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Abstract

This paper describes a new algorithm to compute the dominant poles of a high-order scalar
transfer function. The algorithm, called the Subspace Accelerated Dominant Pole Algorithm
(SADPA), is more robust than existing methods in finding both real and complex dominant
poles, and faster because of subspace acceleration. SADPA is able to compute the full set
of dominant poles and produce good modal equivalents automatically, without any human
interaction.

1 Introduction

Recent work on power system stability, controller design and electromagnetic transients has used
several advanced model reduction techniques [1–5], that produce good results but impose high
computational costs. Modal model reduction is a cost-effective alternative for large-scale systems,
when only a fraction of the system pole spectrum is controllable-observable for the transfer function
of interest. Modal reduction produces transfer function modal equivalents from the knowledge
of the dominant poles and their corresponding residues, but requires specialized eigensolution
methods that are still not capable enough to produce automatically the full set of truly dominant
poles [6–8] for large system models. A good survey on model reduction methods employing either
singular value decompositions or moment matching based methods is found in [9, 10]. A good
introduction on modal model reduction on state space models can be found in [11], but a review
on reduction methods that has applications extended to large, sparse descriptor system models is
not known to the authors.

In this article, a new variant of the Dominant Pole Algorithm (DPA) [6] and the Dominant
Pole Spectrum Eigensolver (DPSE) [7] will be proposed: Subspace Accelerated DPA (SADPA).
Instead of computing the dominant poles of a scalar transfer function simultaneously, the domi-
nant poles and corresponding residues are computed one by one by selecting the most dominant
approximation every iteration. This approach leads to a faster, more robust and more flexible
algorithm. To avoid repeated computation of the same dominant poles, a deflation strategy is
used. The SADPA directly operates on implicit state space systems, also known as descriptor
systems, which are very sparse in practical power system applications.

The article is organized as follows. Section 2 summarizes some well known properties of scalar
transfer functions and formulates the problem of computing the dominant poles of a scalar transfer
function. Section 3 discusses the DPSE algorithm [7]. In section 4, the new variant SADPA is
described. Extensive numerical results are presented in 5. Section 6 concludes.
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Netherlands (rommes@math.uu.nl).
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2 Transfer functions and dominant poles

The transfer function of a Single Input Single Output (SISO) system{
ẋ(t) = Ax(t) + bu(t)
y(t) = cT x(t) + du(t),

where A ∈ Rn×n, x(t),b, c ∈ Rn and u(t), y(t), d ∈ R, is defined as

H(s) = cT (sI −A)−1b + d, (1)

where I ∈ Rn×n is the identity matrix and s ∈ C. Without loss of generality, d = 0 in the
following.

Let the eigenvalues (poles) of A and the corresponding right and left eigenvectors be given by
the triplets (λj ,xj ,vj), and let the right and left eigenvectors be scaled so that v∗jxj = 1. Note
that v∗jxk = 0 for j 6= k. The transfer function H(s) can be expressed as a sum of residues Rj

over first order poles [12]:

H(s) =
n∑

j=1

Rj

s− λj
,

where the residues Rj are
Rj = (xT

j c)(v∗jb).

A pole λj that corresponds to a residue Rj with large magnitude |Rj | is called a dominant
pole, i.e. a pole that is well observable and controllable in the transfer function. This can also be
observed from the corresponding Bode Magnitude plot of H(s), where peaks occur at frequencies
close to the imaginary parts of the dominant poles of H(s). An approximation of H(s) that
consists of k < n terms with |Rj | above some value, determines the effective transfer function
behaviour [13]:

Hk(s) =
k∑

j=1

Rj

s− λj
,

The problem of concern can now be formulated as: Given a SISO linear, time invariant,
dynamical system (A,b, c, d), compute k � n dominant poles λj and the corresponding right and
left eigenvectors xj and vj .

