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Abstract

In many physical situations, a few specific eigenvalues of a large sparse generalized eigen-
value problem Ax = λBx are needed. If exact linear solves with A − σB are available,
implicitly restarted Arnoldi with purification is a common approach for problems where B
is positive semidefinite. In this paper, a new approach based on implicitly restarted Arnoldi
will be presented that avoids most of the problems due to the singularity of B. Secondly, if
exact solves are not available, Jacobi-Davidson QZ will be presented as a robust method to
compute a few specific eigenvalues. Results are illustrated by numerical experiments.

1 Introduction

Large sparse generalized eigenvalue problems of the form

Ax = λBx, x 6= 0, (1.1)

with A,B ∈ Rn×n, x ∈ Cn and λ ∈ C, arise in physical situations like stability analysis of the
discretized Navier-Stokes equations. Typically, the matrix A is nonsymmetric and of full rank,
and B is singular. The pencil (A,B) is regular, that is, A−γB is singular only for a finite number
of γ ∈ C. Because B is singular, (1.1) can have eigenvalues at infinity, which are of no physical
relevance, but may lead to numerical difficulties. In practice, one is often interested in the few
left- or rightmost finite eigenvalues that determine the stability, and hence one wants to avoid
approximations to eigenvalues at infinity. This paper is concerned with the computation of a few
left- or rightmost eigenvalues of large generalized eigenvalue problems.

One way to compute a few eigenvalues of (1.1) close to σ ∈ C is to apply Arnoldi’s method to
the shift-and-invert transformation S = (A− σB)−1B:

Sx = λ̃x, x 6= 0. (1.2)

An eigenpair (λ, x) of (1.1) corresponds to an eigenpair (λ̃ = (λ − σ)−1, x) of (1.2). Hence,
the infinite eigenvalues of (1.1) correspond to eigenvalues λ̃ = 0 of (1.2). Arnoldi’s method may
compute approximations θ̃ to λ̃ = 0. These approximations are known as spurious eigenvalues and
after back transformation via θ = θ̃−1+σ, they may be hard to distinguish from wanted eigenvalues,
which typically reside in the exterior of the spectrum. This problem has been addressed for the
symmetric nondefective problem [5, 16] and for the defective problem [5]. The ideas presented there
are extended to the nonsymmetric defective case in [14], where the implicitly restarted Arnoldi
method [11, 22] is implemented with a B semi-inner product and purification. Purification is a
technique to remove unwanted components from Arnoldi vectors and approximate eigenvectors,
and will be explained in more detail in section 3. A new strategy will be presented that, by
exploiting the structure of (1.1), reduces the corruption by unwanted components significantly.
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The scheme based on the Arnoldi method fails to be applicable if the linear system solves with
A−σB, e.g. via the LU -factorization of A−σB, are inaccurate or not computable within reasonable
time. The Jacobi-Davidson QZ method [7] has the advantage that it computes with the matrices
A and B directly and that in principle no inverses or exact solves are needed; furthermore, it poses
no restrictions on the matrices A and B, so it is also applicable if B is not symmetric positive
semidefinite or if both A and B are singular. In section 4, it is shown that the Jacobi-Davidson
method with harmonic Petrov values has some favorable properties with respect to purification.
If, additionally, a preconditioner is available in the form of an LU -factorization, the correction
equation can be solved efficiently and purification is obtained automatically.

Throughout this paper, it will be assumed that the leftmost finite eigenvalues are wanted.
This is a natural assumption in practical situations where the stability of steady states for a
number of different parameter values is to be determined, see for instance [1, 9]: not only the
leftmost eigenvalue is of interest, but also the eigenvalue(s) close to the leftmost that may become
the leftmost for different parameter values. The theory extends readily to problems where the
rightmost finite eigenvalues are wanted.

The outline of the paper is as follows. Some properties of generalized eigenvalue problems are
described in section 2. In section 3, the Arnoldi method with purification is explained and the
new scheme is presented, illustrated by numerical examples. The approach based on the JDQZ
method is described in section 4. Section 5 concludes.

2 Some properties of generalized eigenvalue problems

Central point of the discussion is the generalized eigenproblem

Ax = λBx, x 6= 0,

with A,B ∈ Rn×n, x ∈ Cn and λ ∈ C. Only regular matrix pencils will be considered, i.e. pencils
(A,B) for which A− γB is singular only for a finite number of γ ∈ C. Note that B is allowed to
be singular. The corresponding ordinary eigenproblem is

Sx = λ̃x, x 6= 0,

with S = (A− σB)−1B for a σ such that A− σB is non singular. A generalized eigenpair (λ, x)
corresponds to an ordinary eigenpair (λ̃ = (λ− σ)−1, x) of (1.2). The generalized eigenvalues can
be computed via the relation λ = λ̃−1 + σ.

The eigenspace corresponding to the infinite eigenvalues is the null space N (S) of S:

V∞ = N (S) = N (B) = {x ∈ Rn | Bx = 0}.

The eigenvectors corresponding to the finite eigenvalues span a real invariant subspace of S and
form a subspace of the range of Sjs , R(Sjs):

Vfinite ⊆ R(Sjs) = {x ∈ Rn | ((A− σB)−1B)jsy = x, y ∈ Rn}, (2.1)

where js is the size of the largest Jordan block corresponding to the zero eigenvalue of S. The
generalized null space G(S) of S is defined as the complement in N (Sjs) of N (S):

G(S) = N (Sjs)\N (S),

It follows that Rn = R(Sjs) + G(S) +N (S). Note that (2.1) becomes an equality if for all finite
eigenvalues the algebraic multiplicity is equal to the geometric multiplicity.

It is important to keep in mind that eigenvectors v corresponding to finite eigenvalues do
not necessarily satisfy v ⊥ V∞. In other words, in general it does not hold that R(S) ⊥ N (S).
So restricting the search space to R(B), to avoid approximations to infinite eigenvalues, is not
effective. Only if A is block upper triangular and B is block diagonal it is effective, but then
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the problem can also easily be reduced to a smaller problem by considering the non-zero diagonal
blocks.

This paper is concerned with block structured generalized eigenvalue problems of the form[
K C
CT 0

] [
u
p

]
= λ

[
M 0
0 0

] [
u
p

]
, (2.2)

with n = m + k, C ∈ Rm×k of full rank, stiffness matrix K ∈ Rm×m, mass matrix M = MT ∈
Rm×m, velocity u ∈ Cm and pressure p ∈ Ck, that arise in the linearized stability analysis of steady
state solutions of the Navier-Stokes equations [1]. The corresponding ordinary eigenproblem is[

S1 0
S2 0

] [
u
p

]
= λ̃

[
u
p

]
, S1 ∈ Rm×m, S2 ∈ Rk×m,

and, as is also noted in [14], this leads to the reduced problem

S1u = λ̃u, S1 ∈ Rm×m. (2.3)

If (λ̃, u) is an exact eigenpair of S1, then for nonzero λ̃, (λ̃, [u∗, p∗]∗) with p = λ̃−1S2u is an exact
eigenpair of S. It can be shown [14, section 2.3] that dim(N (S1)) = k, dim(R(S1)) = m− k and

u ∈ N (S1) ⇔
[
u
0

]
∈ G.

Hence, by reducing the problem to (2.3), the geometric multiplicity of the k eigenvalues λ̃ = 0 is
reduced from 2 to 1.

