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Abstract

We study codimension-2 bifurcations of fixed points of dissipative diffeomorphisms with
a pair of complex critical eigenvalues together with either an eigenvalue −1 or another such
a pair. In the previous studies only cubic normal forms were considered. However, in some
cases the unfolding requires higher order terms and these are investigated here. We (re)derive
the normal forms and reduce them to a single amplitude map. This map is similar to the
amplitude system for the double-Hopf bifurcation for vector fields. We show how the critical
normal form coefficients determine the general bifurcation picture for this amplitude map.
Generic nonsymmetric perturbations of the normal forms are considered. Our case studies
show a detailed picture near various bifurcation curves, which was somewhat richer than the
theoretical predictions. For arbitrary maps with these bifurcations we give explicit formulas
for critical normal form coefficients on center manifolds and apply them to two examples. Here
we are able to demonstrate the existence of the bubble-structure, which was only observed in
unfolded normal forms before.

1 Introduction

Over the past decade the analysis of local codimension 2 bifurcations of discrete-time dynamical
systems generated by iterated maps (first order nonlinear difference equations) has been more or
less completed. The critical cases with one- and two-dimensional center manifolds are treated
in [1, 2, 3, 4]. The analysis of one of the 3-dimensional cases, namely the fold-Neimark-Sacker
bifurcation, has been undertaken in [5, 6]. Here we contribute to the two remaining cases, namely a
bifurcation of a fixed point with a pair of complex eigenvalues (multipliers) of modulus 1 together
with either an eigenvalue −1 or another such a pair. We call them the flip–Neimark-Sacker
(flip-NS ) and double Neimark-Sacker (NS-NS ) bifurcations, respectively. This work is not the
first contribution on the topic, since these cases have also been studied in [7, 8, 9]. However
those studies were concerned only with interesting but specific details, namely the quasi-periodic
bifurcation of a ‘period-2’ invariant circle, which originated via a ‘doubling’ of a ‘period-1’ invariant
circle, and a quasi-periodic bifurcation of the invariant circle into a 2-torus (“torification”) in the
four dimensional case. These results exclude a region with so-called Chenciner bubbles where
resonances occur. In some unfoldings of these cases, these tori bifurcate once more, into higher
dimensional tori. In these cases, a higher-order normal form is necessary to establish stability
results. Here we give a rather complete description of these bifurcations by making the right
correspondence with the double Hopf bifurcation of vector fields. Moreover, we study numerically
representative perturbations, which break the symmetry of the normal forms. This reveals a
peculiar bifurcation structure of the bubbles. We note that such bifurcations have been found in
[10, 11, 12] but not understood, and that in [13, 14] only a limited analysis is done.

The paper is organized as follows. We will (re)derive the normal forms, give the unfolding
and asymptotic expressions for local and some global codim 1 bifurcations. The invariant circles
may bifurcate into a 2-torus. We will analyse the birth, the dynamics and the destruction of
these 2-tori in symmetric and nonsymmetric settings. For a multidimensional map exhibiting
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these bifurcations we will then derive coefficients of the normal forms of the restricted map on the
center manifold. This will allow us to study bifurcations of a specific map appearing in robotics,
and a parametrically excited system. To facilitate the reading, all proofs are confined to a separate
Appendix.
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2 Normal forms

In this section we derive the normal forms in the minimal dimensions explicitly and perform
a reduction to a planar map, whose bifurcations we will study in the next section. For the
bifurcations under consideration the normal forms up to and including third order may be extracted
from [7, 9]. The 3-jet of such a family will be shown sufficient to distinguish several topological
unfoldings. For some of them, a possible bifurcation is that of an invariant circle T1 into a T2

for the flip-NS case, (or a T2 into a T3 for the double NS). The results of the bifurcation analysis
will show that it is necessary to study the 5-jet to determine the stability of the T2 (or T3). The
Poincaré normal forms contain six resonant monomials of order 5; however, we will show under
natural nondegeneracy conditions that for both the flip-NS and the NS-NS cases only three such
terms enter the analysis.

2.1 Poincaré normal forms

Consider two maps, F1 : R3 → R3 and F2 : R4 → R4, both having a fixed point at the origin,
where their linear part is given by

DF1 =




−1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)




and

DF2 =




cos(φ1) − sin(φ1) 0 0
sin(φ1) cos(φ1) 0 0

0 0 cos(φ2) − sin(φ2)
0 0 sin(φ2) cos(φ2)


 .

For F1 the origin has multipliers λ ∈ S1 ≡ {−1, eiφ, e−iφ}, while for F2 the multipliers are
λ ∈ S2 ≡ {eiφ1 , e−iφ1 , eiφ2 , e−iφ2}, with 0 < φ, φ1, φ2 < π.