3 Dominant Pole Spectrum Eigensolver

The DPSE [7] is based on the Dominant Pole Algorithm (DPA) [6] and Refactored Bi-Iteration
(RBI) [14]. A scalar transfer function (1) is equal to its transpose:

H(s) =
Y (s)
U(s)

= cT (sI −A)−1b = bT (sI −A)−T c, (2)

where Y (s) and U(s) are the Laplace transforms of y(t) and u(t). In matrix form, (2) becomes[
sI −A −b

cT 0

] [
X(s)
U(s)

]
=

[
sI −AT c
−bT 0

] [
V (s)
U(s)

]
=

[
0

Y (s)

]
, (3)

where X(s) and V (s) are the Laplace transforms of the state vectors for A and AT . The idea
behind DPA, that is also used in DPSE, is that a pole of H can be defined as a λ ∈ C for which
lims→λ H(s) = ∞, and hence U(s) → 0 for s → λ and finite Y (s)(= 1). The vectors X(s) and
V (s) in (3) converge to left and right eigenvectors of A. The DPA is summarized in algorithm
1. All algorithms are described as directly operating on the state-space model. The practical
implementations operate on the sparse descriptor system model, which is the unreduced Jacobian
for the power system stability problem, analized in the examples of this paper (see section 5).
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Algorithm 1 The Dominant Pole Algorithm.
INPUT: Initial pole estimate s1

OUTPUT: Dominant pole λ and corresponding right and left eigenvectors x and v.
1: Set k = 1
2: while not converged do
3: Solve x = X(sk) ∈ Cn and u = U(sk) ∈ C from[

skI −A −b
cT 0

] [
x
u

]
=

[
0
1

]
4: Solve v = V (sk) ∈ Cn and u = U(sk) ∈ C from[

(skI −A)∗ c
−bT 0

] [
v
u

]
=

[
0
1

]
5: Compute the new pole estimate

sk+1 = sk +
u

v∗x
6: The pole λ = sk+1 has converged if

||Ax− sk+1x||2 < ε

for some ε � 1
7: Set k = k + 1
8: end while

The DPA can be proven to be a Newton process [6,15] and converges asymptotically quadrat-
ically. Note that other criteria for convergence can be used [6, 7]. Note also that the complex
transpose, denoted by A∗, is used in all algorithms, instead of the transpose AT .

In the DPA, there is one moving shift sk. The RBI uses multiple moving shifts and this is the
second ingredient for the DPSE. By using multiple moving shifts, more than one dominant pole
can be computed. Computation of repeated poles is avoided by using different initial shifts. The
DPSE is summarized in algorithm 2. In a practical implementation, the number of moving shifts
is decreased as soon as a pole has converged, while the corresponding right and left eigenvectors
are kept in the matrices V and X. Furthermore, if a complex pole has converged, its complex
conjugate is also a pole and the matrices V and X can be expanded with the corresponding
complex conjugate right and left eigenvectors (this leads to slightly larger interaction matrices G
and T ).

4 A new approach: Subspace Accelerated DPA

In this section, three strategies to improve the DPSE will be discussed and combined to produce
the new algorithm SADPA. In fact, the new algorithm SADPA can be seen as a generalization of
the DPA to compute more than one dominant pole. Firstly, subspace acceleration, a well known
technique for iterative methods, will be described. Secondly, a new selection strategy will be
used to select the most dominant pole approximation and corresponding right and left eigenvector
approximation every iteration. Thirdly, deflation will be used to avoid convergence to eigentriplets
that are already found.

4.1 Subspace acceleration

A drawback of the DPSE is that information obtained in the current iteration is discarded at
the end of the iteration. The only information that is preserved is contained in the new pole
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Algorithm 2 The Dominant Pole Spectrum Eigensolver.