3 Arnoldi methods with purification

In section 3.1, the implicitly restarted B-orthogonal Arnoldi method will be described. In section
3.2, it will be shown how this method can be improved by exploiting the specific structure of
the generalized eigenproblem. A new strategy, based on this known but previously not used fact,
for the computation of a few leftmost eigenvalues will be presented in section 3.3, followed by
numerical examples in section 3.4.

3.1 Implicitly restarted B-orthogonal Arnoldi methods

3.1.1 B-orthogonal Arnoldi

The B-orthogonal Arnoldi method is the standard Arnoldi method with the usual inner product
(x, y) = xT y replaced by the semi-inner product (x, y)B = xTBy. The B-orthogonal Arnoldi
method constructs a B-orthonormal basis v1, . . . , vk+1 for the Krylov subspace

Kk+1(S, v1) = span(v1, Sv1, . . . , Skv1),

where S = (A− σB)−1B. The basis vectors are related by

SVk = VkHk + hk+1,kvk+1e
T
k = Vk+1Hk, V T

k+1BVk+1 = I, (3.1)

where Vk = [v1, . . . , vk] ∈ Rn×k and Hk ∈ Rk×k and Hk = [HT
k , hk+1,kek]T ∈ R(k+1)×k are upper

Hessenberg1. Relation (3.1) characterizes a k-step Arnoldi factorization. Like in the standard
Arnoldi method, approximate eigenpairs (θi, Vkyi), i.e. Ritz pairs, can be computed from eigenpairs
(θi, yi) of Hk.

1Barred identifiers Hk are elements of R(k+1)×k, whereas Hk ∈ Rk×k.
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The usual criterion for convergence of a Ritz pair (θ, Vkx) with Hkx = θx is derived from the
relation

SVkx = VkHkx+ hk+1,kvk+1e
T
k x = θVkx+ hk+1,kvk+1e

T
k x.

If ||hk+1,kvk+1e
T
k x|| is smaller than a given tolerance τ , the Ritz pair (θ, Vkx) is said to be con-

verged. It follows that if the vi are orthonormalized in the 2-norm, it suffices to inspect |hk+1,ke
T
k x|.

Since for B-orthogonal Arnoldi the B-inner product is used, the convergence criterion becomes

|hk+1,ke
T
k x| · ||vk+1||2 < τ. (3.2)

In [14] and [16], the use of the semi-inner product is motivated by the fact that the B inner
product is not affected by components of vi in the null space of B, N (B), and hence Hk is
independent of components in N (S). Note, however, that Hk can be corrupted by components
in the generalized null space G(S). Moreover, because the B-inner product is not affected by
components in the null space of B, there is no reason to assume that components of vi in the null
space of B will not grow; for z ∈ N (B), x ∈ Rn and α ∈ R, one has ||x||B = ||x + αz||B . As a
consequence, the Ritz vector Vkyi will be spoiled with error components in N + G (see also [14,
Sect. 4.1] and [16, Sect. 2.3]).

The presence of components in N + G in the Arnoldi basis may not only cause spurious
eigenvalues and inaccurate Ritz vectors, it may also hamper convergence to the wanted eigenvalues.
Purification techniques aim at eliminating the components in N + G from the Arnoldi vectors,
with the following three goals:

• removal of spurious eigenpair approximations;

• improvement of wanted eigenpair approximations by removing N + G components from the
Ritz vectors;

• increase of the speed of convergence.

Following [14], the notion of purification can be used in several ways, but the idea boils down to
eliminating components in N +G of a vector x by applying Sjs to it, either explicitly or implicitly.
In exact arithmetic, the effect is that Sjsx ∈ R(Sjs), i.e. Sjsx is in the wanted eigenspace. See [6]
and [16] for the first occurences of the term purification.

3.1.2 Implicitly restarted B-orthogonal Arnoldi with purification

In [14, Sect. 3.2], an implicitly restarted Arnoldi method with B-inner product is proposed. The
method, see Alg. 1, reduces the corruption of Hk by components in N and G significantly (after the
implicit restart), and only requires one additional purification step of the Ritz vectors. The result

Algorithm 1 Implicitly restarted B-orthogonal Arnoldi with purification
1: Choose an initial vector v1 ← S2v1
2: Do k + 1 steps of B-orthogonal Arnoldi to compute Vk+2 and Hk+1

3: Compute the QR-factorization Hk+1 = Q
k+1

Rk+1

4: Implicitly restart: Wk+1 = Vk+2Qk+1
, Gk = Rk+1Qk

5: Compute eigenpairs (θi, yi) of the upper k × k part of Gk

6: Purify the Ritz vectors: xi = S(Wkyi) = Wk+1Gkyi

7: The eigen approximations for the generalized problem are (1/θi + σ, xi)

of the implicit restart in step 4, is that the Arnoldi vectors in Wk+1 and the upper Hessenberg
Gk are the same as the ones that would have been computed with starting vector Sv1/||Sv1||B .
In other words, the implicit restart removes the N part from Vk+2 and the G part from Hk+1,
and it maps the G part from Vk+2 to the N part of Wk+1. Note that because of the B-inner
product, Hk+1 and Gk are free of contributions of components in N . The second purification, in
step 6, removes the N part from the Ritz vector (the G part was already removed by the implicit
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restart). The method can still fail due to corruption of Hk+1 by rounding errors, but this can be
detected by inspecting ||R−1

k ||2 [14, Thm. 4]: if ||R−1
k ||2 is large and growing for successive values

of k, spurious Ritz values may be computed. Secondly, purification of the Ritz vector Wkyi may
fail if the corresponding Ritz value θi is small, i.e. θi ∼ ε||S||.

3.2 Exploiting the structure of Ax = λBx

In [14, p. 670], [10, p. 8] and [2, p. 1313] it is concluded that the reduced problem

S1u = λ̃u, S1 ∈ Rm×m,

see also (2.3), is only of theoretical interest, because S1 and S2 depend on blocks in A−1 which are
unlikely to be known. However, matrix vector multiplications with S1, the only operation with
S1 that is required by the Arnoldi algorithm, and with S2, can easily be performed by making
use of the available multiplication with S. Note that in practical situations also S is not available
explicitly and that matrix vector multiplications with S are for instance implemented using the
LU -factorization of A.

Theorem 3.1. Let S ∈ Rn×n have the block structure[
S1 0
S2 0

]
,

with S1 ∈ Rm×m, S2 ∈ Rk×m, and let P = [Im, 0]T ∈ Rn×m, Q = [0, Ik]T ∈ Rn×k with Im ∈ Rm×m

an identity matrix of dimension m. Then for x ∈ Cm,

S1x = PTSPx,

S2x = QTSPx.

Proof. The results follow immediately from the identities S1 = PTSP and S2 = QTSP .

The operations with P and Q in Theorem 3.1 can be performed very efficiently and hence with
virtually no additional costs the Arnoldi method can be applied to S1. This leads to Alg. 2, a
modification of Alg. 1. The Arnoldi basis vectors have length m < n, which reduces the costs of
orthogonalization (although usually the costs of operations with S are dominant). In step 1, only
a single explicit purification of the initial vector is needed. Furthermore, the B-inner product, that
was used for its purifying property, and the purification in step 6, are no longer needed, because
the implicit restart removes all corruption by components in N from Vk+2 and Hk+1. On the
other hand, to recover the eigenvectors of the original problem, an additional multiplication with
S2 is needed.

