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Abstract. Let β > 1 be a non-integer. We consider expansions of
the form

∑∞

i=1

di

βi , where the digits (di)i≥1 are generated by means of a

Borel map Kβ defined on {0, 1}N × [0, bβc/(β − 1)]. We show existence
and uniqueness of an absolutely continuous Kβ-invariant probability
measure w.r.t. mp ⊗ λ, where mp is the Bernoulli measure on {0, 1}N

with parameter p (0 < p < 1) and λ is the normalized Lebesgue measure
on [0, bβc/(β − 1)]. Furthermore, this measure is of the form mp ⊗µβ,p,
where µβ,p is equivalent with λ. We establish the fact that the measure
of maximal entropy and mp ⊗ λ are mutually singular. In case the
number 1 has a finite greedy expansion with positive coefficients, the
measure mp ⊗ µβ,p is Markov. In the last section we answer a question
concerning the number of universal expansions, a notion introduced in
[EK].

1. Introduction

Let β > 1 be a non-integer. In this paper we consider expansions of
numbers x in Jβ := [0, bβc/(β − 1)] of the form

x =

∞
∑

i=1

ai

βi

with ai ∈ {0, 1, . . . , bβc}. We shall refer to expansions of this form as
(β−)expansions or expansions in base β. The largest expansion in lexi-
cographical order is the greedy expansion; [P], [R1], [R2], and the smallest
is the lazy expansion; [JS], [EJK], [DK1]. The greedy expansion is obtained
by iterating the greedy transformation Tβ : Jβ → Jβ , defined by

Tβ(x) = βx− d for x ∈ C(d),

where

C(j) =

[

j

β
,
j + 1

β

)

, j ∈ {0, . . . , bβc − 1},

and

C(bβc) =

[bβc
β
,
bβc
β − 1

]

.
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The greedy expansion of x ∈ Jβ is given by x =
∑∞

i=1 di(x)/β
i, where

di(x) = d if and only if T i−1
β (x) ∈ C(d). Let ` : Jβ → Jβ be given by

`(x) =
bβc
β − 1

− x,

then the lazy transformation Lβ : Jβ → Jβ is defined by

Lβ(x) = βx− d for x ∈ ∆(d) = ` (C(bβc − d)) , d ∈ {0, . . . , bβc}.

The lazy expansion of x ∈ Jβ is given by x =
∑∞

i=1 d̃i(x)/β
i, where d̃i(x) = d

if and only if Li−1
β (x) ∈ ∆(d).

We denote by µβ the extended Tβ-invariant Parry measure (see [P],[G])
on Jβ which is absolutely continuous with respect to Lebesgue measure, and
with density

hβ(x) =







1
F (β)

∑∞
n=0

1
βn 1[0,T n

β
(1))(x) 0 ≤ x < 1,

0 1 ≤ x ≤ bβc/(β − 1),

where F (β) is the normalizing constant. Define the lazy measure ρβ on Jβ

by ρβ = µβ ◦`−1. It is easy to see ([DK1]) that ` is a continuous isomorphism
between (Jβ , µβ, Tβ) and (Jβ , ρβ , Lβ).

In order to produce other expansions in a dynamical way, a new transfor-
mation Kβ was introduced in [DK2]. The expansions generated by iterating
this map are random mixtures of greedy and lazy expansions. This is done
by superimposing the greedy map and the corresponding lazy map on Jβ.
In this way one obtains bβc intervals on which the greedy map and the lazy
map differ. These intervals are given by

Sk =

[

k

β
,

bβc
β(β − 1)

+
k − 1

β

]

, k = 1, . . . , bβc,

which one refers to as switch regions. On Sk, the greedy map assigns the
digit k, while the lazy map assigns the digit k − 1. Outside these switch
regions both maps are identical, and hence they assign the same digits. Now
define other expansions in base β by randomizing the choice of the map used
in the switch regions. So, whenever x belongs to a switch region, flip a coin
to decide which map will be applied to x, and hence which digit will be
assigned. To be more precise, partition the interval Jβ into switch regions
Sk and equality regions Ek, where

Ek =

( bβc
β(β − 1)

+
k − 1

β
,
k + 1

β

)

, k = 1, . . . , bβc − 1,

E0 =

[

0,
1

β

)

and Ebβc =

( bβc
β(β − 1)

+
bβc − 1

β
,

bβc
β − 1

]

.

Let

S =

bβc
⋃

k=1

Sk, and E =

bβc
⋃

k=0

Ek,
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and consider Ω = {0, 1}N with product σ-algebra A. Let σ : Ω → Ω be the
left shift, and define Kβ : Ω × Jβ → Ω × Jβ by

Kβ(ω, x) =























(ω, βx− k) x ∈ Ek, k = 0, 1, . . . , bβc,

(σ(ω), βx − k) x ∈ Sk and ω1 = 1, k = 1, . . . , bβc,

(σ(ω), βx − k + 1) x ∈ Sk and ω1 = 0, k = 1, . . . , bβc.
The elements of Ω represent the coin tosses (‘heads’=1 and ‘tails’=0) used

every time the orbit {Kn
β (ω, x) : n ≥ 0} hits Ω × S. Let

d1 = d1(ω, x) =















k if x ∈ Ek, k = 0, 1, . . . , bβc,
or (ω, x) ∈ {ω1 = 1} × Sk, k = 1, . . . , bβc,

k − 1 if (ω, x) ∈ {ω1 = 0} × Sk, k = 1, . . . , bβc,
then

Kβ(ω, x) =







(ω, βx− d1) if x ∈ E,

(σ(ω), βx − d1) if x ∈ S.

Set dn = dn(ω, x) = d1

(

Kn−1
β (ω, x)

)

, and let π2 : Ω × Jβ → Jβ be the

canonical projection onto the second coordinate. Then

π2

(

Kn
β (ω, x)

)

= βnx− βn−1d1 − · · · − βdn−1 − dn,

and rewriting yields

x =
d1

β
+ · · · + dn

βn
+
π2

(

Kn
β (ω, x)

)

βn
.