Now we embed these maps into finite-parameter families. Since 1 /∈ S1,2, we can assume without
loss of generality that the origin is a fixed point for all parameter values. Thus, the Jacobian
matrices evaluated at the fixed point in the origin become functions of parameters, DF1(α) and
DF2(α). Denote the eigenvalues of DF1(α) by λ1(α), λ2(α) = λ̄3(α) and those of DF2(α) by
λ1(α) = λ̄3(α), λ2(α) = λ̄4(α). To place all eigenvalues of a generic parameter-dependent 3 × 3
or 4 × 4 real matrix with complex pairs on the unit circle, one needs two unfolding parameters
α = (α1, α2). The arguments (angles) φ, φ1, φ2 then become functions of α, i.e. φ(α), φ1(α), φ2(α).
If their critical values corresponding to α = 0 are not equal to 2πp/q, p, q ∈ N and q a small integer,
then they may effectively be treated as constants for α 6= 0. Introducing more parameters we can
perturb the critical angles, however, as we shall see later, there are only small regions in parameter
space where effects of varying the angles are significant.
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Since the critical fixed points are nonhyperbolic, nonlinear terms have to be introduced. With
the aid of the normal form reduction only resonant terms will remain. It is also natural to identify
R3 with R × C and R4 with C × C, so that F1 and F2 become smooth transformations of these
spaces with the critical linear parts

A1 =

(
−1 0

0 eiφ(0)

)
and A2 =

(
eiφ1(0) 0

0 eiφ2(0)

)
,

respectively. The normalizing changes of variables could also be considered as smooth nonlinear
transformations of R×C or C×C. After these considerations we now give the parameter dependent
normal forms, which will be studied in the rest of the paper.

Proposition 2.1 Let F1 : R × C × R2 → R × C be a smooth two-parameter family of maps with
F1(0, 0, α) = 0 and DF1(0) = A1. Moreover, let (kφ(0) mod 2π) 6= 0 for k = 1, 2, 3, 4, 5, 6, 8, 10

and det
(
d(λ1(α),|λ2(α)|)

d(α1,α2)

)
6= 0. Then the family F1 is locally smoothly conjugate to a map with the

5-jet with respect to (x, z):

NF1 :

(
x
z

)
7→
(

−x(1 + µ1)
z(1 + µ2)e

iφ(µ)

)

+

(
x
(
f300x

2 + f111|z|2 + f500x
4 + f311x

2|z|2 + f122|z|4
)

z
(
g210x

2 + g021|z|2 + g410x
4 + g221x

2|z|2 + g032|z|4
)
)
,

(1)

where fijk are real and gijk complex smooth functions of µ = (µ1, µ2).

Let F2 : C2 × R2 → C2 be a smooth two-parameter family of maps with F2(0, 0, α) = 0
and DF2(0) = A2. Moreover, let (kφi(0) mod 2π) 6= 0 for k = 1, 2, 3, 4, 5, 6 and i = 1, 2 and

(φ1(0)/φ2(0)) /∈ ±{5, 4, 3, 2, 3
2 , 1,

2
3 ,

1
2 ,

1
3 ,

1
4 ,

1
5} and det

(
d(|λ1(α)|,|λ2(α)|)

d(α1,α2)

)
6= 0. Then the family F2

is locally smoothly conjugate to a map with the 5-jet with respect to (w, z):

NF2 :

(
w
z

)
7→
(
w(1 + µ1)e

iφ1(µ)

z(1 + µ2)e
iφ2(µ)

)

+

(
w
(
f2100|w|2 + f1011|z|2 + f3200|w|4 + f2111|w|2|z|2 + f1022|z|4

)

z
(
g1110|w|2 + g0021|z|2 + g2201|w|4 + g1121|w|2|z|2 + g0032|z|4

)
)
,

(2)

where fijkl and gijkl are smooth complex functions of µ = (µ1, µ2).

Proof. See section 8.1. �

The conditions on φ(0), φ1(0), φ2(0) imply the absence of strong resonances. In cases when the
3-jet determines the complete topological unfolding, the conditions can be relaxed to k = 1, 2, 3, 4, 6
for the normal form of the flip-NS bifurcation. For the normal form of the double NS bifurcation,
we get k = 1, 2, 3, 4 and (φ1(0)/φ2(0)) /∈ ±{3, 2, 1, 1

2 ,
1
3}.

Remark 2.2 The detection of a fixed point with critical multipliers in S1 or S2 is a simple task
supported, for example, by content[15]. Checking the transversality of the families F1 and F2

with respect to parameters α1 and α2 is more difficult, since, in general, one does not have explicit
expressions for the multipliers. However, there are two functions, G1 and G2, whose regularity at
the origin is equivalent to the regularity required in Proposition 2.1.