Algorithm 2 Implicitly restarted Arnoldi for S1

1: Choose an initial vector v1 ← S1v1 ∈ Rm

2: Do k + 1 steps of Arnoldi with S1 to compute Vk+2 and Hk+1

3: Compute the QR-factorization Hk+1 = Q
k+1

Rk+1

4: Implicitly restart: Wk+1 = Vk+2Qk+1
, Gk = Rk+1Qk

5: Compute eigenpairs (θi, yi) of the upper k × k part of Gk

6: Compute pi = θ−1
i S2xi

7: The eigen approximations for the generalized problem are (1/θi + σ, [x∗i , p
∗
i ]
∗)

3.2.1 Improved rounding error analysis

The most important consequence of Theorem 3.1, however, is that the results of the error analysis
in [14, section 5] improve considerably. Following the notation and assumptions there, let PR1 and
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PN1 be normalized projectors that map a vector into R1 = R(S1) and N1 = N (S1) respectively, so
x ∈ Cm can be decomposed uniquely as x = PR1x+ PN1x. Note that PN1S1 = 0. The computed
Arnoldi vectors satisfy

hj+1,jvj+1 = Svj −
j∑

i=1

hijvi + ψj ,

hij = vT
i Svj + δij ,

vT
i vj =

{
1 + γij , j = i
γij j = 1, . . . , i+ 1, j 6= i.

In block form, the round-off errors ||Ψk+1||2, ||Γk+1||2 and ||∆k||2 for the k-step Arnoldi factor-
ization are given by the following relations:

Vk+1Hk = SVk + Ψk+1, (3.3)
V T

k+1Vk+1 = I + Γk+1, (3.4)

Hk = V T
k+1SVk + ∆k. (3.5)

Result 3.2. The N1 component in vj may increase as j increases.

Proof. Repeating the proof in [14, section 4.1] leads to

hj,j+1PN1vj+1 = PN1S1vj −
j∑

i=1

hijPN1vi + PN1ψj

= −
j∑

i=1

hijPN1vi + PN1ψj .

There is no reason to assume that ||PN1vj+1|| does not increase.

The improvement over the result in [14, section 4.1] is that for Arnoldi applied to S, there may
be an increase of both components in N and G, while here there only may be a smaller increase
of components in N1.

The following result shows the improved effect of the implicit purification via xj = S(Vkzj) =
Vk+1Hkzj , where zj is an eigenvector of Hkzj . Although this purification is not needed in Alg. 2,
as will become clear in result 3.4 and theorem 3.5, it is included here, however, to show that the
relative contributions of the N1 components are smaller than in the results in [14, section 4.2].

Result 3.3. The purification operation xj = Vk+1Hkzj produces an approximate eigenvector with
no N1 component. This step may fail if |θ−1

j | � ε−1
M , where εM is the machine precision number.

Proof. From the proof in [14, section 4.2], it follows that the purified xj computed by xj =
Vk+1Hkzj with ||zj ||2 = 1 satisfies

PN1xj = PN1S1Vkzj + PN1ξj

= PN1ξj , (3.6)

with

||ξj ||2 ≤ 3k3/2||Vk+1||F ||A−1||2εM + ||Ψk+1||2 +O(ε2M ).

If ||zj ||2 = 1 (note that Hkzj = θjzj), then ||Vkzj ||2 ' 1 and ||xj ||2 ' θj and hence relative
contributions of the N1 components in xj are obtained by dividing (3.6) by θj . If θj is small,
these relative contributions become large and purification may fail. If |θ−1

j |||ξj ||2 � 1, then the
N1 component in xj is removed.
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Result 3.4. One implicit restart of Arnoldi produces a Gk that is not corrupted by N1 components,
and a Wk+1 that has no N1 component. This step may fail if ||R−1

k+1||2 � ε−1
M .

Proof. Repeating the proof in [14, section 4.4] leads to

||PN1Wk+1||2 ≤ ||PN1Ξk+1||2 +O(ε2M ),

with

||Ξk+1||2 ≤ (k + 2)3/2||Vk+2||F εM
+(ω||Vk+1||2||A−1||2εM + ||Ψk+2||2)||R−1

k+1||2 +O(ε2M ),

and ω = O(1). If ||R−1
k+1||2 is small, Wk+1 has no significant components in N1. If ||R−1

k+1||2 is
large, then ||Ξk||2 � εM and Wk+1 can have components in N1. Consequently, Gk is corrupted
by the components in N1 and may cause spurious Ritz values.

Compared to the results in [14, section 4.4], the corruption in Wk+1 and Gk is decreased.
The following theorem shows that, as a Ritz pair (λ̃, x) with not too small λ̃ converges to an

eigenpair of S1, it is purified automatically. This is consistent with results 3.3 and 3.4, and also
explains why implicit purification of converged Ritz pairs (step 6 in Alg. 1) is not needed.

Theorem 3.5. Let (λ̃, x) be a converged Ritz pair of S1, with r = S1x− λ̃x and ||r||2 < ε. Then
||PN1x||2 ≤ ε/λ̃.

Proof. Write λ̃PN1x = PN1S1x− PN1r and note that PN1S1x = 0.

Although failure of IRA if ||R−1
k ||2 is large is still possible, the results above show that the

(growth of the) corruption by N1 components is reduced. The rounding errors made during the
orthogonalization phase are also reduced, because the standard inner product is used instead of
the B-inner product, and hence no additional multiplications with B are needed.

3.2.2 Numerical example

To illustrate the new results, the growth of ||Ψk+1||2 (see (3.3)) for S and S1 is compared. Figure 1
shows ||Ψk+1||2 at every Arnoldi iteration for the example matrix pencil taken from [14, Sect. 3.3].
For S, the B-orthogonal Arnoldi method is used, while for S1 Arnoldi with the usual inner product
is used. For both cases, the initial vector v1, with all entries equal to one, was purified using
v1 ← S2v1 and v1 ← S1v1 respectively. It is clear that the growth of ||Ψk+1||2 is much smaller for
S1. The growth of ||Ψk+1||2 for S can be explained as follows: let wk be the new Arnoldi vector
in iteration k, just after orthogonalization against Vk, but before normalization. The B-inner
product neglects any components in N (B), but these components are normalized with the same
factor hk+1,k = ||wk||B . If hk+1,k < 1, then these components increase in 2-norm. This may
lead to an increase of ||Ψk+1||2. Typical values of hk+1,k in this example were of order O(10−4).
An explanation for the apparent stagnation of the growth of ||Ψk+1||2 at some iterations may be:
the new Arnoldi vector is computed as Svk and S1vk respectively, which is in fact an explicit
purification of vk. Combined with a not too small hk+1,k, this will cause only a limited increase.

A large ||Ψk+1||2 may not only prevent the implicit restart with zero shift from purifying the
factorization, it also reduces the effect of the implicit purification via xj = Vk+1Hkzj , as can be
deduced from results 3.3 and 3.4 and their equivalents in [14]. With this in mind, the choice for
Arnoldi with S1 is obvious.

3.3 A new strategy

3.3.1 Implicitly restarted Arnoldi with deflation

It is not clear from [14] how the idea of the implicit restart with shift σ0 = 0 (Alg. 1) is incorporated
with the implicitly restarted Arnoldi method with deflation [11, 22]. The IRA method starts with
a k-step Arnoldi factorization SVk = VkHk +hk+1,kvk+1e

T
k . Then, until convergence, the following

steps are iterated:
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Figure 1: The size of ||Ψk+1||2 for B-orthogonal Arnoldi applied to S = (A − 60B)−1B, and
Arnoldi applied to S1.