This shows that for all ω ∈ Ω and for all x ∈ Jβ one has that

x =
∞
∑

i=1

di

βi
=

∞
∑

i=1

di(ω, x)

βi
.

The random procedure just described shows that with each ω ∈ Ω corre-
sponds an algorithm that produces an expansion in base β. Furthermore, if
we identify the point (ω, x) with (ω, (d1(ω, x), d2(ω, x), . . .)), then the action
of Kβ on the second coordinate corresponds to the left shift.

Let <lex and ≤lex denote the lexicographical ordering on both Ω and
{0, . . . , bβc}N. We recall from [DdV] the following basic properties of random
β-expansions.

Theorem 1. Suppose ω, ω′ ∈ Ω are such that ω <lex ω
′, then

(d1(ω, x), d2(ω, x), . . .) ≤lex (d1(ω
′, x), d2(ω

′, x), . . .).

Theorem 2. Let x ∈ Jβ and let x =
∑∞

i=1 ai/β
i with ai ∈ {0, 1, . . . , bβc}

be an expansion of x in base β. Then there exists an ω ∈ Ω such that for all

i ≥ 1, ai = di(ω, x).
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In [DdV] it is shown that there exists a unique measure of maximal en-
tropy νβ for the map Kβ . It is the main goal of this paper to investigate
the relationship between this measure and the measure mp ⊗ λ, where λ is
the normalized Lebesgue measure on Jβ and mp is the Bernoulli measure on

Ω = {0, 1}N with parameter p (0 < p < 1):

mp({ω1 = i1, . . . , ωn = in}) = p
∑n

j=1
ij (1 − p)n−

∑n
j=1

ij .

In order to prove that νβ and mp ⊗λ are mutually singular, we introduce
in the next section another Kβ-invariant probability measure. This measure
is a product measure mp ⊗µβ,p and we show in Section 3 that Kβ is ergodic
w.r.t. this measure. Furthermore, the measures mp ⊗ λ and mp ⊗ µβ,p are
shown to be equivalent. These facts enable us to conclude that the measures
νβ and mp ⊗ λ are mutually singular. Moreover, it follows that mp ⊗ µβ,p

is the unique absolutely continuous Kβ-invariant probability measure w.r.t.
mp ⊗ λ. The measure µβ,p satisfies the important relationship

µβ,p = p · µβ,p ◦ T−1
β + (1 − p) · µβ,p ◦ L−1

β .

In Section 4 we show that if 1 has a finite greedy expansion with positive
coefficients, then the measure mp ⊗ µβ,p is Markov, and we determine the
measure µβ,p explicitly. In Section 5 we discuss some open problems. As an
application of some of the results in this paper, we also show that for λ-a.e.
x ∈ Jβ , there exist 2ℵ0 so called universal expansions of x in base β.

2. The skew product transformation Rβ

Define the skew product transformation Rβ on Ω × Jβ as follows.

Rβ(ω, x) =

{

(σ(ω), Tβx) if ω1 = 1,
(σ(ω), Lβx) if ω1 = 0.

On the set Ω×Jβ, we consider the σ-algebra A⊗B, where A is the product
σ-algebra on Ω and B is the Borel σ-algebra on Jβ. Let µ be an arbitrary
probability measure on Jβ . It is easy to see that mp ⊗ µ is Rβ-invariant if

and only if µ = p · µ ◦ T−1
β + (1 − p) · µ ◦ L−1

β . The following result shows

that a product measure of the form mp ⊗ µ is Kβ-invariant if and only if it
is Rβ-invariant.

Lemma 1. mp ⊗ µ ◦K−1
β = mp ⊗ µ ◦R−1

β = mp ⊗ ν, where

ν = p · µ ◦ T−1
β + (1 − p) · µ ◦ L−1

β .

Proof. Denote by C an arbitrary cylinder in Ω and let (a, b) be an interval
in Jβ. It suffices to verify that the measures coincide on sets of the form
C × (a, b), since the collection of these sets forms a generating π-system.
Furthermore, let [i, C] = {ω1 = i} ∩ σ−1(C) for i = 0, 1. Note that E ∩
T−1

β (a, b) = E ∩ L−1
β (a, b), and that

K−1
β (C × (a, b)) = C × (E ∩ T−1

β (a, b))

∪ [0, C] × (S ∩ L−1
β (a, b))

∪ [1, C] × (S ∩ T−1
β (a, b)).
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Hence,

mp ⊗ µ ◦K−1
β (C × (a, b)) = p ·mp(C) · µ(T−1

β (a, b))

+(1 − p) ·mp(C) · µ(L−1
β (a, b))

= mp ⊗ ν(C × (a, b)).

On the other hand,

R−1
β (C × (a, b)) = [0, C] × L−1

β (a, b) ∪ [1, C] × T−1
β (a, b),

and the result follows. 2

Let D = D(Jβ,B, λ) denote the space of probability density functions on
Jβ with respect to λ. A measurable transformation T : Jβ → Jβ is called
nonsingular if λ(T−1B) = 0 whenever λ(B) = 0.

If µ is absolutely continuous w.r.t. λ with probability density f = dµ/dλ
and if T is a nonsingular transformation, then µ◦T −1 is absolutely continu-
ous w.r.t. λ with probability density PT f (say). Equivalently, the Frobenius-
Perron operator PT : D → D is defined as a linear operator such that for
f ∈ D, PT f is the function for which

∫

B
PT fdλ =

∫

T−1B
fdλ for all B ∈ B.

Existence and uniqueness (λ-a.e.) follow from the Radon-Nikodým Theo-
rem. A nonsingular transformation T : Jβ → Jβ is said to be a Lasota-Yorke
type map (L-Y map) if T is piecewise monotone and C 2. Piecewise monotone
and C2 means that there exists a partition P = {[ai−1, ai] : i = 1, . . . , k},
such that for each i = 1, . . . , k, the restriction of T to (ai−1, ai) is mono-
tone and extends to a C2 map on [ai−1, ai]. For such a transformation the
Frobenius-Perron operator can be computed explicitly (see [BG, page 86])
by the formula

(1) PT f(x) =
∑

T (y)=x

f(y)

|T ′(y)| .