For the flip-NS bifurcation, the regularity at (X,α) = (0, 0) of the map G1 : R3×R2 → R3×R2,

G1(X,α) = (F1(X,α), det (DF1(α) + I3) , det (DF1(α)) + 1),

is equivalent to the condition

16 sin2(φ(0)) det

(
d(λ1, |λ2|)
d(α1, α2)

)
6= 0.
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For the double NS bifurcation, a similar condition is more involved. We follow [16, Chapter
5.5]. The 6× 6-matrix M(α) = DF2(α)�DF2(α)− I6, where � denotes the bialternate product,

has rank defect two at α = 0. Choose B,C ∈ Rn×2, D ∈ R2×2 such that

(
M(α) B
CT D

)
is

nonsingular for small α, and define G(α) ∈ R2×2 as the solution of the following equation

(
M(α) B
CT D

)(
Q

G(α)

)
=

(
0
I2

)
.

The double Neimark-Sacker bifurcation is then characterized by G(0) being the null-matrix. Since
only two of the four elements are independent, we can choose any two of them, say g11(α) and
g22(α). Then the regularity at (X,α) = (0, 0) of the map G2 : R5 → R5,

G2(X,α) = (F2(X,α), g11(α), g22(X,α)),

can be expressed as

16(cos(φ1(0)) − 1)(cos(φ2(0)) − 1) det

(
d(|λ1(α)|, |λ2(α)|)

d(α1, α2)

)
6= 0.

Therefore, the transversality can be checked in the original real coordinates as the regularity of
the map G1 or G2 at the origin. We refer to the Appendix for some computations related to
this Remark. A method to verify the transversality presented in [11] involves the computation of
eigenvectors and is more laborious.

2.2 Reduction to an amplitude map

Both truncated normal forms (1) and (2) are equivariant under rotations and reflections. If we
factor these symmetries out and truncate higher-order terms, then both maps are reduced to a
single map:

Hµ :

(
x
y

)
7→
(

(1 + µ1)x+ a11x
3 + a12xy

2 + h50x
5 + h32x

3y2 + h14xy
4

(1 + µ2)y + a21x
2y + a22y

3 + h41x
4y + h23x

2y3 + h05y
5

)
. (3)

As before, we suppress the parameter dependence of the coefficients aij . This affects the expres-
sions for the bifurcation curves of the Neimark-Sacker and heteroclinic bifurcations in Proposition
3.1, but not the stability of the invariant circle, see also Remark 3.2 in Section 3. In that sense
the suppression is harmless.

For the flip-NS bifurcation we introduce cylindrical coordinates (x, r, ψ), where z = reiψ . Then
map (1) becomes




x
r
ψ


 7→




x
(
−(1 + µ1) + a11x

2 + a12r
2 + h50x

4 + h32x
2r2 + h14r

4
)

r
(
1 + µ2 + a21x

2 + a22r
2 + h41x

4 + h23x
2r2 + h05r

4
)

ψ + φ(µ) + =(e−iφ(µ)g021)r
2 + =(e−iφ(µ)g210)x

2




+ O




0
‖(x, r)‖6

‖(x, r)‖3


 .

(4)

Remark that the first two components of (4) are independent of ψ. Ignoring the ψ-equation and the
higher-order terms for the moment, we identify (1) with (3) by composing (4) with the reflection

R =

(
−1 0

0 1

)
. The correspondence is then given by the formulas aij and hij as

(
a11 a12

a21 a22

)
=

(
−f300 −f111

<(e−iφg210) <(e−iφg021)

)

4



and
h50 = f500, h41 = <(e−iφg410) + 1

2=(e−iφg210)
2,

h32 = f311, h23 = <(e−iφg311) + =(e−iφg210)=(e−iφg021),
h14 = f122, h05 = <(e−iφg032) + 1

2=(e−iφg021)
2.

For the NS-NS bifurcation we introduce, as above, polar coordinates (r1, r2, ψ1, ψ2), where
(w, z) = (r1e

ψ1 , r2e
ψ2). Then (2) transforms into




r1
r2
ψ1

ψ2


 7→




r1(1 + µ1 + a11r
2
1 + a12r

2
2 + h50r

4
1 + h32r

2
1r

2
2 + h14r

4
2)

r2(1 + µ2 + a21r
2
1 + a22r

2
2 + h41r

4
1 + h23r

2
1r

2
2 + h05r

4
2)

ψ1 + φ1(µ) + =(e−iφ1(µ)g2100)r
2
1 + =(e−iφ1(µ)g1011)r

2
2

ψ2 + φ2(µ) + =(e−iφ2(µ)g1110)r
2
1 + =(e−iφ2(µ)g0021)r

2
2




+ O




‖(r1, r2)‖6

‖(r1, r2)‖6

‖(r1, r2)‖3

‖(r1, r2)‖3


 ,

(5)

where the coefficients are given by

(
a11 a12

a21 a22

)
=

(
<(e−iφ1f2100) <(e−iφ1f1011)
<(e−iφ2g1110) <(e−iφ2g0021)

)

and
h50 = <(e−iφ1f4100) + 1

2=(e−iφ1f2100)
2,

h41 = <(e−iφ2g2210) + 1
2=(e−iφ2g1110)

2,
h32 = <(e−iφ1f2111) + =(e−iφ1f2100)=(e−iφ1f1011),
h23 = <(e−iφ2g1121) + =(e−iφ2g1110)=(e−iφ2g0021),
h14 = <(e−iφ1f1022) + 1

2=(e−iφ1f1011)
2,

h05 = <(e−iφ2g0032) + 1
2=(e−iφ2g0021)

2.