1. Compute the Ritz values θi, i.e. the eigenvalues of Hk and split them in a set of wanted Ritz
values {θ1 . . . θj} and unwanted Ritz values {σ1 . . . σp}, with k = j + p.

2. Apply p QR-steps to Hk with shifts σi to remove the unwanted Ritz values.

3. Extend the j-step Arnoldi factorization to a k-step Arnoldi factorization.

Like in Alg. 2, the idea now is to implicitly restart with σ0 = 0 just before the computation
of the Ritz values in step (1), i.e. just after the extension of the Arnoldi factorization. Any
detected spurious Ritz values can be removed by including these as shifts for the implicit restarts.
The algorithm is summarized in Alg. 3. For details about the implementation of implicit shifts,
deflation and the locking procedure, the reader is referred to [11, 22, 23].

Algorithm 3 Implicitly restarted Arnoldi for S1 with purification and deflation
1: Choose an initial vector v1 ← S1v1
2: Do k + 1 steps of Arnoldi to compute Vk+2 and Hk+1

3: while not all converged do
4: Purify by applying one restart with σ = 0: [Vk+1,Hk] = purify(Vk+2,Hk+1)
5: Compute λ(Hk) and lock converged wanted Ritz values
6: Select p shifts σ1, . . . , σp

7: Apply p implicit shifts to compute the (k − p) step Arnoldi factorization S1Vk−p =
Vk−p+1Hk−p

8: Extend S1Vk−p = Vk−p+1Hk−p to S1Vk+1 = Vk+2Hk+1

9: end while

3.3.2 Exploiting transformations to improve selection and convergence

Besides the shift-and-invert transformation TSI(A,B, σ) = (A − σB)−1, the generalized Cayley
transformation

TC(A,B, α1, α2) = (A− α1B)−1(A− α2B) = B + (α1 − α2)TSI , α1, α2 ∈ R (3.7)
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with α1 < α2 and α1 6= λi, i = 1, . . . , n, can be used for problems of the form (2.2), see [1, 2, 10].
The eigenvalues µi of TC are related to the eigenvalues of (A,B) by the relation µi = (λi −
α1)−1(λi − α2) and the infinite eigenvalues are transformed to 1. Eigenvalues close to α1 are
mapped to eigenvalues far from the unit circle, while eigenvalues close to α2 are mapped to
eigenvalues with small magnitude. The property that is of most use is that eigenvalues with
Re(λi) < (α1 + α2)/2 are mapped outside the unit circle, while eigenvalues with Re(λi) > (α1 +
α2)/2 are mapped inside the unit circle. The modified Cayley transformation is defined by

TM (A,B, α1, α2, α3) =
[
K − α1M C

CT 0

]−1 [
K − α2M α3C
α3C

T 0

]
, (3.8)

and has the same properties as the generalized Cayley transform, except that the infinite eigen-
values are transformed to α3 [1, 2, 10].

In [10], an algorithm is described where Cayley-transformations are combined with shift-and-
invert Arnoldi. The algorithm is based on the hybrid algorithm presented in [1, section 2.3] and
consists of two phases. In the first phase, an r-step Arnoldi factorization is computed using B-
orthogonal Arnoldi with purification. The corresponding r Ritz values are used to determine the
parameters α1, α2 ∈ R of the (modified) Cayley transform TC . In the second phase, implicitly
restarted B-orthogonal Arnoldi with purification is applied to TC to compute the wanted eigen-
values. The parameters α1, α2 are updated during the restarts.

The Ritz values that are computed in phase 1 may not have converged (moreover, in [10] there
is no convergence testing for the Ritz pairs of phase 1, to avoid accepting wrong eigenvalues), and
there may be spurious Ritz values as well. Also in the second phase spurious Ritz values may
be computed, that make the determination of α1, α2 more difficult. In [10] a selection strategy
is used to deal with spurious Ritz values. The approach presented here makes such a strategy
unnecessary and also reduces the number of different Cayley-transformations needed.

Assume that the k = 2 leftmost eigenvalues of (2.2) are wanted (complex conjugate pairs
counted as one eigenvalue), including any eigenvalues with negative real part. The algorithm is
readily adjustable for any number of wanted eigenvalues.

Simply computing the leftmost eigenvalues of S = TSI(A, 0) = A−1B is not advisable for
several reasons. Firstly, even if there are eigenvalues with negative real part, the process will
most likely be disturbed by spurious Ritz values, as has been explained in the previous sections.
Secondly, the leftmost eigenvalues of S do not necessarily correspond to the leftmost eigenvalues of
(A,B). The extremal eigenvalues λ̃i of S, that correspond to the eigenvalues λi = 1/λ̃i of (A,B),
however, can be computed safely, efficiently and accurately with IRA. These eigenvalues, sorted
in increasing real part order, that also not necessarily are the leftmost eigenvalues of (A,B), can
be used to compute α1, α2 for the modified Cayley transform:

• If Im(λ1) = 0, then α1 = λ1 + Re(λ2)−λ1
2 .

• If Im(λ1) 6= 0, then α1 = λ1.

• In both cases, α2 = 2× Re(λ2)− α1.

With these choices for α1, α2, eigenvalues with Re(λi) < Re(λ2) correspond to eigenvalues λ̃i of
SM = TM (A,B, α1, α2, 0) with |λ̃i| > 1, while eigenvalues with Re(λi) > Re(λ2) are transformed
inside the unit circle. Hence also any missed eigenvalues between λ1 and λ2 correspond to eigenval-
ues µi of SM with |µi| > 1. The eigenvalues of SM with largest magnitude can again be computed
by IRA and because the infinite eigenvalues are transformed to α3 = 0, there is virtually no danger
that spurious Ritz values will be selected as wanted eigenvalue. As soon as eigenvalues inside the
unit circle are computed, it can be safely concluded that the leftmost eigenvalues (including the
eigenvalues with negative real part) are found. The strategy is shown in Alg. 4.

The strategy consists of two phases: in phase 1 (step 1-2), the largest eigenvalues (in magni-
tude) of S are computed. Phase 2 (step 3-6) checks for any missed eigenvalues using the Cayley
transformation. In step 1, a larger number r will increase the chance of computing the leftmost
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Algorithm 4 Strategy for computing the 2 left most eigenvalues of (A,B)
PHASE 1
1: Compute the r ≥ 2 largest eigenvalues λ̃i of S1 with Alg. 3
2: Order λi = 1/λ̃i, i = 1, . . . , r by increasing real part

PHASE 2
3: Determine α1 and α2, and α3 = 0
4: SM = TM (A,B, α1, α2, α3)
5: Compute the largest 2 eigenvalues µi of SM1 with Alg. 3
6: The eigenvalues of (A,B) are λi = α1µi−α2

µi−1

eigenvalue already in this phase. In step 4, one could also take α1 = 0, but because any missed
eigenvalues are expected to be close to λ1, this is not preferred. Additional verification of any
missed eigenvalues can be done by choosing new α1, α2 based on the eigenvalues found in step 7
to compute the largest eigenvalues of the new SM , or by using techniques described in [15].