If, in addition, |T ′(x)| ≥ α > 1 for each x ∈ (ai−1, ai), i = 1, . . . , k, then
we say that T is a piecewise expanding L-Y map. Let T1, . . . , Tn be L-Y
maps on Jβ . Define for f ∈ D, Pf =

∑n
i=1 pi · PTi

f , where (p1, . . . , pn)
is a probability vector. We recall the following important theorem, due to
Pelikan; [Pel]. For more results concerning invariant densities of L-Y maps
see [LY], [LiY], [Pel].

Theorem 3. Suppose that for all x ∈ Jβ,
∑n

i=1
pi

|T ′
i (x)| ≤ γ < 1, where T ′

i (x)

is the appropriate one sided derivative at the endpoints of P. Then for all

f ∈ D, the limit

lim
n→∞

1

n

n−1
∑

j=0

P jf = f∗

exists in L1(Jβ , λ). Furthermore, Pf ∗ = f∗ and one can choose f ∗ to be of

bounded variation.
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Since Tβ and Lβ are both piecewise expanding L-Y maps, it follows at
once from Theorem 3 that for all f ∈ D, the limit

lim
n→∞

1

n

n−1
∑

j=0

P jf = f∗

exists in L1(Jβ , λ), where

Pf = p · PTβ
f + (1 − p) · PLβ

f.

Define for f ∈ D the probability measure µf by

µf (B) =

∫

B
fdλ [B ∈ B].

Observe that Pf = f if and only if

µf = p · µf ◦ T−1
β + (1 − p) · µf ◦ L−1

β ,

i.e., if and only if mp ⊗ µf is Rβ-invariant (cf. Lemma 1).
Let 1 denote the constant function equal to 1 on Jβ and consider the

function 1∗, given by

1∗ = lim
n→∞

1

n

n−1
∑

j=0

P j1 in L1(Jβ , λ).

We shall assume that the function 1∗ is of bounded variation. Note that
this is possible by Theorem 3. It follows easily from the definition of bounded
variation that the left- and right hand limits of 1∗ at every point x ∈ Jβ exist
and that the function 1∗ is continuous up to countably many points. Now we
modify the function 1∗ in such a way that it becomes lower semicontinuous.
Replace 1∗(x) at every discontinuity point x in the interior of Jβ , by setting

1∗(x) = min{1∗(x−),1∗(x+)}
and replace 1∗(x) by its left- or right hand limit if x is an endpoint of Jβ.
From now on we work with this modified version of 1∗ which we denote
again by 1∗. In the next theorem, we show that this function is bounded
below by a positive constant d > 0, everywhere on Jβ .

Theorem 4. The skew product transformation Rβ is ergodic w.r.t. the

measure mp ⊗ µ1∗. Furthermore, the measures mp ⊗ µ1∗ and mp ⊗ λ are

equivalent and the density 1∗ is bounded below by a positive constant d,
everywhere on Jβ.

Proof. Since P1∗ = 1∗, it follows from Lemma 1 that the measure mp ⊗
µ1∗ is Rβ-invariant. It is well-known that the greedy transformation Tβ is
ergodic w.r.t. its unique absolutely continuous invariant measure, which is
the Parry measure µβ (see Section 1). Similarly, the lazy transformation
is ergodic w.r.t. its unique absolutely continuous invariant measure. This
implies [Pel, Corollary 7] that the skew product transformation Rβ is ergodic
w.r.t. mp ⊗ µ1∗ . Since the random Frobenius-Perron operator P is integral
preserving w.r.t. λ, we have that

∫

Jβ

1∗dλ = 1.
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In particular, there exists a point x in the interior of Jβ, for which 1∗(x) > 0.
By lower semicontinuity of 1∗, there exist an open interval (a, b) ⊂ Jβ and
a constant c > 0 such that 1∗(x) > c for each x ∈ (a, b). Rewriting (1) one
gets

(2) PTβ
f(x) =

1

β

∑

Tβy=x

f(y) , PLβ
f(x) =

1

β

∑

Lβy=x

f(y),

see also [P, Theorem 1]. It follows that 1∗ is the unique probability density
function (λ-a.e.) satisfying

1∗(x) =
p

β

∑

Tβy=x

1∗(y) +
1 − p

β

∑

Lβy=x

1∗(y).

Hence, for λ-a.e. x ∈ Tβ(a, b), we have that

1∗(x) >
pc

β
.

By induction, we have that for each n and for λ-a.e. x ∈ T n
β (a, b),

1∗(x) >
pnc

βn
.

It is easy to verify that there exist a number δ > 0 and a positive integer n,
such that

T n
β (a, b) ⊃ [x, x+ δ),

where x is a discontinuity point of Tβ. Hence,

T n+1
β (a, b) ⊃ [0, βδ).

Moreover, there exists a positive integer m, such that

Lm
β ([0, βδ)) = Jβ .

Using the same argument as before, we conclude that for λ-a.e. x ∈ Jβ ,

1∗(x) > d :=
pn+1(1 − p)mc

βn+m+1
.

Hence, the function 1∗ is larger or equal than d at every continuity point of
1∗. Due to our modification of 1∗ at discontinuity points, the function 1∗ is
everywhere larger or equal than d. The equivalence of mp ⊗µ1∗ and mp ⊗λ
is an immediate consequence. 2

Since any invariant probability measure absolutely continuous w.r.t. an
ergodic invariant probability measure coincides with this measure, we have
from Theorem 3 and Theorem 4 that for all f ∈ D

lim
n→∞

1

n

n−1
∑

j=0

P jf = 1∗ in L1(Jβ , λ).

Remarks 1. (1) From now on we write µβ,p instead of µ1∗ , since the
measure depends on both β and p. It is the unique probability measure,
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absolutely continuous w.r.t. λ, satisfying the relationship

(3) µβ,p = p · µβ,p ◦ T−1
β + (1 − p) · µβ,p ◦ L−1

β .

(2) Recall that ` : Jβ → Jβ, given by `(x) = bβc/(β − 1) − x, satisfies
Tβ ◦ ` = ` ◦Lβ. It follows from the previous remark that µβ,p ◦ `−1 = µβ,1−p.
In particular, we see that the invariant density 1∗ is symmetric on Jβ if
p = 1/2.