INPUT: m initial pole estimates s
(i)
1 , i = 1, . . . ,m

OUTPUT: m dominant pole triplets (λi,xi,vi), i = 1, . . . ,m
1: Set k = 1
2: while not all converged do
3: for i = 1, . . . ,m do
4: Solve x(i) = X(i)(sk) ∈ Cn from[

s
(i)
k I −A −b

cT 0

] [
x(i)

u

]
=

[
0
1

]
5: Solve v(i) = V (i)(sk) ∈ Cn from[

(s(i)
k I −A)∗ c
−bT 0

] [
v(i)

u

]
=

[
0
1

]
6: end for
7: Set V = [v(1), . . . ,v(m)] and X = [x(1), . . . ,x(m)]
8: Compute G = V ∗X and T = V ∗AX
9: Compute the new pole estimates

s
(i)
k+1 = λi(H,G), i = 1, . . . ,m

10: A pole λi = s
(i)
k+1 has converged if

||Ax(i) − s
(i)
k+1x

(i)||2 < ε

for some ε � 1
11: Set k = k + 1
12: end while
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estimates s
(i)
k+1. The subspaces V and X, however, contain also information about other dominant

eigentriplets (i.e. components in the direction of the corresponding eigenvectors) and the idea is
now to use this information as well. Reasoning this way leads to a generalization of the DPA.

A global overview of the SADPA is shown in algorithm 3. Starting with a single shift s1,
the first iteration is equivalent to the first iteration of the DPA, but instead of discarding the
corresponding right and left eigenvector approximations x1 and v1, they are kept in spaces X and
V . In the next iteration, these spaces are expanded orthogonally, by using modified Gram-Schmidt
(MGS) [16], with the approximations x2 and v2 corresponding to the new shift s2 (see section 4.3).
Hence the spaces grow and will contain better approximations. This idea is known as subspace
acceleration. Approximations of the dominant poles are computed like in the DPSE, but the next
question is to select the most promising approximation as new shift: unlike the DPSE, only one
shift per iteration is used.

Algorithm 3 Subspace Accelerated DPA.
INPUT: System (A,b, c), initial pole estimate s1 and the number of wanted poles pmax

OUTPUT: Dominant pole triplets (λi, ri, li), i = 1, . . . , pmax

1: k = 1, pfound = 0, Λ = R = L = []
2: while pfound < pmax do
3: Solve x = X(sk) ∈ Cn from [

skI −A −b
cT 0

] [
x
u

]
=

[
0
1

]
4: Solve v = V (sk) ∈ Cn from [

(skI −A)∗ c
−bT 0

] [
v
u

]
=

[
0
1

]
5: X = Expand(X, R,L,x) {Alg. 5}
6: V = Expand(V,L,R,v) {Alg. 5}
7: Compute G = V ∗X and T = V ∗AX
8: Compute eigentriplets of (T,G):

(λ̃i, x̃i, ṽi), i = 1, . . . , k

9: Compute approximate eigentriplets of A as

(λ̂i = λ̃i, x̂i = Xx̃i, v̂i = V ṽi), i = 1, . . . , k

10: Λ̂ = [λ̂1, . . . , λ̂k]
11: X̂ = [x̂1, . . . , x̂k]
12: V̂ = [v̂1, . . . , v̂k]
13: (Λ̂, X̂, V̂ ) = Sort(Λ̂, X̂, V̂ ,b, c) {Alg. 4}
14: if ||Ax̂1 − λ̂1x̂1||2 < ε then
15: (Λ, R, L, X, V ) =

Deflate(λ̂1, x̂1, v̂1,Λ, R, L, X̂2:k, V̂2:k) {Alg. 6}
16: pfound = pfound + 1
17: Set λ̂1 = λ̂2

18: end if
19: Set k = k + 1
20: Set the new pole estimate sk+1 = λ̂1

21: end while
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4.2 Selection strategy

In algorithm 3, one has to choose a strategy to select the new pole estimate sk. A possible choice
is to use the generalized Rayleigh quotient as it is used in DPA and DPSE. Here, however, also
another choice is possible, that is closer to the goal of computing the dominant poles.

