” is created by a recursive call
refine[P, T"], then using T NT" # @, the induction hypothesis shows that

d(T',T) < d(T’,T") + diam(T")

«T") £(T)
S D21/n Z 27}6/71 +D27€(T”)/n — D21/n Z 27]6/7’7,,
k=0(T") k=0(T")
by £(T") = ¢(T) — 1. 0

The routine refine, that provides an alternative for the straightforward bisection
of marked simplices complemented with a call of complete, is here discussed mainly
because its properties proven in Theorems 5.1 and 5.2 will allow us, in the next
section, to bound the complexity of a recurrent marking and completion process.
It turns out, however, that an implementation of this process by means of calls
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of refine is particularly efficient. For this reason, this approach is followed in the
adaptive finite element package ALBERTA ([SS05]).

Remark 5.3. Inside adaptive finite element methods, simplices can be marked for
multiple bisections. This means that not only these simplices should be bisected,
but also some of their descendents, with the obvious restriction that a descendent
can only be on the list for bisection when its parent is. For example, for n = 2, the
adaptive finite element method introduced in [MNS00] selects triangles for their
bisection, and that of their children and 2 of their 4 grandchildren. The evaluation
of such multiple markings can be done by scheduling them as an ordered sequence
of groups of single markings, where the marking of a child is in the next group as
that of its parent. After finding the smallest conforming refinement in which all
simplices from a group are bisected, it may happen that bisections corresponding
to markings from next groups already have taken place, so that these markings can
be deleted.

6. THE COMPLEXITY OF A RECURRENT MARKING AND COMPLETION PROCESS

We study the following algorithm:
P .= PO
do mark some set M C P for bisection
for T € M do
ifTeP %i.e., if it has not been yet bisected as a byproduct of a
% previous call of refine in this for-loop
then P := refine[P, T
endif
endfor
until satisfied

As we have seen, the output partition of this algorithm is the smallest conform-
ing refinement of Py in which all marked simplices have been bisected. After the
preparations from the previous sections, the proof of the following main theorem
concerning this algorithm follows the lines of the proof of the corresponding theorem
for n = 2 by Binev, Dahmen and DeVore. Since there are some small modifications,
we include the proof for the reader’s concenience.

Theorem 6.1 (generalizes [BDD04, Theorem 2.4] for n = 2). With M being the
set of simplices for which a call of refine is made in above algorithm, which set is
thus not larger than the union of all marked simplices, for the output partition P it
holds that #(P\(PNPy)) < #M, only dependent on the constants d, D from (4.1),
and n.

Proof. Fixing n, let a: NgU {—1} — IR", b: INg — IR" be some sequences with

Sl _jalp) < o0, Y02 b(p)27P/" < oo, and infyxo b(p)a(p) > 0. Valid instances
are a(p) = (p+2)~! and b(p) = 27/ ("D, Let A := D(% +1) Y2 b(p)27P/m.
Inside this proof, P will always denote the output partition of the algorithm,

whereas any intermediate partition will be denoted as P. We define \ : P x M by
, a(l(T) — (T")) if d(T",T) < A2~4T)/" and ¢(T") < {(T) 41,
T, T) = .
0 otherwise.

For any fixed T € P, and ¢’ € INg with ¢/ < ¢(T) + 1, there exists a uniformly
bounded number, only dependent on d and D, of " € P with d(T",T) < A2~4T)/n
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and £(T') = ¢'. In view of the definition of A, we thus have ) . ., M(T",T) <

> o1 a(p) < o0, and 80 Ype s Yo p ATV, T) S #M.
In the second part of this proof, we are going to show that for all T’ € P\(PNF),

(6.1) S AT T) 21

TeM

only dependent on d, D and n, so that

#P\(PNPR)S > Y NS> Y NI,T) S #M,

T'eP\(PNPy) TEM TeEM T'eP

as required.

Let Ty € P\(P N Py). For j > 0, given that T; has been defined and assuming
that it is not in Py, we let 11 € M be such that 7T); has been created by the call
refine[P, T;,1]. Let s be the smallest integer such that £(Ts) = £(Ty) — 1. Note that
such an s exists since at some point the sequence ends with a T; € Py, thus with
¢(T3) = 0, whereas the value ¢(Tp) — 1 cannot be passed without being attained
because E( Tj41) > £(T;) — 1 by Theorem 5.1. From Theorem 5.2 and (4.1), for
1 < j < s we have

d(To, ) S (To, Tl) —|— dlam(Tl) —|— d(Tl, )

J Jj—1
SZ (Th—1,Tk) +Zdiam(Tk)
k=1 k=1
J Jj—1
D2/,
e 9—U(Tk-1)/n —L(T)/n
<D T2 e ) prt
k=1 k=1
21/n J—1 ,
(Ty)
< D( — 92— 1/n 22 *
_py 2 o~ (U(To)+p) /n
=D(1+ W)Z)m@’j) ;
p:

where m(p, j) denotes the number of k < j — 1 with £(Ty) = ¢(To) + p.