As in the flip-NS case, the first two components are independent of ψ1 and ψ2, and we obtain the
identification of (2) with (3), if the higher order terms are truncated.

2.3 Hypernormalization

We see that four cubic terms remain in the amplitude map. We can use these cubic coefficients of
the resonant monomials to remove some of the fifth-order terms. In fact the following statement
holds.

Proposition 2.3 If a11a22 6= 0 and a12a21(a12 − a22) 6= 0, then the family Hµ given by (3) is
smoothly conjugated to a family with the 5-jet

(
x
y

)
7→ Fµ(x, y) =

(
x(1 + µ1) + s1x

3 + s2θxy
2 + c1x

5

y(1 + µ2) + s1δx
2y + s2y

3 + c4x
4y + c6y

5

)
, (6)

where s1 = sign a11, s2 = sign a22,

θ =
a12

a22
, δ =

a21

a11
, c1 =

h50

(a11)2
, c6 =

h05

(a22)2

and

c4 =
h41

(a11)2
+

a21

(a11)2

(
h32

a12
− h14(a11 − a21)

a12(a12 − a22)
− h23(a11 − a21)

a21(a12 − a22)

)
.

Proof. See Section 8.1. �
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3 Bifurcation Analysis of Symmetric Normal Forms

3.1 Bifurcations of the hypernormalized amplitude map

In this section we study bifurcations of the map (6). We recall that this map corresponds to
the truncated normal forms (1) and (2). As mentioned before, it appears in other applications
involving symmetry-breaking. First, we study fixed points of (6) and their stability. Then we
consider the correspondence between (6) and the full maps (1) and (2). Due to the symmetries it
is enough to consider the positive quadrant in the (x, y)-plane.

Proposition 3.1 Suppose the coefficients of the map (6) satisfy the following non-degeneracy
conditions

(D.1) s1s2θδ 6= 0.
(D.2) δθ − 1 6= 0.
(D.3) θ, δ 6= 1.

(D.4) LNS = s1

(
12(2δθ−δ−θ)

θ(θ−1) + c1
8(2δθ−δ−1)
(θ−1)(δθ−1) − c4

8
(δθ−1) + c6

8δ(2δθ−θ−1)
θ(θ−1)(δθ−1)

)
6= 0. Then, for suf-

ficiently small (µ1, µ2) map (6) exhibits the following bifurcations.

• The trivial fixed point exhibits a pitchfork bifurcation at T1 = {µ ∈ R2 : µ1 = 0}. The
semitrivial fixed point (x, y) = (

√−s1µ1, 0) is stable if s1 < 0 and µ2 −s1δµ1 < 0 and totally
unstable if the inequality signs are reversed. Otherwise the fixed point is a saddle.

• The trivial fixed point exhibits another a pitchfork bifurcation at T2 = {µ ∈ R2 : µ2 = 0}.
The semitrivial fixed point (x, y) = (0,

√−s2µ2) is stable if s2 < 0 and µ1 − s2θµ2 < 0 and
totally unstable if the inequality signs are reversed. Otherwise the fixed point is a saddle.

• If both ρ2
1 = (µ1−θµ2)

s1(δθ−1) > 0 and ρ2
2 = (µ2−δµ1)

s2(δθ−1) > 0 hold, then there is a nontrivial fixed point

(x, r) = (ρ1, ρ2)+O(|µ|2). The fixed point is stable if s1s2(δθ−1) < 0 and (s1ρ
2
1 +s2ρ

2
2) < 0.

It is unstable if both inequality signs are reversed.

The semitrivial fixed points on the x- and y-axes undergo secondary pitchfork bifurcations at
T3 = {µ ∈ R2 : µ1 = θµ2} when ρ2 > 0, or at T4 = {µ ∈ R2 : µ2 = δµ1} when ρ1 > 0.

• If s2 = −s1 and δθ > 1, then the nontrivial fixed point exhibits a Neimark-Sacker bifurcation.
This happens along the curve NS = {µ ∈ R2 : µ2 = µ2,NS(µ1)}, where

µ2,NS = − δ−1
θ−1µ1 +

(
2(δθ−1)2+(2δθ−δ−1)c1−(θ−1)c4+(2δθ−θ−1)c6

(θ−1)3

)
µ2

1 + O(µ3
1),

for µ1(θ − 1)s1 > 0. The bifurcating closed invariant curve is stable if µ1LNS < 0 and
unstable if µ1LNS > 0.