Because in iteration k the interaction matrices G ∈ Ck×k and T ∈ Ck×k are of low order
k � n (see step 7 in Alg. 3), it is relatively cheap to compute the full eigendecomposition of the
pencil (T,G). This provides k approximate eigentriplets (λ̂i, x̂i, v̂i). The most natural thing to
do is to choose the triplet (λ̂j , x̂j , v̂j) with the most dominant pole approximation: compute the
corresponding residues R̂i = (x̂T

i c)(v̂∗i b) of the k pairs and select the pole with the largest |R̂i|
(see Alg. 4). The SADPA then continues with the new shift sk+1 = λ̂j .

Algorithm 4 (Λ, X, V ) = Sort(Λ, X, V,b, c)

INPUT: Λ ∈ Cn, X, V ∈ Cn×k, b, c ∈ Cn

OUTPUT: Λ ∈ Cn, X, V ∈ Cn×k with λ1 the pole with largest residue magnitude and x1 and
v1 the corresponding approximate right and left eigenvectors.

1: Compute residues Ri = (xT
i c)(v∗i b)

2: Sort Λ, X, V in decreasing |Ri| order

4.3 Deflation

Every iteration a convergence test is done like in DPA and DPSE: if for the selected eigentriplet
(λ̂j , x̂j , v̂j) the norm of the residual ||Ax̂j−λ̂jx̂j ||2 is smaller than some tolerance ε, it is converged.
In general more than one dominant eigentriplet is wanted and it is desirable to avoid repeated
computation of the same eigentriplet. A well known technique to avoid repeated computation is
to use deflation [17].

If already the right and left eigenvectors xj and vj are found, then it can be verified that, if
the exact vectors are found, the matrix

Ã = Πj(I −
xjv∗j
v∗jxj

) ·A ·Πj(I −
xjv∗j
v∗jxj

)

has the same eigentriplets as A, but with the found eigenvalues transformed to zero.
Using this, the space X needs to be orthogonally expanded with Πj(I −

xjv
∗
j

v∗j xj
) · x and simi-

larly, the space V needs to orthogonally expanded with Πj(I −
vjx

∗
j

x∗j vj
) · v. These projections are

implemented using modified Gram-Schmidt (MGS) (see Alg. 5).

Algorithm 5 X = Expand(X, R,L,x)

INPUT: X ∈ Cn×k with X∗X = I, R,L ∈ Cn×p, x ∈ Cn

OUTPUT: X ∈ Cn×(k+1) with X∗X = I and
xk+1 = Πp

j=1(I −
rj l

∗
j

l∗j rj
) · x

1: x = Πp
j=1(I −

rj l
∗
j

l∗j rj
) · x

2: x = MGS(X,x)
3: X = [X,x/||x||2]

If a complex pole has converged, its complex conjugate is also a pole and the corresponding
complex conjugate right and left eigenvectors can also be deflated. A complex conjugated pair is
counted as one pole. The complete deflation procedure is shown in algorithm 6.
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Algorithm 6
(Λ, R, L, X̃, Ṽ ) = Deflate(λ,x,v,Λ, R, L, X, V )
INPUT: λ ∈ C, x,v ∈ Cn, Λ ∈ Cp, R,L ∈ Cn×p,

X, V ∈ Cn×k

OUTPUT: Λ ∈ Cq, R,L ∈ Cn×q,X̃, Ṽ ∈ Cn×k−q, where q = p + 1 if λ has zero imaginary part
and q = p + 2 if λ has nonzero imaginary part.