(3) Let T1, . . . , Tn be piecewise expanding L-Y maps on Jβ and let (p1, . . . , pn)
be a probability vector. Recently it has been shown by Boyarsky, Góra and
Islam (see [BGI]) that functions f ∈ D satisfying f = Pf =

∑n
i=1 pi · PTi

f ,
are bounded below by a positive constant on their support (λ-a.e.). Hence,
the fact that 1∗ is bounded below by a positive constant on Jβ can also
be deduced from their result combined with the equivalence of mp ⊗ λ and
mp ⊗ µβ,p.

(4) It is well-known that the Parry measure µβ is the unique probability
measure, absolutely continuous w.r.t. λ and satisfying equation (3) with
p = 1. Note however that µβ and λ are not equivalent on Jβ. Similarly,
the lazy measure ρβ and λ are not equivalent. For this reason, we restrict
ourselves in this paper to values of the parameter p in the open interval
(0, 1).

3. Main Theorem

It is the object of this section to show that the measure of maximal entropy
νβ for the map Kβ and the measure mp ⊗ λ are mutually singular.

Let D = {0, 1, . . . , bβc}N be equipped with the product σ-algebra D and let
σ′ be the left shift on D. Define the function ϕ : Ω × Jβ → D by

ϕ(ω, x) = (d1(ω, x), d2(ω, x), . . .).

Clearly, ϕ is measurable and ϕ ◦ Kβ = σ′ ◦ ϕ. Furthermore, Theorem 2
implies that ϕ is surjective. Let

Z = {(ω, x) ∈ Ω × Jβ : Kn
β (ω, x) ∈ Ω × S for infinitely many n ≥ 0},

and

D′ = {(a1, a2, . . .) ∈ D :

∞
∑

i=1

aj+i−1

βi
∈ S for infinitely many j ≥ 1}.

Observe that K−1
β (Z) = Z, (σ′)−1(D′) = D′ and that the restriction ϕ′ :

Z → D′ of the map ϕ to Z is a bimeasurable bijection. Let IP denote the
uniform product measure on D. We recall from [DdV] that the measure νβ

defined on A⊗B by νβ(A) = IP(ϕ(Z∩A)) is the uniqueKβ-invariant measure
of maximal entropy log(1 + bβc). It was also shown that the projection of
νβ on the second coordinate is an infinite convolution of Bernoulli measures
(see [E1], [E2]). More precisely, consider the purely discrete probability
measures {δi}i≥1 defined on Jβ and determined by:

δi({kβ−i}) =
1

bβc + 1
for k = 0, 1, . . . , bβc.
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Let δβ be the corresponding infinite Bernoulli convolution,

δβ = lim
n→∞

δ1 ∗ · · · ∗ δn,

then νβ ◦ π−1
2 = δβ.

For ω ∈ Ω, let ω be given by

ω = (ω1, ω2, . . .) = (1 − ω1, 1 − ω2, . . .).

Concerning the projection π1 : Ω × Jβ → Ω of the measure νβ on the first
coordinate, we have the following lemma.

Lemma 2. For n ≥ 1 and i1, . . . , in ∈ {0, 1}, we have

νβ ◦ π−1
1 ({ω1 = i1, . . . , ωn = in}) = νβ ◦ π−1

1 ({ω1 = i1, . . . , ωn = in}).

Proof. Define the map r : D → D by

r(a1, a2, . . .) = (bβc − a1, bβc − a2, . . .).

It follows easily by induction that for i ≥ 1 and (ω, x) ∈ Ω × Jβ,

di(ω, x) = bβc − di(ω, `(x)).

Hence,

ϕ(ω, x) = r ◦ ϕ(ω, `(x)).

Since the map r is clearly invariant w.r.t. IP, the assertion follows. 2

In particular, it follows from Lemma 2 that νβ ◦ π−1
1 ({ωi = 1}) = 1

2 , for

all i ≥ 1. However, in general, the measure νβ ◦ π−1
1 is not the uniform

Bernoulli measure on {0, 1}N. For instance, using the techniques in [DdV,
Section 4], one easily shows that if the greedy expansion of 1 in base β
satisfies 1 = 1

β + 1
β3 , then νβ ◦ π−1

1 provides a counter example. In the case

that 1 has a finite greedy expansion with positive coefficients, it has been
shown in [DdV, Theorem 8] that νβ ◦ π−1

1 is the uniform Bernoulli measure.
The next lemma shows that the Kβ-invariant measures νβ and mp ⊗ µβ,p

are different, for all non-integer β > 1 and 0 < p < 1.

Lemma 3. νβ 6= mp ⊗ µβ,p.

Proof. According to Theorem 4, there exists a constant c > 0, such that
1∗(x) ≥ c for all x ∈ Jβ . Choose n ∈ N such that 1

β + 1
βn ∈ S1. Now,

suppose the converse is true, i.e., suppose that the measures νβ andmp⊗µβ,p

coincide. In particular, we assume that νβ is a product measure and that
δβ = µβ,p.
On the one hand we infer from Lemma 2 that

νβ({ω1 = 1} × Jβ

∣

∣ Ω × [
1

β
,
1

β
+

1

βn
)) =

1

2
.
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On the other hand, since the digits (di)i≥1 form a uniform Bernoulli process
under νβ,

νβ({ω1 = 1} × Jβ

∣

∣ Ω × [
1

β
,
1

β
+

1

βn
))

= νβ({d1 = 1}|Ω × [
1

β
,
1

β
+

1

βn
))

=
νβ({d1 = 1, d2 = 0, . . . , dn = 0,

∑∞
i=1

dn+i

βi ∈ [0, 1)})
µβ,p([

1
β ,

1
β + 1

βn ))

≤ 1

c

(

β

bβc + 1

)n

δβ([0, 1)).

Passing to the limit, we get a contradiction. 2

Define the map F : Ω × Jβ → D by

F (ω, x) = (d1(ω, x), d1(Rβ(ω, x)), d1(R
2
β(ω, x)), . . .).