• If s2 = −s1 and δθ > 1, and θ < 0, then stable and unstable invariant manifolds of the
semitrivial fixed points are tangent along two exponentially close bifurcation curves HET1,2,
whose quadratic approximation is given by

µ2,HET = − δ−1
θ−1µ1 +

(
(δθ−1)2

2(θ−1)3 − δ(2δθ−δ−1)
(2δθ−θ−δ)(θ−1)c1 + δ

(2δθ−θ−δ)c4

− θ(2δθ−θ−1)(δ−1)2

(2δθ−θ−δ)(θ−1)3 c6

)
µ2

1 + O(µ3
1).

Proof. See section 8.2. �

Remark 3.2 Suppose that the heteroclinic tangencies occur. Then we have

µ2,NS − µ2,HET =
θ(δθ − 1)2

8(θ − 1)2(2δθ − θ − δ)
µ2

1s1LNS + O(µ3
1).
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Therefore, the quadratic approximations of these curves do not coincide under the imposed non-
degeneracy conditions. If we include the parameter dependence of the cubic coefficients, both
µ2,NS and µ2,HET are affected in the same manner. Their difference is still being proportional to
µ2

1LNS .

Remark 3.3 If s1s2 < 0, δθ > 1 and θ > 0 then the invariant circle of map (6), blows up and
disappears through the collision with a fixed boundary of the phase plane.

Remark 3.4 The conditions on and signs of the coefficients in the proposition lead to several
different unfoldings. We may assume that δ ≤ θ, otherwise we can interchange x and y. We
cannot scale time, but since we are working with diffeomorphisms, we can invert the map. So if
s1s2 < 0, we may assume µ1LNS < 0 and there are six different unfoldings. If s1s2 > 0, there are
five different unfoldings. We used the same notation as in [2] and the reader can refer to that text
for the bifurcation diagrams.

3.2 Bifurcations of NF1 and NF2

In section 2.2, we have reduced the normal forms to a planar map by factoring out the Z2- and S1-
symmetries. In order to study bifurcations of invariant objects of maps (1) and (2) we must restore
these symmetries. Although in an arbitrary map with one of these bifurcations these symmetries
are usually broken, the analysis of the truncated normal forms (1) and (2) still provides a skeleton
of the full dynamical catalog.

3.2.1 Symmetric flip-NS

For the flip-NS bifurcation we have a reflection and rotations. The statements of Proposition 3.1
can now be interpreted for the symmetric normal form (1) as follows, see also Figure 1.

• The bifurcation at T1 is the usual flip bifurcation. The origin changes stability in the x-
direction and a period-2 orbit (dis)appears if µ1 crosses zero.

• The bifurcation at T2 is the usual Neimark-Sacker bifurcation. The origin changes stability
in the z-direction and a closed invariant curve (dis)appears if µ2 crosses zero.

• At the bifurcation curve T3 we encounter a quasi-periodic doubling bifurcation, which we
will denote by CD. Here a closed invariant curve consisting of one piece changes stability in
the x-direction, which is accompanied by the creation or destruction of the doubled invariant
curve. Below we will be more precise about what happens.

• At the bifurcation curve T4 the period-2 cycle changes stability and a doubled invariant curve
consisting of two disjoint closed curves is created or destroyed via another Neimark-Sacker
bifurcation.

• If the nontrivial fixed point of (6) undergoes the Neimark-Sacker bifurcation, then from the
doubled invariant curve a 2-torus T2 bifurcates, which also consists of two disjoint sets. This
is also a quasi-periodic Hopf bifurcation. Below it will be denoted by CN .

• The T2 may be destroyed in a heteroclinic bifurcation or by a boundary bifurcation.

3.2.2 Symmetric double Neimark-Sacker

The double NS normal form has two rotational symmetries. The statements of Proposition 3.1
can now be interpreted as follows.

• The bifurcations at T1 and T2 correspond to the birth or destruction of closed invariant
curves via the standard Neimark-Sacker bifurcations.
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Figure 1: Sketches of phase portraits which are specific for the flip–Neimark-Sacker bifurcation.
The dots represent the period-2 fixed point, which may be present or not. In (a) the doubled
invariant curve is stable, in (b) and (c) it is unstable(dotted). In (b) the doubled invariant curve
is surrounded by a 2-torus. In (c) the 2-torus has merged with a heteroclinic structure of the
manifolds of the period-2 fixed point and the invariant curve. The doubled invariant curve exists
inside.

• A bifurcation at T3 or T4 creates or annihilates an invariant 2-torus T2 surrounding a closed
invariant curve, this is denoted as above by CN .

• The T2 may change stability such that a T3 appears, it will be labeled by TT .

• The T3 may disappear either through a heteroclinic bifurcation, where the stable and un-
stable manifolds of both closed invariant curves are connected, or by a collision with a fixed
boundary.