In case m(p, s) < b(p) for all p, then the definition of the constant A shows that
d(Ty, Ts) < A274T0)/" and so by definition of A\, we conclude that \(Tp,Ts) =
a(l(Ts) — ¢(Tp)) = a(—1), which shows (6.1).

Otherwise, there exist p with m(p,s) > b(p). For each of those p, there exists
a smallest j = j(p) with m(p,j(p)) > b(p). We denote p that gives rise to the
smallest j(p) as p*, and denote j(p*) as j*. Thus m(p,j* — 1) < b(p) for all p, and
m(p*, j* — 1) = b(p*). As in the case that m(p,s) < b(p) for all p, we find that for
all k < j* — 1, d(Ty, T) < A2~T0)/™ and \(Tp, Ty) = a(l(Ty) — €(Tp)). In view of
the definition of m(-,-), we find that

> ATo, Tk) = m(p*,j* — L)a(p”)

{k<j* —2:4(Tk)=€(To)+p* }

= b(p™)a(p” )>;ggb( p)a(p) >0,

showing (6.1) also in this case. O
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The only properties that have been used in this proof are (4.1), and that of
refine given in Theorems 5.1 and 5.2.

APPENDIX A. AN INITIAL REFINEMENT TO SATISFY CONDITION (c)

Suppose we are given some conforming partition of n-simplices. Generalizing
upon the construction by Kossaczky in [Kos94] for n = 3, in this appendix we
construct a conforming refinement consisting of tagged simplices that satisfies Con-
dition (c).

We start with constructing a conforming subdivision of any n-simplex into %(n—i—
1)! subsimplices, together with a global labeling of vertices and a marking of edges
in this subdivision that satisfy the following conditions:

e A vertex on a marked edge has no label,

e the other vertices are labeled with numbers 2,...,n,

e cach subsimplex contains vertices with labels 2,...,n and two vertices on
a marked edge

e the subdivision and labeling/marking is symmetric in the barycentric co-
ordinates of the original (macro-) simplex.

For n = 2, we subdivide a triangle into tree subtriangles by connecting the vertices
with the centroid. This centroid is labeled with number 2, and the edges of the
original (macro-) triangle are marked. Clearly above conditions are satisfied.

For n > 3, assuming we have defined a valid subdivision and labeling and mark-
ing of any (n— 1)-simplex, we define this for an n-simplex as follows: Create (n+1)
subsimplices by connecting the vertices with the centroid. Label the centroid with
number n. Each of the subsimplices shares a face with the original (macro-) sim-
plex. Use the subdivision of any (n — 1)-simplex to subdivide these faces into $n!
labeled/marked (n — 1)-simplices. Connect the vertices on the faces with the cen-
troid to end with a subdivision into (n+ 1) x n! = 2(n+1)! simplices with a valid
labeling/marking. See Figure 4 for an illustration.

FIGURE 4. Subdivision of a tetrahedron into 4 x 3 tetrahedra with
the labeling of vertices and marking of edges

Returning to the given conforming partition of n-simplices, we subdivide each
of its simplices into %(n + 1)! subsimplices as above. Clearly this refined partition,
that will serve as the initial partition Py, is also conforming. Tagging the simplices
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in Py means specifying a local ordering of the vertices in each simplex. We simply
let each simplex inherit the labeling of the vertices from the macro-simplex that
contains it, with the addition that both vertices on the marked edge are numbered
0 and 1 in arbitrary order, see Figure 5 for an illustration for n = 2. Neighbours

FIGURE 5. Local numbering of the vertices of the subtriangles of
a macro-triangle

within one macro-simplex are obviously matching, since their numbering of the
vertices on the interface between them is the same modulo permutations of 0 and
1. The same is valid for neighbours from different macro-simplices, because of the
symmetry of the labeling in the barycentric coordinates. We conclude that Py
satisfies Condition (c).

Remark A.1. For any two tagged neighbours T' = (xo, ..., xy), T" = (2§, ..., 2),) in
Py as constructed above, possibly after permuting z( and i, it holds that z, =
for all but one ¢, which, in case T NT’ does not contain the refinement edges is
more than required by Condition (c). It is not clear whether the extra freedom
allowed by Condition (c) can be used to find a subdivision of each macro-simplex
into a smaller number of subsimplices such that the resulting Py still satisfies (c).

Acknowledgment. The author would like to thank Mario Mommer for helpful
comments.
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