We have that
∑∞

i=1 d1(R
i−1
β (ω, x))/βi = x for all (ω, x) ∈ Ω×Jβ. Moreover,

the map F is surjective and σ′ ◦ F = F ◦ Rβ. Hence F is a factor map and
σ′ is ergodic w.r.t. the measure ρ = mp ⊗ µβ,p ◦ F−1. Note however, that
the map F is not injective, even if we restrict F to the set for which Rβ hits
Ω × S infinitely many times; this is due to the fact that in equality regions
only one digit can be assigned. It follows from Theorem 4 and Birkhoff’s
Ergodic Theorem that ρ is concentrated on D ′. Therefore, the measure ρ′

defined on A ⊗ B by ρ′(A) = ρ(ϕ(A ∩ Z)) is a Kβ-invariant probability
measure and Kβ is ergodic w.r.t. ρ′.

Lemma 4. ρ′ = mp ⊗ µβ,p.

Proof. Let

A00 = {ω1 = 0} × S1 Abβc1 = {ω1 = 1} × Sbβc

A02 = Ω ×E0 Abβc2 = Ω ×Ebβc

and

Ai0 = {ω1 = 0} × Si+1

Ai1 = {ω1 = 1} × Si

Ai2 = Ω ×Ei,

for 1 ≤ i ≤ bβc − 1. Note that for all i, ϕ−1({d1 = i}) is the union of the
sets Aij. It is enough to show that ρ′ = mp ⊗ µβ,p on sets of the form

ϕ−1({d1 = i1, . . . , dn = in}).
Now,

ϕ−1({d1 = i1, . . . , dn = in}) =
⋃

j1,...,jn

Ai1j1 ∩ · · · ∩K−n+1
β Ainjn ,

where the union is taken over all j1, . . . , jn for which Ai1j1 , . . . , Ainjn are
defined. Hence, it is enough to show that

ρ′(Ai1j1 ∩ · · · ∩K−n+1
β Ainjn) = mp ⊗ µβ,p(Ai1j1 ∩ · · · ∩K−n+1

β Ainjn).
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It is easy to see that the set Ai1j1∩· · ·∩K−n+1
β Ainjn is a product set. Denote

the projection on the second coordinate by Vi1j1...injn .
Define

U = {(0, 0), (bβc, 1)} ∪ {(i, j) : 1 ≤ i ≤ bβc − 1, j ∈ {0, 1}}
and

{`1, . . . , `L} = {` : (i`, j`) ∈ U} ⊂ {1, . . . , n}, `1 < · · · < `L.

Then,

(4) Ai1j1 ∩ · · · ∩K−n+1
β Ainjn = {ω1 = j`1 , . . . , ωL = j`L

} × Vi1j1...injn .

Note that for all x ∈ Vi1j1...injn ,

F−1 ◦ϕ({ω1 = j`1 , . . . , ωL = j`L
}× {x}) = {ω`1 = j`1 , . . . , ω`L

= j`L
}× {x}.

Therefore,
(5)
F−1 ◦ϕ(Ai1j1 ∩ · · · ∩K−n+1

β Ainjn) = {ω`1 = j`1 , . . . , ω`L
= j`L

}× Vi1j1...injn .

The assertion follows immediately from (4) and (5). 2

From Theorem 4, Lemma 3, Lemma 4 and the ergodicity of Kβ w.r.t. ρ′

and νβ, we arrive at the following theorem.

Theorem 5. The measures νβ and mp ⊗ λ are mutually singular.

Remark 2. If β ∈ (1, 2) is a Pisot number, the mutual singularity of νβ

and mp ⊗ λ is a simple consequence of the fact that in this case δβ and λ
are mutually singular (see [E1],[E2]).

4. Finite greedy expansion of 1 with positive coefficients, and

the Markov property of the random β-expansion

In this section we assume that the greedy expansion of 1 in base β satisfies
1 = b1/β + b2/β

2 + · · · + bn/β
n with bi ≥ 1 for i = 1, . . . , n and n ≥ 2 (note

that bβc = b1). It has been shown in [DdV] that in this case the dynamics
of Kβ can be identified with a subshift of finite type with an irreducible
adjacency matrix.

We exhibit the measure mp⊗µβ,p obtained in the previous section explic-
itly. Moreover, it turns out that Kβ is exact w.r.t. mp ⊗ µβ,p. The mutual
singularity of νβ and mp ⊗λ, i.e., Theorem 5, will be derived by elementary
means, independent of the results established in the previous sections.

The analysis of the case β2 = b1β + 1 needs some adjustments. For
this reason, we assume here that β2 6= b1β + 1, and refer the reader to
[DdV, Remarks 6(2)] for the appropriate modifications needed for the case
β2 = b1β+1. We first recall some results obtained in [DdV] briefly, without
proof.

We begin by a proposition which plays a crucial role in finding the Markov
partition describing the dynamics of Kβ .
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Proposition 1. Suppose 1 has a finite greedy expansion of the form 1 =
b1/β + b2/β

2 + · · · + bn/β
n. If bj ≥ 1 for 1 ≤ j ≤ n, then

(i) T i
β1 = Li

β1 ∈ Ebi+1
, 0 ≤ i ≤ n− 2.

(ii) T n−1
β 1 = Ln−1

β 1 = bn

β ∈ Sbn
, T n

β 1 = 0, and Ln
β1 = 1.

(iii) T i
β( b1

β−1 − 1) = Li
β( b1

β−1 − 1) ∈ Eb1−bi+1
, 0 ≤ i ≤ n− 2.

(iv) T n−1
β ( b1

β−1 − 1) = Ln−1
β ( b1

β−1 − 1) = b1
β(β−1) + b1−bn

β ∈ Sb1−bn+1,

T n
β ( b1

β−1 − 1) = b1
β−1 − 1, and Ln

β( b1
β−1 − 1) = b1

β−1 .

To find the Markov chain behind the map Kβ, one starts by refining the
partition

E = {E0, S1, E1, . . . , Sb1 , Eb1}
of

[

0, b1
β−1

]

, using the orbits of 1 and b1
β−1 − 1 under the transformation Tβ.