4 Breaking the Symmetries

In this section we return to generic maps. In general, the higher order terms are not symmetric
under the action of Z2 and S1. In [17, 18, 19, 20, 7, 8, 9] the question of persistence of the invariant
curves and tori under general dissipative perturbations was considered. The curve doubling and
curve torification was subject of [7, 8, 9]. Then in [17] this is done in general for vector fields, but
it can be done analogously for diffeomorphisms. These works show that there is a set of positive
measure in the (µ1, µ2)-plane, where the bifurcation path, in general not a straight line, has a
“good” bifurcation sequence. Positive measure means that it occurs with high probability and
“good” means the doubling of the invariant curve or its torification without any extra dynamical
phenomena. These paths avoid resonance holes and along them the reduction of the original map
to the planar map is valid.

In the resonance holes, the bifurcation scenario is different. This question was first considered
by Chenciner in [20]. Near the curves CD,CN , and TT we may encounter resonances on the
invariant tori, and these resonance bubbles have to be avoided by a “good” path (see Figure 2
for the flip-NS case). Typically, there is a Diophantine condition which decides how large these
bubbles are in parameter space.

The bifurcations of fixed points and period-2 cycles have been characterized completely by
Proposition 3.1. More interesting are bifurcations of invariant curves and tori. Here we will present
numerical studies in the most interesting cases, namely where a torus disappears via a heteroclinic
bifurcation. Note that a boundary bifurcation, where the torus moves out of a fixed domain, may
be seen as an artifact of the analysis, since in all real applications a specific mechanism destroying
the torus will be visible. Phase-locking and asymmetry appear if we include the dynamics of
the angles ψ in maps (4) and (5), as well as higher-order nonsymmetric terms. Thus we may
encounter resonances on the invariant tori and not follow any “good” bifurcation path. Thus, in
a generic nonsymmetric family complicated bifurcation sets exist near the curves CD and CN for
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H̃ET

C̃N

C̃D

µ2

µ1

Figure 2: A sketch of the (µ1, µ2)-plane near a generic flip-NS bifurcation with the resonance

bubbles (black diamonds) in the sets C̃D and C̃N . The bubbles have to be avoided by a “good”

bifurcation path, like the dashed one, but are relatively small. In the region denoted by H̃ET the
dynamics is complicated by heteroclinic orbits.

the flip-NS bifurcation and near the curves CN and TT for the NS-NS bifurcation, respectively,
hereafter denoted by a tilde.

In [21] a theoretical framework for invariant circles with phase-locking has been developed,
claimed to be representative by the authors. In our numerical case study this provides indeed a
skeleton of the bifurcation scenarios. It involves coexistence of attractors and global bifurcations.
However, the role of twist(imaginary parts in (7))-terms is subtle in that they lead to a codim
3 bifurcation. So the theoretical framework in [21] for the gaps describes only a part of the
possibilities.

For a global overview of the dynamical inventory a two-parameter study is rather sufficient.
However, near the curves CD,CN , and TT a study of three- and four-parameter unfoldings in
the spirit of [22], where it was first suggested to consider the argument of the multipliers near the
Neimark-Sacker bifurcation as an additional unfolding parameter, is necessary.

In our presentation we find the different bifurcation scenarios, the quasi-periodic and the
periodic, next to each other. As the precise bifurcation picture depends on the higher order terms,
a model map gives only a representative (not universal) picture.

4.1 Nonsymmetric flip-NS: A case study.

Let us first motivate the selection of the perturbation terms. The rotational symmetry was in-
troduced by the normal form computations and assuming a rigid rotation in φ. Now we will
include the dynamics of the ψ-variable in our study. Moreover we consider the situation close to
a relatively low resonance, where the bifurcation structure is most pronounced. The lowest order
resonance, which is permitted by the bifurcation analysis in Proposition 3.1 is the 1:7 resonance.
This motivates the introduction of a third parameter µ3 to control the detuning of the rotation and
the addition of the term ε1z̄

q−1 with q = 7 and ε1 a fixed number to the second component of (1).
The resulting map is still equivariant under the transformation x 7→ −x. To distort this reflection
symmetry, we also add the term ε2x

6 to the first component of the map. Now the symmetries are
broken, but the planes x = 0 and z = 0 are still invariant. A final perturbation proportional to
ε3 is, therefore, introduced to eliminate this invariance as well. The coefficients are chosen small

9



such that the invariant objects under study are relatively large. Our model map is now given by

F1 :

(
x
z

)
7→

(
−x(1 + µ1)
z(1 + µ2)e

iµ3

)

+

(
x
(
f300x

2 + f111|z|2 + f500x
4 + f311x

2|z|2 + f122|z|4
)

zeiµ3

(
ĝ210x

2 + ĝ021|z|2 + ĝ410x
4 + ĝ221x

2|z|2 + ĝ032|z|4
)
)

+

(
ε2x

6

ε1z̄
6

)
+ ε3

(
(<(z)6 + =(z)6)

(x6 + =(z)6) + i(x6 + <(z)6)

)
.