The difference with existing approaches is that in the determination of α1, α2 rather accurate
eigenvalue approximations are used, with as advantages that fewer updates of SM are needed and
that the risk of missing eigenvalues is reduced. Furthermore, the possible disturbance by spurious
Ritz values is reduced by first computing only the largest eigenvalues of S1. Note that with the
choice α3 = 0, SM can be reduced to SM1 in the same way as S to S1, as described in section 3.2.
If (µ, u) is an exact eigenpair of SM1, then for nonzero µ, (µ, [u∗, p∗]∗) with p = µ−1SM2u is an
exact eigenpair of SM . If (µ, [u∗, p∗]∗) is an eigenpair of the modified eigenvalue problem (3.8),
then (α1µi−α2

µi−1 , [u∗, q∗]∗), with q = (µ − α3)/(µ − 1)p, is an eigenpair of the original generalized
eigenvalue problem (2.2), provided µ /∈ {1, α3} (see [8, 10]).

It may seem that there is no advantage in using SM = TM (α1, α2, 0) instead of S, since in exact
arithmetic, due to shift-invariance of Krylov subspaces, Arnoldi for S and SM produces the same
eigenvalue estimates of (A,B) [15, lemma 2.5]. However, when using Arnoldi for S, the spurious
Ritz values may be hard to distinguish from wanted leftmost Ritz values, as both may be close to
zero, while when using Arnoldi for SM , the spurious Ritz values (near zero) are clearly separated
from the wanted Ritz values (magnitude larger than 1).

3.4 Realistic examples

The strategy in Alg. 4 is applied to two large scale examples. The first example is the stability
analysis of the flow over a backward facing step, a well known benchmark problem from fluid
dynamics [9]. The second examples is the flow in a driven cavity [4, section 7.1.3]. When referring
to (finite) eigenvalues λi, it is assumed that the λi are sorted in increasing real part order, i.e. λ1

is the leftmost eigenvalue. For more information about the bifurcation analysis of such nonlinear
systems, see [3].

The method eigs of Matlab 6.5, which is a wrapper around ARPACK [12], is used in all
experiments. The stopping criterion is τ = 10−6 and the size of the Arnoldi factorization is
k = 20.

3.4.1 Flow over a backward facing step

The matrices A and B with n = m + p = 21, 730 + 7, 872 = 29, 602, were obtained using the
package IFISS [18]. Table 1 shows statistics for Alg. 4 with r = 2, both for S and the reduced
problem S1. The leftmost eigenvalues λ1 = 6.04 · 10−2 and λ2,3 = 7.97 · 10−2 ± i1.92 · 10−2 were
already found in the first phase of the algorithm: the validtion in phase 2 did not result in new
eigenvalues. Although the running times for both the reduced and the unreduced problem are
equal, as expected, the residuals are better for the reduced problem. The claim in [9], that the
steady state flow at a Reynolds number Re = 800 is stable, is confirmed by the results.
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Table 1: Statistics for Alg. 4 for the flow over a backward facing step (section 3.4.1): number of
restarts, time, found eigenvalues and residuals after each phase.

reduced unreduced
phase 1 phase 2 phase 1 phase 2

#restarts 3 2 3 3
time (s) 118 95 120 97
eigenvalues λ1, λ2,3 λ1, λ2,3 λ1, λ2,3 λ1, λ2,3

maxi ||Axi − λiBxi|| 1 · 10−12 1 · 10−12 9 · 10−11 9 · 10−11

Table 2: Statistics for Alg. 4 for the driven cavity (section 3.4.2): number of restarts, time, found
eigenvalues and residuals after each phase.

r = 2 r = 5
phase 1 phase 2 phase 1 phase 2

#restarts 1 4 6 4
time (s) 33 112 106 112
eigenvalues λ1, λ4 λ1, λ2,3 λ1, λ4−7 λ1, λ2,3

maxi ||Axi − λiBxi|| 1 · 10−16 1 · 10−14 1 · 10−10 1 · 10−14

3.4.2 Flow in a driven cavity

The matrices A and B with n = m+ p = 8, 450+1, 089 = 9, 539, were obtained using the package
IFISS [18]. Table 2 shows statistics for Alg. 4 with r = 2 and r = 5, for the reduced problem S1.
The eigenvalues λ1 = 3.21·10−2 and λ4 = 1.01·10−1 were found in the first phase of the algorithm.
The validation in phase 2 identified the missed eigenvalue pair λ2,3 = 6.20 · 10−2 ± i4.61 · 10−1.
Increasing r does not help finding the missed eigenvalue in phase 1, while it increases the running
time.

4 Jacobi-Davidson methods, preconditioning and purifica-
tion

If the linear system solves with A− σB are inaccurate or not computable within reasonable time,
the strategy based on the implicitly restarted Arnoldi method is no longer applicable, although an
inexact variant could be considered [13]. Here a scheme based on the Jacobi-Davidson QZ method
[7] is proposed, that does not require exact solves with (A− σB).

The Jacobi-Davidson method [20] combines two principles to compute eigenpairs of eigenvalue
problems Ax = λx. The first principle is to apply a Ritz-Galerkin approach with respect to a
subspace spanned by v1, . . . , vk, the search space. The second principle is the computation of a
correction orthogonal the current eigenvector approximation. The Jacobi-Davidson method for
generalized eigenvalue problems will be briefly explained in sections 4.1 and 4.2. For a more
detailed description, the reader is referred to [7, 19, 20].

In section 4.3, it will be shown that when an exact preconditioner is used to solve the correction
equation, purification is obtained automatically. In section 4.4, this fact will be combined with
other properties of Jacobi-Davidson to obtain an efficient method for the computation of a few
selected eigenvalues.
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4.1 The Jacobi-Davidson method for generalized eigenproblems

Given the generalized eigenvalue problem

Ax = λBx, x 6= 0,

with A,B ∈ Rn×n, the Jacobi-Davidson method applies a Petrov-Galerkin condition to compute
approximate eigenpairs. If the search space is spanned by v1, . . . , vk, with Vk = [v1, . . . , vk] or-
thogonal, and the test space is spanned by w1, . . . , wk, with Wk = [w1, . . . , wk] orthogonal, the
Petrov-Galerkin condition becomes

AVks− θBVks ⊥ {w1, . . . , wk}.

This leads to the reduced k × k system

W ∗
kAVks = θW ∗

kBVks,

which can be solved using full space methods likeQZ to compute eigenpair approximations (θi, qi =
Vksi) of (4.1).

Given such an eigenpair approximation (θi, qi), the question is how to expand the search and
test space to improve the approximation. With the corresponding residual vector given by

ri = (Aqi − θiBqi),

the Jacobi-Davidson method computes a correction t ⊥ qi from the Jacobi-Davidson correction
equation

(I − ziz
∗
i )(A− θiB)(I − qiq∗i )t = −ri, (4.1)

where the test vector zi = µAqi + νBqi for a suitable pair µ, ν ∈ C. The search space is expanded
with t and the test space is expanded with µAt + νBt. A Ritz pair is accepted if ||ri||2 =
||(Aqi − θiBqi)||2 is smaller than a given tolerance.

4.2 Jacobi-Davidson QZ

In [7, 19], the Jacobi-Davidson method is extended with deflation. The Jacobi-Davidson QZ
(JDQZ) method computes a partial generalized Schur form of the pencil (A,B). Let the current
approximate partial generalized Schur form be given by

AQk = ZkSk, BQk = ZkTk,

with Qk, Zk n×k matrices and Sk, Tk upper triangular k×k matrices. The problem of finding the
next Schur triple (qk+1, zk+1, (αk+1, βk+1)) with θk+1 = αk+1/βk+1 can be rewritten as a deflated
generalized eigenvalue problem

Q∗kqk+1 = 0, (I − ZkZ
∗
k)(βk+1A− αk+1B)(I −QkQ

∗
k)qk+1 = 0,

which can be solved by the Jacobi-Davidson method. With the search space represented by the
orthogonal matrix V and the test space by the orthogonal matrix W , so that V ∗Qk = W ∗Zk = 0,
the reduced system matrices become

MA ≡W ∗(I − ZkZ
∗
k)A(I −QkQ

∗
k) = W ∗AV,

MB ≡W ∗(I − ZkZ
∗
k)B(I −QkQ

∗
k) = W ∗BV.