1: Λ = [Λ, λ]
2: R = [R,x]
3: L = [L,v]
4: q = 1
5: if imag(λ) 6= 0 then
6: {Also deflate complex conjugate}
7: Λ = [Λ, λ̄]
8: R = [R, x̄]
9: L = [L, v̄]

10: q = 2
11: end if
12: X̃ = Ṽ = []
13: for j = 1, . . . , k − 1 do
14: X̃ = Expand(X̃, R, L, Xj)
15: Ṽ = Expand(Ṽ , L, R, Vj)
16: end for

4.4 Further improvements and remarks

It may happen that the spaces X and V become large, especially if a large number of dominant
poles is wanted. A common way to deal with this is to do an implicit restart [17]: if the spaces
X and V reach a certain maximum dimension kmax � n, they are reduced to a dimension
kmin < kmax by keeping the kmin most dominant approximate eigentriplets; the process is restarted
with the reduced X and V . This procedure is repeated until all poles are found.

Furthermore, as more eigentriplets have converged, approximations of new eigentriplets may
become poorer due to rounding errors in the orthogonalization phase and the already converged
eigentriplets. It is therefore advised to take a small tolerance ε = 10−10. Besides that, as the
shift converges to a dominant pole, the right and left eigenvectors computed in step 2 and 3
of algorithm 3 are usually more accurate than the approximations computed in the selection
procedure (although in exact arithmetic they are equal). In the deflation phase, it is therefore
advised to take the most accurate of both.

The SADPA requires only one initial shift, while the DPSE requires m initial shifts if m dom-
inant poles are wanted. If rather accurate initial estimates are available, one can take advantage
of this in SADPA as well by setting the next shift after deflation to a new initial estimate (step
20 of Alg. 3).

Every iteration, two systems of size n+1 need to be solved (step 3 and 4). As is also mentioned
in [7], this can be efficiently done by computing one LU -factorization and solving the systems by
using L and U , and U∗ and L∗ respectively. Because in practice the sparse Jacobian is used,
computation of the LU -factorization is inexpensive.

The selection strategy can easily be changed to use another of the several existing indices of
modal dominance [11, 18]. For instance, a good strategy for selecting dominant poles is: select
the pole λi with largest |Ri|/|Re(λi)| for a complex estimate, and the largest |Ri|/|λi| for a real
estimate. Futhermore, the strategy can be restricted to consider only poles in a certain frequency
range. Also, instead of providing the number of wanted poles, the procedure can be automated
even further by providing the desired maximum error |H(s)−Hk(s)| for a certain frequency range:
the procedure continues computing new poles until the error bound is reached. Note that such an
error bound requires that the transfer function of the complete model can be computed efficiently
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Table 1: Results of SADPA for six transfer functions of the Brazilian Interconnected Power System
(BIPS). Shift s1 = 1i.

Transfer function #poles #LU Time (s)
W5061/V ref5061 60 459 358
W6405/V ref6405 60 466 366
W1155/V ref1155 60 528 430
W1107/V ref1107 60 646 492

Psc/Bsc 30 341 200
Pt501/Pref501 80 533 450

(which is usually the case for sparse descriptor systems).

5 Numerical Results

The algorithm was tested on a number of systems, for a number of different input and output
vectors b and c. Here the results for the Brazilian Interconnected Power System (BIPS) are shown.
The system data corresponds to a year 1999 planning model, having 2,400 buses, 3,400 lines, a large
HVDC link, 123 power plants with detailed dynamic representation, 46 of which have power system
stabilizers. The BIPS model is linearized about an operating point having a total load of 46,000
MW, with the North-Northeast generators exporting 1,000 MW to the South-Southeast Region,
through the planned 500 kV, series compensated North-South intertie. The Power Oscillation
Damping (POD) controllers of the two Thyristor Controlled Series Compensators (TCSC) are
disabled, causing the low frequency North-South mode to become poorly damped (λns = −0.034+
j1.018).

In the experiments, the convergence tolerance used was ε = 10−10. The spaces X and V were
limited to dimension n×10 (i.e. a restart, with kmin = 1, every kmax = 10 iterations). The results
are compared with the results of DPSE on quality of the modal equivalents, computed poles, CPU
time and number of factorizations. The DPSE uses deflation of complex conjugate pairs. All
experiments are carried out in Matlab 6.5 [19] on an Intel Centrino Pentium 1.5 GHz with 512
MB RAM.