We place the endpoints of E together with T i
β1, T i

β( b1
β−1 −1), i = 0, . . . , n−2,

in increasing order. We use these points to form a new partition C which is
a refinement of E , consisting of intervals. We write C as

C = {C0, C1, . . . , CL}.
We choose C to satisfy the following. For 0 ≤ i ≤ n− 2,

- T i
β1 ∈ Cj if and only if T i

β1 is a left endpoint of Cj,

- T i
β( b1

β−1 − 1) ∈ Cj if and only if T i
β( b1

β−1 − 1) is a right endpoint of

Cj.

Note that this choice is possible, since the points T i
β1, T i

β( b1
β−1 − 1) for 0 ≤

i ≤ n − 2, are all different. From the dynamics of Kβ on this refinement,
one reads the following properties of C.

p1. C0 =
[

0, b1
β−1 − 1

]

and CL =
[

1, b1
β−1

]

.

p2. For i = 0, 1, . . . , b1, Ei can be written as a finite disjoint union of
the form Ei = ∪j∈Mi

Cj with M0,M1, . . . ,Mb1 disjoint subsets of
{0, 1, . . . , L}. Further, the number of elements in Mi equals the
number of elements in Mb1−i.

p3. For each Si there corresponds exactly one j ∈ {0, 1, . . . , L}\∪b1
k=0Mk

such that Si = Cj.
p4. If Cj ⊂ Ei, then Tβ(Cj) = Lβ(Cj) is a finite disjoint union of ele-

ments of C, say Tβ(Cj) = Ci1∪· · ·∪Cil . Since `(Cj) = CL−j ⊂ Eb1−i,
it follows that Tβ(CL−j) = CL−i1 ∪ · · · ∪CL−il .

p5. If Cj = Si, then Tβ(Cj) = C0 and Lβ(Cj) = CL.

To define the underlying subshift of finite type associated with the map
Kβ, we consider the (L+1)× (L+1) matrix A = (ai,j) with entries in {0, 1}
defined by

ai,j =



















1 if i ∈ ∪b1
k=0Mk and λ(Cj ∩ Tβ(Ci)) = λ(Cj),

0 if i ∈ ∪b1
k=0Mk and Ci ∩ T−1

β Cj = ∅,

1 if i ∈ {0, . . . , L} \ ∪b1
k=0Mk and j = 0, L,

0 if i ∈ {0, . . . , L} \ ∪b1
k=0Mk and j 6= 0, L.
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Let Y denote the topological Markov chain (or the subshift of finite type)
determined by the matrix A. That is, Y = {y = (yi) ∈ {0, 1, . . . , L}N :
ayi,yi+1

= 1}. We let σY be the left shift on Y . For ease of notation, we

denote by s1, . . . , sb1 the states j ∈ {0, . . . , L} \ ∪b1
k=0Mk corresponding to

the switch regions S1, . . . , Sb1 respectively.
For each y ∈ Y , we associate a sequence (ei) ∈ {0, 1, . . . , b1}N and a point

x ∈
[

0, b1
β−1

]

as follows. Let

(6) ej =







i if yj ∈Mi,
i if yj = si and yj+1 = 0,
i− 1 if yj = si and yj+1 = L.

Now set

(7) x =

∞
∑

j=1

ej
βj
.

Our aim is to define a map ψ : Y → Ω×
[

0, b1
β−1

]

that commutes the actions

of Kβ and σY . Given y ∈ Y , equations (6) and (7) describe what the second
coordinate of ψ should be. In order to be able to associate an ω ∈ Ω, one
needs that yi ∈ {s1, . . . , sb1} infinitely often. For this reason it is not possible
to define ψ on all of Y , but only on an invariant subset. To be more precise,
let

Y ′ = {y = (y1, y2, . . .) ∈ Y : yi ∈ {s1, . . . , sb1} for infinitely many i’s} .

Define ψ : Y ′ → Ω ×
[

0, b1
β−1

]

as follows. Let y = (y1, y2, . . .) ∈ Y ′, and

define x as given in (7). To define a point ω ∈ Ω corresponding to y, we first
locate the indices ni = ni(y) where the realization y of the Markov chain
is in state sr for some r ∈ {1, . . . , b1}. That is, let n1 < n2 < · · · be the
indices such that yni

= sr for some r = 1, . . . , b1. Define

ωj =

{

1 if ynj+1 = 0,
0 if ynj+1 = L.

Now set ψ(y) = (ω, x).

The following two lemmas reflect the fact that the dynamics of Kβ is
essentially the same as that of the Markov chain Y .

Lemma 5. Let y ∈ Y ′ be such that ψ(y) = (ω, x). Then,

(i) y1 = k for some k ∈ ⋃b1
i=0Mi ⇒ x ∈ Ck.

(ii) y1 = si, y2 = 0 ⇒ x ∈ Si and ω1 = 1 for i = 1, . . . , b1.

(iii) y1 = si, y2 = L ⇒ x ∈ Si and ω1 = 0 for i = 1, . . . , b1.

Lemma 6. For y ∈ Y ′, we have

ψ ◦ σY (y) = Kβ ◦ ψ(y).
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We now consider on Y the Markov measure Qβ,p with transition matrix
P = (pi,j), given by

pi,j =











































λ(Ci ∩ T−1
β Cj)/λ(Ci) if i ∈ ∪b1

k=0Mk,

p if i ∈ {0, . . . , L} \ ∪b1
k=0Mk and j = 0,

1 − p if i ∈ {0, . . . , L} \ ∪b1
k=0Mk and j = L,

0 if i ∈ {0, . . . , L} \ ∪b1
k=0Mk and j 6= 0, L,

and initial distribution the corresponding stationary distribution π.

Theorem 6. Qβ,p ◦ ψ−1 is a product measure of the form mp ⊗ µ.

Proof. Define the measure µ on
[

0, b1
β−1

]

by

µ(B) =

L
∑

j=0

λ(B ∩ Cj)

λ(Cj)
· π(j) [B ∈ B].