(7)

One could take the 7th iterate of (7) and study the tongue of the period 7 cycle. Then for
parameter values near the expected doubling of the single closed invariant curve one may divide
out the dynamics in the r-variable in (4) to restrict the map NF1 to a local cylinder. For such a
map the effects of the lowest order perturbation terms are studied in [21]. The theoretical picture
shows a richness of bifurcations involving several codim 2 bifurcations of fixed points and/or
invariant curves leading to global bifurcation phenomena. The local bifurcations were understood
in [21], while global ones were not treated. We may also refer to [23, 24] for a similar setting
for vector fields. As the resulting formulas would be too lengthy and thus without insight, we do
not take that approach here, but continue with numerical results obtained with content[15] and
SDDS[25].

First we choose the coefficients, see Table 1. The cubic coefficients are such that the unfolding
involves the CD- and CN -bifurcations. Then the fifth-order coefficients can be chosen such that
the 2-torus is stable. The perturbation terms are arbitrarily fixed, ε1 = 0.5 is larger than ε2 =
ε3 = 0.05 since we want the phase-locking to be visible.

f300 = -0.1 f500 = -0.5 ĝ410= -0.00125
f111 = 0.3 f311 = 0 ĝ221= -0.00075
ĝ210 = -0.25 + 0.05i f122 = 0 ĝ032= -0.0001125-0.025i
ĝ021 = -0.1 - 0.015i

Table 1: Numerical values of the coefficients of map (7)

We will start our numerical studies by constructing a bifurcation diagram in the two amplitude
parameters (µ1, µ2). We fix arbitrarily µ3 = 0.9411 and compute the Lyapunov exponents to find
bifurcations of attractors as is done in [26]. The Lyapunov exponents are color-coded according
to Table 2. We note that Lyapunov exponents are not a reliable tool when we are investigating
a 2-torus. The second exponent converges very slowly. Thus in this case we also analyzed the
frequencies as in [27] and implemented in [25]. If there were two relevant frequencies we made a
continued fraction expansion of the frequency ratio. If the ratio was close to a rational number
p/q with q < 43, this corresponded to an invariant curve on the 2-torus.

Take µ1 negative and small, then for µ2 small and positive we have a single stable closed
invariant curve of node type (color: cyan). Increasing µ2 we notice a few blue dots where two of
its exponents become equal, however, this is not a bifurcation. Going further we see a pink stripe

Lyapunov exponents Color Dynamical object
λ1 > λ2 ≥ 0 > λ3 red strange attractor
λ1 = λ2 = 0 > λ3 magenta invariant 2-torus
λ1 = 0 > λ2 = λ3 blue invariant circle of focus type
λ1 = 0 > λ2 > λ3 cyan invariant circle of node type
0 > λ1 ≥ λ2 ≥ λ3 green fixed point

Table 2: Color coding for Lyapunov exponents
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Figure 3: Bifurcation diagram in the (µ1, µ2)-plane near a heteroclinic connection with fixed
µ3 = 0.9411

where the C̃D bifurcation set is present. Locally, the dynamics occurs on a cylinder, which is why
we code this by the same color as the 2-torus. The doubled invariant curve is initially of node
type, but becomes of focus type quickly, when we get to the blue region. This doubled invariant
curve bifurcates into a 2-torus via the C̃N -transition. In the upper part of Figure 3, stripes of blue
are visible, corresponding to the resonant dynamics on the 2-torus. Increasing µ2 we cross the
heteroclinic wedge encountering attractors of high period and chaos (red), and then no attractor
is found anymore. The diagram in Figure 3 should be compared with the sketch given in Figure
2.

Next we fix the 2-parameter plane µ1 = −.04 in the three-dimensional parameter space, which
intersects the bifurcation set in such a way that we encounter all interesting dynamics. The
(µ2, µ3)−plane cuts the bubbles of the fractal-like bifurcation sets C̃D and C̃N . We present the
diagrams with bifurcations of fixed points/cycles and the Lyapunov exponents next to each other,
since they provide complementary information.

0.885 0.89 0.895 0.9 0.905
0

0.01

0.02

0.03

0.04�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

0

0.01

0.02

0.03

0.04

0.885 0.89 0.895 0.9 0.905
	�	


µ3

µ2

µ3

(b)(a)

NS1 1 : 7

F 7

F 14

µ2

Figure 4: Bifurcation diagram for the flip-NS bifurcation. F n and NSn denote fold and Neimark-
Sacker bifurcation of the period-n cycle, respectively. The pink circle is a period-doubling bifur-
cation of period-7 cycles. The dark blue circle is a Neimark-Sacker bifurcation of period-14 cycles.
See enlargements in Figures 5 and 6.