The state space realization of the BIPS model has 1664 states. The sparse, unreduced Jacobian
has dimension 13251. Like the experiments in [6,7], the practical implementation operates on the
sparse unreduced Jacobian of the system, instead of on the dense state matrix A.

To demonstrate the performance of SADPA, it is applied to six transfer functions of BIPS
to compute a number (60, 30 or 80) of dominant poles (complex conjugate pairs are counted as
one pole). The first four transfer functions relate the rotor shaft speed deviations (W ) of major
synchronous generators to disturbances applied to the voltage references of their corresponding
excitation control systems. Note that only a single shift, s1 = 1i, is used: after the first pole
has converged, the next most dominant approximate pole is used as new shift. The results are in
Table 1 and the Bode plots of the corresponding modal equivalents, complete models and errors
for the first four transfer functions are in Fig. 1 to Fig. 4. It is clearly observable that the reduced
models capture the important dynamics. For completeness, the 15 most dominant poles and
corresponding residues of W6405/V ref6405 are shown in Table 2. Note that SADPA succeeds in
finding both real and complex poles.

The DPSE has more difficulties to converge as the number of shifts increases: typically, the
tolerance is not reached for an increasing number of poles. Besides that, also the computational
costs increase rapidly as the number of shifts increases, because the interaction matrices grow. To
compute 60 poles with the DPSE, it must be started again with different sets of shifts, which has
the risk of computing the same poles again, is time consuming and requires human interaction.
The SADPA, however, finds 60 dominant poles, starting with just one single shift, without any
human interaction during the process. Because of the selection strategy, truly dominant poles are
computed; the deflation strategy prevents repeated computation of the same pole. Furthermore,

8



0 2 4 6 8 10 12 14
−140

−120

−100

−80

−60

−40

−20

0

Frequency (rad/s)

G
ai

n 
(d

B
)

Bodeplot

Exact
Reduced (series) (k=102)
Error (orig − reduced)

Figure 1: Bode plot of modal equivalent, complete model and error for W5061/V ref5061 (102
states).
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Figure 2: Bode plot of modal equivalent, complete model and error for W6405/V ref6405 (95 states).
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Figure 3: Bode plot of modal equivalent, complete model and error for W1155/V ref1155 (101
states).
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Figure 4: Bode plot of modal equivalent, complete model and error for W1107/V ref1107 (104
states).

Table 2: The 15 most dominant poles and corresponding residues of W6405/V ref6405.
Num. Modes Residues
Mode Real Imaginary Magnitude Phase

1 −20.539 ±1.0930j 6.2238 · 10−3 ±65.000
3 −24.052 5.4967 · 10−3 ±180.00
4 −6.4446 ±0.0715j 5.1620 · 10−3 ±144.03
6 −10.068 ±1.1975j 3.8408 · 10−3 ±17.568
8 −7.5118 ±0.2321j 3.6249 · 10−3 ±128.70
10 −4.9203 3.3856 · 10−3 0
11 −2.9445 ±4.8214j 3.0218 · 10−3 ±167.72
13 −5.8881 ±0.5484j 1.0877 · 10−3 ±2.9382
15 −18.975 1.0659 · 10−3 0
16 −2.3488 ±0.1100j 1.0138 · 10−3 ±4.1653
18 −4.0233 ±4.2124j 1.0087 · 10−3 ±35.777
20 −6.4231 ±8.6949j 9.9281 · 10−4 ±97.729
22 −18.989 9.8502 · 10−4 0
23 −2.8052 ±11.551j 7.5584 · 10−4 ±8.3854
25 −0.5208 ±2.8814j 7.5417 · 10−4 ±139.68
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Figure 5: Bode plot of modal equivalent, complete model and error for the North-South mode
damping of the Brazilian system (Psc(s)/Bsc(s)) having 46 PSSs (1664 states in the complete
model, 41 in the reduced model).