The generalized Schur decomposition of (MA,MB) is computed using QZ:

Z∗MMAQM = SA, Z∗MBQM = SB .
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The generalized Schur form is ordered with respect to the target τ , and an approximate Petrov
triple for (4.2) is obtained as

(q̃, z̃, (α̃, β̃)) = (V QMe1,WZMe1, (sA,11, sB,11)).

Given a Petrov triple (q̃, z̃, (α̃, β̃)) for the deflated problem, the corresponding generalized
deflated correction equation becomes

(I − z̃z̃∗)(I − ZkZ
∗
k)(β̃A− α̃B)(I −QkQ

∗
k)(I − q̃q̃∗)t = −r̃i, (4.2)

where the residual r̃ is
r̃ = (I − ZkZ

∗
k)(β̃A− α̃B)(I −QkQ

∗
k)q̃,

and Q∗kt = Z∗k z̃ = Q∗k q̃ = 0, q̃∗t = 0, ||t||2 = 1. The search space is expanded with the orthogonal
complement of t, and the test space is orthogonally expanded with (I−ZkZ

∗
k)(µA+νB)(I−QkQ

∗
k)t.

If the correction equation is solved exactly, the Jacobi-Davidson method converges asymp-
totically quadratically. In fact, the method can be shown to be a Newton scheme. Solving
the correction equation exactly may be too expensive in practice and therefore Krylov subspace
methods with preconditioning are used to solve the correction equation approximately. With a
preconditioner K ≈ A− τB, the correction equation (4.2) can be preconditioned by

(I − z̃z̃∗)(I − ZkZ
∗
k)K(I −QkQ

∗
k)(I − q̃q̃∗).

With Qk := [Qk, q̃], Zk := [Zk, z̃], Yk = K−1Zk and Hk = Q∗kZk, the left preconditioned correction
equation becomes

(I − YkH
−1
k Q∗k)K−1(βA− αB)(I − YkH

−1
k Q∗k)t = −r, (4.3)

where r = (I − YkH
−1
k Q∗k)K−1r̃.

4.3 Purification

Jacobi-Davidson style methods select a new Petrov pair according to some criterion, for instance
the leftmost Petrov pair, at every iteration. In the absence of infinite eigenvalues, selecting the
leftmost Petrov pair will usually result in convergence to the leftmost eigenvalue, assuming that the
initial search space contains components in that direction. In the presence of infinite eigenvalues
however, this will no longer be a smart strategy: Petrov values will go to infinity, without a proper
mechanism to identify them as infinite eigenvalue approximations.

If the search space is restricted toR(Sj), approximations to infinite eigenvalues can be avoided.
Projection of the search space vectors onto R(Sj) is not attractive because an orthogonal basis for
R(Sj) is not cheaply available. The following lemmas are needed for proving theorem 4.6, which
states that if an exact preconditioner2 is used for the correction equation and if the initial search
space V0 ⊂ R(Sj), then, in exact arithmetic, no spurious eigenvalues are computed during the
Jacobi-Davidson process.

Lemma 4.1. Let q = ((A − σB)−1B)jx ∈ R(Sj) and K = A − τ0B. Then r = (βA − αB)q ∈
R(BSj−1).

Proof. The result follows from some linear algebra:

(βA− αB)q = β((A− σB) + (σ − α/β)B)q
= β((σ − α/β)Bq + (A− σB)((A− σB)−1B)j)x
= βB((σ − α/β)q + ((A− σB)−1B)j−1)x ∈ R(BSj−1),

where in the last step R(BSj) ⊆ R(BSj−1) is used.
2In this paper, an exact preconditioner is a preconditioner K = A − τ0B for which linear systems of the form

Kx = y can be solved exactly, for instance by using an exact LU-factorization LU = K.
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Lemma 4.2. Let y = BSj−1x ∈ R(BSj−1) and K = A− τ0B. Then K−1y ∈ R(Sj).

Proof. With basic linear algebra, one finds

K−1y = (A− τ0B)−1y

= (A− τ0B)−1BSj−1x

= (A− σB)−1(I + (τ0 − σ)B(A− τ0B)−1)BSj−1x ∈ R(Sj).

Lemma 4.3. Let r ∈ R(Sj), K = A − τ0B, AQk = ZkSA, BQk = ZkSB, q ∈ R(Sj), z =
νAq + µBq, Yk = K−1[Zk, z] and Hk = [Qk, q]∗Zk. Then (I − YkH

−1
k [Qk, q]∗)r ∈ R(S).

Proof. First note that R(Zk) = R(AQk) = R(BQk). It follows from lemma 4.1 that z ∈
R(BSj−1) and hence R(K−1[Zk, z]) ⊆ R(Sj). Consequently, (I − YkH

−1
k [Qk, q]∗)r ∈ R(Sj).

Lemma 4.4. Let r ∈ R(Sj), K = A − τ0B, AQk = ZkSA, BQk = ZkSB, q ∈ R(Sj), z =
νAq + µBq, Yk = K−1[Zk, z] and Hk = [Qk, q]∗Zk. Then

Kj((I − YkH
−1
k Q∗k)K−1(βA− αB)(I − YkH

−1
k Q∗k), r) ⊆ R(Sj).

Proof. The result follows from applying subsequently lemma 4.3, 4.1, 4.2 and again 4.3.

This lemma not only enables one to use a Krylov solver for the correction equation, it also has
consequences for purification in Jacobi-Davidson.

Lemma 4.5. If the initial search space V0 ⊂ R(Sj) and the Jacobi-Davidson correction equation
is solved using an exact preconditioner, then all subsequent search spaces Vk ⊂ R(Sj).

Proof. The result follows from lemma 4.4.

Theorem 4.6. If the initial search space V0 ⊂ R(Sj) and the Jacobi-Davidson correction equa-
tion is solved using an exact preconditioner, then in exact arithmetic no spurious eigenpairs are
computed during the Jacobi-Davidson process.

Proof. The reduced system is (MA,MB) = (W ∗AV,W ∗BV ) with test space W = νAV + µBV .
Applying lemma 4.1 to W gives W ⊂ R(BSj−1) and no spurious eigenvalues are computed. From
lemma 4.5 it follows that the Petrov vectors qi = Vksi satisfy qi ∈ R(Sj).

The last theorem says that, in exact arithmetic, if the Jacobi-Davidson method with exact
preconditioning starts with V0 ⊂ R(Sj), then Vk ⊂ R(Sj) and W ⊂ R(BSj−1) and no spurious
eigenpairs are computed. In other words, with exact preconditioning the search space is purified
automatically. The effect is even enforced because usually more than one iteration of the Krylov
solver is needed.