Define the Markov partition P0 of Ω ×
[

0, b1
β−1

]

by

P0 = {Ω × Cj : j ∈ ∪b1
k=0Mk} ∪ {{ω1 = i} × Sj : i = 0, 1, j = 1, . . . , b1}.

and let Pn = P0 ∨K−1
β P0 ∨ · · · ∨K−n

β P0. It is straightforward to see that

the inverse images of elements in Pn under ψ are cylinders in Y and that
for each element P ∈ Pn, mp ⊗ µ(P ) = Qβ,p ◦ ψ−1(P ). It follows that
Qβ,p ◦ ψ−1 = mp ⊗ µ. 2

Since P is an irreducible transition matrix, σY is ergodic w.r.t. Qβ,p and
π(i) > 0 for all i ∈ {0, . . . , L}. It follows from Lemma 6 that Kβ is ergodic
w.r.t. mp ⊗ µ. Furthermore, it is immediately seen from the definition that
µ is equivalent with λ. Hence, the measure Qβ,p ◦ ψ−1 is equivalent with
mp ⊗ λ.

Proposition 2. The map Kβ is exact w.r.t. mp⊗µβ,p. Moreover, µ = µβ,p.

Proof. It follows from Lemma 1 and Remarks 1(1) that µ = µβ,p. Since
the transition matrix P is also aperiodic, σY is exact w.r.t. Qβ,p. It follows
from Lemma 6 that Kβ is exact w.r.t. mp ⊗ µβ,p. 2

It also follows from the above proposition that the density 1∗ assumes the
constant value π(j)/λ(Cj) on the interval Cj , j ∈ {0, . . . , L}.

Example 1. Let β = G = 1
2(1 +

√
5) and let g = G− 1 = 1

2(
√

5 − 1). Note

that 1 = 1/β+1/β2. In this case, we let C = E , since 1 and 1/(β−1)−1 are
already endpoints of intervals in E . Using the techniques in this section it is
easily verified that the dynamical system (Ω × Jβ ,A⊗ B,mp ⊗ µβ,p,Kβ) is
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measurably isomorphic to the Markov chain with transition matrix P , given
by

P =





g g2 0
p 0 1 − p
0 g2 g



 ,

and stationary distribution π determined by πP = π.

It remains to prove that Qβ,p ◦ ψ−1 and νβ are mutually singular. Since
Kβ is ergodic w.r.t. both measures, it suffices to show that the measures do
not coincide.

Lemma 7. νβ 6= Qβ,p ◦ ψ−1.

Proof. We distinguish between the cases p = 1/2 and p 6= 1/2.
Suppose p = 1/2. On the one hand we have that for all i ∈ {1, . . . , bβc}

i

β
+

∞
∑

i=2

di

βi
∈ Si ⇐⇒

∞
∑

i=1

di+1

βi
∈ C0,

i− 1

β
+

∞
∑

i=2

di

βi
∈ Si ⇐⇒

∞
∑

i=1

di+1

βi
∈ CL.

Using the fact that the digits (di)i≥1 form a uniform Bernoulli process under
νβ, a simple calculation yields that

νβ(Ω × S) =
bβc

bβc + 1
· νβ(Ω × C0) +

bβc
bβc + 1

· νβ(Ω × CL).

Since νβ(Ω ×C0) = νβ(Ω × CL), it follows that

νβ(Ω × S)

νβ(Ω × C0)
=

2bβc
bβc + 1

.

On the other hand, it follows from πP = π that

π(0) =
1

β
π(0) +

1

2
(π(s1) + · · · + π(sb1)).

Rewriting one gets

π(s1) + · · · + π(sb1)

π(0)
=

Qβ,p ◦ ψ−1(Ω × S)

Qβ,p ◦ ψ−1(Ω × C0)
=

2(β − 1)

β
.

However,

2(β − 1)

β
6= 2bβc

bβc + 1

for all non-integer β, in particular for the β’s under consideration.
Suppose p 6= 1/2. In this case, the assertion follows from the fact that the
projection of νβ on the first coordinate is the uniform Bernoulli measure on

{0, 1}N [DdV, Theorem 8]. Note that this result is applicable since 1 has a
finite greedy expansion with positive coefficients. 2

The mutual singularity of νβ and mp ⊗ λ follows as before.
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5. Open problems and final remarks

1. We have not been able to find an explicit formula for 1∗. Recall that
the Parry density hβ = PTβ

hβ is given by

hβ(x) =
1

F (β)

∑

x<T n
β

(1)

1

βn
.

(see Section 1). We expect that the density 1∗ can be expressed in a similar
way, but now the random orbits of 1 as well as the random orbits of the

complementary point bβc
β−1 − 1 are involved. Let us consider an example.

Example 2. Let p = 1/2 and β = 3/2. Note that in this case bβc
β−1 − 1 = 1.

Rewriting (2) one gets

PTβ
f(x) =

1

β

1
∑

i=0

f(
x+ i

β
) · 1[0,1)(x) +

1

β
f(
x+ 1

β
) · 1[1,2](x)

and

PLβ
f(x) =

1

β
f(
x

β
) · 1[0,1](x) +

1

β

1
∑

i=0

f(
x+ i

β
) · 1(1,2](x).

It is easy to verify that 1 ∈ D satisfies P1 = 1, hence 1∗ = 1. It follows
that m1/2 ⊗ λ is K3/2-invariant.

2. We have not been able to give an explicit formula for hmp⊗µβ,p
(Kβ).

However, in the special case that β2 = b1β + 1, the entropy is already
calculated in [DK2]:

hmp⊗µβ,p
(Kβ) = log β − b1

1 + β2
(p log p+ (1 − p) log(1 − p)) .

Since in this case π(si) = 1
1+β2 , i = 1, . . . , b1, it follows that

hmp⊗µβ,p
(Kβ) = log β − µβ,p(S) (p log p+ (1 − p) log(1 − p)) .

One might conjecture that this formula holds in general.

3. Fix p ∈ (0, 1). It is a direct consequence of Birkhoff’s Ergodic Theorem,
Theorem 4 and the ergodicity of Kβ w.r.t. mp ⊗ µβ,p , that for mp ⊗ λ-a.e.
(ω, x) ∈ Ω × Jβ,

(8) lim
n→∞

1

n

n−1
∑

i=0

1Ω×S(Ki
β(ω, x)) = µβ,p(S) > 0.