SADPA succeeds in computing real poles, while DPSE has many difficulties in computing real
poles: real shifts are needed for DPSE, while SADPA finds the real poles automatically. SADPA
is not sensitive to the initial shift: repeated experiments with other shifts give the same results.
In the neighborhood of exact (dominant) poles of the transfer function, SADPA has quadratic
convergence [7].

The fifth transfer function of BIPS is Psc/Bsc, relating the active power deviations flowing
through the North-end series capacitor of the planned intertie, to disturbances in the reference
value of the TCSC series admittance. This transfer function was used in the basic design of the
POD controllers of the two TCSCs, in order to damp the North-South mode [20–22]. Modal equiv-
alents of the transfer function for damping the North-South mode, whose state-space realization
has a direct transmission term d = 4.88 · 10−3, are considered in [20]. Fig. 5 shows the frequency
response of the complete model and the reduced model (41 states) together with the error. Fig. 6
shows the corresponding step response (step 0.01). The North-South mode (1 rad/s = 0.17 Hz) is
well observable in both responses, and the reduced model nicely captures the system oscillations.
The reduced model (30 poles, 56 states) was computed by SADPA in 200 seconds (341 factor-
izations). This reduced model was reduced to a 41 state (22 poles) by removing less dominant
contributions. A table with the dominant poles and corresponding residues can be found in [20].

The sixth transfer function, Pt501/Pmec501, relates the active power deviations of a large
hydro-electric plant, located in the Southeast region, to disturbances appplied to its speed-governor
reference. For this transfer function it is known from numerical experiments that the DPSE has
difficulties in producing a good modal equivalent: several DPSE attempts are needed to obtain
an acceptable modal equivalent. The SADPA is able to automatically produce good results for
both the frequency and step response, as can be observed from Fig. 7 and Fig. 8. The SADPA
computed the reduced model (80 poles, 118 states) in 450 seconds (533 factorizations) using just
a single initial shift s1 = 1i, in one single run. For this example, the selection strategy was set to
selecting the pole λi with largest |Ri|/|Re(λi)| every iteration.

It must be noted that all modal equivalents in this section can be reduced even further by
neglecting less dominant contributions, or by application of the Balanced Model Reduction algo-
rithm [11] to a state space realization of the modal equivalent, as described in a paper submitted
to Trans. on Power Systems [20].
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Figure 6: Open-loop (no POD controllers) step response (step 0.01) of modal equivalent and
complete model for the North-South mode damping of the Brazilian system (Psc(s)/Bsc(s)) having
46 PSSs (1664 states in the complete model, 41 in the reduced model).
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Figure 7: Bode plot of modal equivalent, complete model and error for the North-South Brazilian
system transfer function Pt501(s)/Pref501(s) (1664 states in the complete model, 118 in the
reduced model).
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Figure 8: Step response (step 0.01) of modal equivalent and complete model for the North-South
Brazilian system transfer function Pt501(s)/Pref501(s) (1664 states in the complete model, 118
in the reduced model).
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6 Conclusions

The algorithm described in this paper, SADPA, is a fast method to compute the dominant poles
and corresponding eigenvectors of a scalar transfer function. It has several advantages compared to
existing methods. Firstly, it is more robust because it uses a natural selection method to converge
to both real and complex dominant poles. Secondly, SADPA needs less iterations to converge by
using subspace acceleration. Thirdly, it has less risk of missing a dominant pole, and of computing
an already found pole, because of deflation techniques. Fourthly, SADPA is completely automatic:
with a single shift it is able to compute as many dominant poles as wanted, without intermediate
human interaction.

The algorithm as presented in this article should be adequate for computer implementation by
an experienced programmer. The paper results are related to the analysis and control of small
signal stability, but the SADPA algorithm is general and could be effectively applied to problems
in other engineering fields that allow sparse descriptor system formulations.

Currently, a generalization of the algorithm to MIMO systems is being developed [8].
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