However, in finite arithmetic components in N +G may still arise due to rounding errors, and if
an exact preconditioner is not available, theorem 4.6 is also not applicable. Fortunately, there is a
result similar to theorem 3.5. Let PR, PN and PG be normalized projectors that map a vector into
R = R(A−1B), N = N (A−1B) and G = G(A−1B) respectively, so x ∈ Cm can be decomposed
uniquely as x = PRx + PNx + PGx. The following theorem shows that a converged Petrov pair
(λ, x) is purified automatically, provided |λ|, ||A−1||2 and ||B||2 are not too large.

Theorem 4.7. Let (λ, x) be a converged Petrov pair of (A,B), with r = Ax−λBx and ||r||2 < ε.
Then

||PNx||2 ≤ ε||A−1||2(1 + |λ|||A−1||2||B||2),
||PGx||2 ≤ ε||A−1||2.

Proof. Use x = A−1(r + λBx), PN (A−1B) = (A−1B)PG and PG(A−1)B = 0.
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4.4 Harmonic Ritz-values, exact targets and purification

Numerical experiments show that the JDQZ process with harmonic Petrov values and a target
equal to an eigenvalue does not converge to this eigenvalue, but to eigenvalues closest to the target.
This observation can be understood from a theoretical point of view, as will be explained next,
and may be of use in avoiding convergence to eigenvalues at infinity.

First consider the Jacobi-Davidson process for the ordinary eigenproblem

Ax = λx

In [20] it is shown that the harmonic Ritz values of A are equal to the eigenvalues of the k × k
matrix

H̃k = (W ∗
kVk)−1W ∗

kAVk = (W ∗
kVk)−1

with Wk = AVk and W ∗
kWk = I. Note that H̃−1

k = W ∗
kVk = W ∗

kA
−1Wk, the projection of A−1

with respect to an orthonormal basis Wk. In practice it is not necessary to invert H̃−1
k , because

the harmonic Ritz values of A are the reciprocals of the eigenvalues of H̃k = W ∗
kVk. Hence, no

problems are encountered if W ∗
kVk is singular, which may happen if A has an eigenvalue at zero.

Theorem 4.8. Let A ∈ Rn×n be a normal matrix and τ ∈ R. If τ exactly equals an eigenvalue
of A, then, in exact arithmetic, the Jacobi-Davidson process with harmonic Ritz values and target
τ will not converge to the eigenvalue λ = τ .

Proof. Without loss of generality, let τ = λ = 0: if τ = λ 6= 0, the proof follows for A − τI.
Denote the null space of A by N and the range of A by R. The eigenspace corresponding to the
eigenvalue λ = 0 is (a subset of) the null space N . However, because of the normality of A, the
space spanned by the columns of Wk = AVk does not contain any elements of the eigenspace of
λ = 0. Because the eigenspaces of A and A−1 are the same, the proof would be complete if A−1

would exist. However, in this case there is an eigenvalue λ = 0 and hence A−1 does not exist.
If δ ∈ C\Λ(A), then (A + δI)−1 exists and the eigenspaces of A, A + δI, and (A + δI)−1 are

the same, but the eigenvalues are λ, λ+ δ, and (λ+ δ)−1 respectively. With the iteration vectors
wk still generated by Avk, and hence Wk containing no components of the null space of A and
the eigenspace Vδ of A+ δI, it follows that the eigenvalue δ−1 will not be contained in the set of
eigenvalues of W ∗

k (A+ δI)−1Wk.

In finite arithmetic, Wk can still contain components of the (generalized) null space of A, which
may hamper convergence to the desired eigenvalues or even cause convergence to the undesired,
perturbed eigenvalue. If the starting vector is in the null space of A, Jacobi-Davidson with
harmonic Ritz values will break down.

The proof for the Jacobi-Davidson QZ process for generalized eigenproblems is similar. In [21]
these observations are used to derive a selection strategy for Ritz pairs.

4.5 A strategy with JDQZ

The strategy in Alg. 5 is conceptually the same as Alg. 4, with JDQZ instead of IRA. By considering
the pencil (B,A) instead of (A,B), the infinite eigenvalues are transformed to zero. The extremal
eigenvalues of (B,A) can be computed safely, efficiently and accurately by JDQZ with harmonic
Petrov values and target τ = 0 (see theorem 4.8). These eigenvalues can be used to determine
α1, α2 and α3 = 0 for the modified Cayley transform (see also section 3.3), here formulated as the
generalized eigenvalue problem A(α2, α3)x = µB(α1)x with

A(α2, α3) =
[
K − α2M α3C
α3C

T 0

]
, B(α1) =

[
K − α1M C

CT 0

]
.

Eigenpairs that are found in phase 1 (step 1 - 3) can be deflated from the problem in phase 2 (step
4 - 6).
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Algorithm 5 Strategy for computing the 2 left most eigenvalues of (A,B)
PHASE 1
1: Choose a suitable preconditioner for the correction equation
2: Compute the r ≥ 2 largest eigenvalues λ̃i of (B,A) with JDQZ (τ = 0)
3: Order λi = 1/λ̃i, i = 1, . . . , r by increasing real part

PHASE 2
4: Determine α1 and α2, and α3 = 0
5: Compute the largest 2 eigenvalues µi of (A(α2, α3),B(α1)) with JDQZ
6: The eigenvalues of (A,B) are λi = α1µi−α2

µi−1

4.6 Realistic examples

The strategy in Alg. 5 is applied to the test problems of section 3.4. To make a fair comparison
with the IRA strategy in Alg. 4, two situations were considered:

• The correction equation is not solved exactly, but with 20 steps of (unrestarted) GMRES [17]
with preconditioner A (stopping earlier if the relative residual norm drops below ε = 10−6).

• The correction equation is solved exactly and an initial search space of size jmin is computed
with Arnoldi.

In both situations, the initial vector v1 had all entries one and was not purified. The search and test
space dimensions are limited by jmin = 15 and jmax = 20, and the residual tolerance was 10−6 (see
[7] for more details about the several parameters and sophisticated stopping criteria). In situation
1, solves with preconditioner A are needed and hence one could argue that in that case also the
IRA strategy in Alg. 4 could be used. The goal here however is to show that even if the correction
equation is not solved exactly and the initial search space is not constructed with Arnoldi, JDQZ
is able to compute the leftmost eigenvalues. In this way, situation 1 resembles the situation where
indeed solves with A are not possible and the IRA strategy is not applicable. The quality of
the preconditioner influences the speed of convergence of the GMRES process, but this paper is
not concerned with designing a good preconditioner (see [4, chapter 8] and references therein for
preconditioners of related systems). For the experiments, a variant of the JDQZ algorithm, that
keeps the search and test spaces real, is used (RJDQZ [24]).

4.6.1 Flow over a backward facing step

Table 3 shows statistics for Alg. 5 with r = 2, for both exact and inexact solution of the correction
equation. The leftmost eigenvalues λ1 = 6.04·10−2 and λ2,3 = 7.97·10−2±i1.92·10−2 were already
found in the first phase of the algorithm: the validation in phase 2 did not result in new eigenvalues.
The differences in residual norms can be explained by the asymptotically quadratical convergence
of the exact variant. Concerning the higher computing times for the inexact variant, one should
keep in mind that for stability analysis the quality of the solution (no missed eigenvalues) is the
most important. Furthermore, it may be expected that the times can be decreased by using a
more effective preconditioning, but this goes beyond the scope of this paper. The exact variant is
faster than implicitly restarted Arnoldi (cf. table 2).