In particular, we infer from (8), that the set

G = {x ∈ Jβ : x has a unique expansion in base β}
has Lebesgue measure zero, since for all (ω, x) ∈ Ω ×G, Kn

β (ω, x) ∈ Ω ×E,
for all n ≥ 0. Let T0 = Lβ, T1 = Tβ , and let

N =

∞
⋃

n=1

{x ∈ Jβ : Tu1
◦ · · · ◦ Tunx ∈ G, for some u1, . . . , un ∈ {0, 1}}.
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Since the greedy map and the lazy map are nonsingular, λ(N) = 0. Note
that Ω×Jβ \N ⊂ Z and that for x ∈ Jβ \N , different elements of Ω give rise
to different expansions of x in base β. We conclude that for λ-a.e. x ∈ Jβ,

there exist 2ℵ0 expansions of x in base β. For a more elementary proof of
this fact in case β ∈ (1, 2), we refer to [S1].

4. Erdős and Komornik introduced in [EK] the notion of universal ex-
pansions. They called an expansion (d1, d2, . . .) in base β of some x ∈ Jβ

universal if for each (finite) block b1 . . . bn consisting of digits in the set
{0, . . . , bβc}, there exists an index k ≥ 1, such that dk . . . dk+n−1 = b1 . . . bn.
They proved that there exists a number β0 ∈ (1, 2), such that for each
β ∈ (1, β0), every x ∈ (0, 1/(β − 1)) has a universal expansion in base β.
Subsequently, Sidorov proved in [S2] that for a given β ∈ (1, 2) and for λ-a.e.
x ∈ Jβ , there exists a universal expansion of x in base β. We now strengthen
his result and the preceding remark by the following theorem.

Theorem 7. For any non-integer β > 1, and for λ-a.e. x ∈ Jβ, there exist

2ℵ0 universal expansions of x in base β.

In order to prove Theorem 7 we need the following lemma.

Lemma 8. Let β > 1 be a non-integer and let p ∈ (0, 1). Then, for n ≥ 1
and i1, . . . , in ∈ {0, . . . , bβc}, we have that

mp ⊗ µβ,p({d1 = i1, . . . , dn = in}) > 0.

Proof. By Theorem 4, it suffices to show that

mp ⊗ λ({d1 = i1, . . . , dn = in}) > 0.

It is easy to verify that there exists a sequence (j1, j2, . . .) ∈ D, starting with
i1 . . . in, such that the numbers x1, . . . , xn, given by

xr =

∞
∑

i=1

ji+r−1

βi
, r = 1, . . . , n,

are elements of Jβ \ ∂(S), where ∂(S) denotes the boundary of S. Consider
for m ≥ 1, the set

Im =

[

n+m
∑

i=1

ji
βi
,

n+m
∑

i=1

ji
βi

+

∞
∑

i=n+m+1

bβc
βi

]

.

Let y ∈ Im and let (a1, a2, . . .) be an expansion y, starting with j1 . . . jn+m.
Define

yr =

∞
∑

i=1

ai+r−1

βi
, r = 1, . . . , n.

Choose m large enough, so that for each r = 1, . . . , n, xr and yr are elements
of the same equal or switch region, regardless of the values of the digits
a`, ` > n + m, and hence regardless of the chosen element y ∈ Im. Note
that this is possible because xr /∈ ∂(S) for r = 1, . . . , n. Denote the set of
indices r ∈ {1, . . . , n} for which xr ∈ S by {`1, . . . , `L}. Then, for suitably
chosen u1, . . . , uL ∈ {0, 1}, we have that

{ω1 = u1, . . . , ωL = uL} × Im ⊂ {d1 = i1, . . . , dn = in}
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and the conclusion follows. 2

Proof of Theorem 7. Fix p ∈ (0, 1) and let b1 . . . bn be an arbitrary block.
Using Birkhoff’s Ergodic Theorem, Theorem 4, Lemma 8 and the ergodicity
of Kβ w.r.t. mp⊗µβ,p, we may conclude that for mp⊗λ-a.e. (ω, x) ∈ Ω×Jβ,
the block b1 . . . bn occurs in

(9) (d1(ω, x), d2(ω, x), . . .).

with positive limiting frequency mp ⊗ µβ,p({d1 = b1, . . . , dn = bn}). In par-
ticular, we have that for mp⊗λ-a.e. (ω, x) ∈ Ω×Jβ, the block b1 . . . bn occurs
in (9). Since there are only countably many blocks, we have that for mp⊗λ-
a.e. (ω, x) ∈ Ω×Jβ , the expansion (9) is universal in base β. An application
of Fubini’s Theorem yields that there exists a Borel set B ⊂ Jβ \ N of full
Lebesgue measure and there exist sets Ax ∈ A with mp(Ax) = 1 (x ∈ B),
such that for all x ∈ B and (ω, x) ∈ Ax ×{x}, the expansion (9) is universal
in base β. Since the sets Ax have necessarily the cardinality of the contin-
uum and since different elements of Ω give rise to different expansions of x
in base β for any x ∈ Jβ \N , the assertion follows. 2

5. An expansion (a1, a2, . . .) in base β of some number x ∈ Jβ is called
normal if each block i1 . . . in with digits in {0, . . . , bβc} occurs in (a1, a2, . . .)
with limiting frequency (bβc + 1)−n. Note that a normal expansion is in
particular universal.

Fix p ∈ (0, 1). Since νβ 6= mp ⊗ µβ,p and since both measures νβ and
mp ⊗ µβ,p are concentrated on Z, there exists a block i1 . . . in such that

mp ⊗ µβ,p({d1 = i1, . . . , dn = in}) 6= (bβc + 1)−n.

Hence, for mp ⊗ λ-a.e. (ω, x) ∈ Ω × Jβ, the expansion (9) is universal but
not normal. On the other hand, Sidorov proved in [S2], that there exists a
Borel set V ⊂ (1, 2) of full Lebesgue measure, such that for each β ∈ V and
for λ-a.e. x ∈ Jβ , there exists a normal expansion of x in base β.
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