4.6.2 Flow in a driven cavity

Table 4 shows statistics for Alg. 5 with r = 2, for both exact and inexact solution of the correction
equation. The eigenvalues λ1 = 3.21 ·10−2 and λ4 = 1.01 ·10−1 were found in the first phase of the
algorithm. The validation in phase 2 found the missed eigenvalue λ2,3 = 6.20 · 10−2± i4.61 · 10−1.
The exact variant is faster than implicitly restarted Arnoldi (cf. table 2).
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Table 3: Statistics for Alg. 5 for the backward facing step with Reynolds number Re = 800 (section
4.6.1): number of iterations, restarts, time, found eigenvalues and residuals after each phase. No
restarts were needed.

Inexact Exact
phase 1 phase 2 phase 1 phase 2

#iterations 18 9 4 2
time (s) 1400 1000 85 80
eigenvalues λ1, λ2,3 λ1 λ1, λ2,3 λ1, λ2,3

maxi ||Axi − λiBxi|| 1 · 10−11 1 · 10−11 1 · 10−15 1 · 10−15

Table 4: Statistics for Alg. 4 for the driven cavity with Reynolds number Re = 500 (section
4.6.2): number of restarts, time, found eigenvalues and residuals after each phase. No restarts
were needed.

Inexact Exact
phase 1 phase 2 phase 1 phase 2

#iterations 13 12 3 3
time (s) 330 340 21 58
eigenvalues λ1, λ4 λ1,λ2,3 λ1, λ4 λ1,λ2,3

maxi ||Axi − λiBxi|| 1 · 10−10 1 · 10−10 1 · 10−15 1 · 10−15

5 Conclusions

The strategy based on implicitly restarted Arnoldi is a reliable and fast method to compute
the leftmost eigenvalues of large scale eigenvalues, if the solves needed for the shift-and-invert
and Cayley transformations can be done efficiently and exactly. By exploiting the structure of
the generalized eigenvalue problem and by choosing suitable parameters for the modified Cayley
transformation, the troubles caused by infinite eigenvalues are circumvented and no purification
is needed.

If the solves that are needed for the transformations cannot be done exactly, the Jacobi-
Davidson QZ method is a good alternative. Following the same strategy, JDQZ is able the compute
the leftmost eigenvalues, without corruption due to infinite eigenvalues. If solves can be done
exactly, it is faster than implicitly restarted Arnoldi. Jacobi-Davidson puts no requirements on
the matrix pencil: it can handle both regular and singular pencils.

Acknowledgments

I thank Tycho van Noorden for many fruitful discussions. The result in lemma 4.5 was indepen-
dently derived by both authors. Tycho van Noorden uses the result in a continuation method
context. Gerard Sleijpen pointed me to [14] and gave helpful comments. I thank Henk van der
Vorst for useful comments on earlier versions of this text. I am thankful to David Silvester and
Howard Elman for introducing me to IFISS [18]. I am grateful to the anonymous referee, whose
suggestions and remarks helped me to improve the paper.

References

[1] K. A. Cliffe, T. J. Garratt, and A. Spence, Eigenvalues of the discretized Navier-Stokes
equation with application to the detection of Hopf bifurcations, Adv. Math. Comp. 1 (1993),
337–356.

17



[2] , Eigenvalues of block matrices arising from problems in fluid mechanics, SIAM J. Ma-
trix Anal. Appl. 15 (1994), no. 4, 1310–1318.

[3] K. A. Cliffe, A. Spence, and S. J. Tavener, The numerical analysis of bifurcation problems
with application to fluid mechanics, Acta Numerica 9 (2000), 39–131.

[4] H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fast Iterative Solvers, first ed.,
Oxford University Press, 2005.

[5] T. Ericsson, A generalised eigenvalue problem and the Lanczos algorithm, Large Scale Eigen-
value Problems (J. Cullum and R.A. Willoughby, eds.), Elservier Science Publishers BV,
1986, pp. 95–119.

[6] T. Ericsson and A. Ruhe, The spectral transformation lanczos method for the numerical so-
lution of large sparse generalized symmetric eigenvalue problems, Math. Comp. 35 (1980),
1251–1268.

[7] D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst, Jacobi-Davidson style QR and QZ
algorithms for the reduction of matrix pencils, SIAM J. Sc. Comp. 20 (1998), no. 1, 94–125.

[8] T. J. Garratt, The numerical detection of Hopf bifurcations in large systems arising in fluid
mechanics, Ph.D. thesis, University of Bath, 1991.

[9] P. M. Gresho, D. K. Gartling, J. R. Torczynski, K. A. Cliffe, K. H. Winters, T. J. Garratt,
A. Spence, and J. W. Goodrich, Is the steady viscous incompressible two-dimensional flow
over a backward-facing step at Re=800 stable?, Int. J. Num. Meth.Fluids 17 (1993), 501–541.

[10] R. B. Lehoucq and J. A. Scott, Implicitly restarted Arnoldi methods and eigenvalues of the dis-
cretized Navier Stokes equations, Tech. Report SAND97-2712J, Sandia National Laboratory,
1997.

[11] R. B. Lehoucq and D. C. Sorensen, Deflation techniques within an implicitly restarted Arnoldi
iteration, SIAM J. Matrix Anal. Appl. 17 (1996), 789–821.

[12] R. H. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK SOFTWARE,
http://www.caam.rice.edu/software/ARPACK/.

[13] K. Meerbergen and D. Roose, The restarted Arnoldi method applied to iterative linear system
solvers for the computation of rightmost eigenvalues, SIAM J. Matrix Anal. Appl. 18 (1997),
no. 1, 1–20.

[14] K. Meerbergen and A. Spence, Implicitly restarted Arnoldi with purification for the shift-invert
transformation, Math. Comp. 66 (1997), no. 218, 667–689.

[15] K. Meerbergen, A. Spence, and D. Roose, Shift-invert and Cayley transforms for detection of
rightmost eigenvalues of nonsymmetric matrices, BIT 34 (1994), no. 3, 409–423.

[16] B. Nour-Omid, B. N. Parlett, T. Ericsson, and P. S. Jensen, How to implement the spectral
transformation, Math. Comp. 48 (1987), no. 178, 663–673.

[17] Y. Saad and M. H. Schultz, GMRES: A generalized minimial residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986), no. 3, 856–869.

[18] D. Silvester, H. Elman, and A. Ramage, Incompressible Flow and Iterative Solver Software,
http://www.maths.manchester.ac.uk/ djs/ifiss/.

[19] G. L. G. Sleijpen, J. G. L. Booten, D. R. Fokkema, and H. A. van der Vorst, Jacobi-Davidson
type methods for generalized eigenproblems and polynomial eigenproblems, BIT 36 (1996),
no. 3, 595–633.

18



[20] G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi-Davidson iteration method for linear
eigenvalue problems, SIAM J. Matrix Anal. Appl. 17 (1996), no. 2, 401–425.

[21] G. L. G. Sleijpen, H. A. van der Vorst, and E. Meijerink, Efficient expansion of subspaces in
the Jacobi-Davidson method, Electronic Transactions on Numerical Analysis 7 (1998), 75–89.

[22] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM
J. Matrix Anal. Appl. 13 (1992), 357–385.

[23] , Deflation for implicitly restarted Arnoldi methods, Tech. Report TR98-12, Rice Uni-
versity, 1998.

[24] T. L. van Noorden and J. Rommes, Computing a partial real ordered generalized Schur form
using the Jacobi-Davidson method, RANA 05-41, Eindhoven Technical University, 2005, Ac-
cepted for publication in Num. Lin. Alg. Appl.

19