Let us start with Figure 4(a), since the local bifurcation analysis guides us through the figures
with the Lyapunov exponents. Actually, it produces key subsets of the whole fractal bifurcation
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set. Starting at the NS1-curve, we find a 1:7 resonance tongue. By continuation of the tongue
boundaries F 7 we arrive at the C̃D-set, where we encounter two fold-flip points, see also Figure 5.
They are of different type, where one of them involves a Neimark-Sacker, NS14, and heteroclinic
bifurcations, not displayed. The period doubling curve is composed of two circle segments. On
both segments there is a degenerate flip bifurcation, where a fold curve of period-14 cycles is
rooted. On one of the fold curves there is a 1:1-resonance, where the Neimark-Sacker bifurcation
curve of period-14 cycles ends. For ĝ210 = −0.25−0.06i we found that both degenerate flip points
occurred on the upper-half of the period-doubling circle. Then on both fold-curves of the period-14
cycle a resonance 1:1 occurred.

In fact, the period-14 cycles correspond to a resonance on the doubled invariant curve. Follow-
ing these fold curves, we then arrive at the C̃N -boundary, resulting in two fold–Neimark-Sacker
points. On the Neimark-Sacker curve of period-14 cycles there are two Chenciner points. Thus,
the birth of the doubled torus is associated with the appearance of period-14 saddle and node
cycles on the torus. The fold curves of period 14 terminate on the curve NS2 for µ2 ≈ 0.1381,
which is not displayed. Somewhere in between heteroclinic bifurcations occur, which are also not
visible here.

Now we turn to Figure 4(b) where the sequence of bifurcations of the invariant tori for increasing
µ2 is the same. On the invariant tori we also have resonant dynamics. We can compare this with
Figure 4(a), where bifurcations of fixed points and cycles are displayed. In the green regions
we have attracting cycles of period 7 and 14 on the invariant curves. The motivation for this
parameter plane becomes apparent when we come to the region where the 2-torus exists. On the
2-torus, there is resonant dynamics resulting in circle attractors. These circle attractors undergo
period-doubling bifurcations resulting in chaotic attractors near the heteroclinic bifurcations.
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F 7
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Figure 5: A subset of the bifurcation diagram near the C̃D-boundary. NSn denotes Neimark-
Sacker bifurcation of the period-n cycles; other codim 1 curves are labeled as in Figure 4. The
codim 2 points are marked FF=fold-flip, DP=degenerate flip, R1 = 1:1 resonance.

Let us now analyze the bubbles in more detail. We start with the case, where the phase-locking
of period 7 interacts with the C̃D bifurcation set, see Figures 5(a) and 5(b). At the bottom, we
start with a single closed invariant curve of node type, either with or without phase-locking.
Without phase-locking the doubling of the curve happens in the smooth quasi-periodic manner.
The dynamics on a cylinder is visible as a pink stripe where two Lyapunov exponents are almost
zero. Following the phase-locking, however the doubled curve exists only when we have crossed
the circle of period-doubling of period 7 completely and are not near the R1-point. Further up
the transition of the doubled curve from node to focus type is clearly visible. The stripes where
the doubled curve is of node type go up all the way, see Figure 4(b). These give rise to resonances

which complicate the diagram near the C̃N -boundary. Now the resonance of period 14 on the
doubled curve has appeared and we may follow it until it disappears, i.e., at the NS2-bifurcation.
Before that there is another bubble, which we now examine.

12



0.032

0.033

0.034

0.035

0.036

0.894 0.8945 0.895
0.894 0.8945 0.895

0.032

0.033

0.034

0.035

0.036

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
�����������������������������������������

�� 	


��

�

FNS

NS14

F 14

CH

(b)(a)

µ2

µ3

µ2

µ3

Figure 6: A subset of the bifurcation diagram near the C̃N bifurcation set. Here codim 1 curves
are labeled as in Figure 4. The codim 2 points are marked by FNS = fold-Neimark-Sacker and
CH = Chenciner bifurcation.

Again at the bottom of Figure 6 there is the doubled invariant circle of focus type, phase-
locked or not. Going up along the borders the 2-torus is born. This happens near µ2 ≈ .0348, but
the transition is not sharply visible as not only all three Lyapunov exponents are close to zero,
also the amplitudes for the frequency analysis are very small, causing numerical difficulties. The
stripes in this region represent 2-tori with a resonant frequency vector. If we go up in the region of
resonance in C̃N , we cross the circle of Neimark-Sacker bifurcations. There is a Chenciner point
on the lower arc of the bifurcation circle, such that there is always a stable invariant curve of 14
pieces surrounding the doubled invariant curve. We conclude that the existence of the 2-torus is
delimited by two bifurcation curves, where a stable and an unstable invariant curve of period 14
collide.

The bubbles in this 2-parameter plane correspond to tubes in the 3-dimensional (µ1, µ2, µ3)-
space. This figure agrees well with [21], and this is the situation we most frequently encountered.
However, we still have a freedom to change the imaginary part of, for instance, ĝ032. We changed it
from −0.025 to 0.055 and examined the bubble near the C̃N -boundary. In (=(ĝ032), µ3, µ2)-space,
the circle of Neimark-Sacker bifurcations is a cylinder with four bifurcation curves on it, see Figure
7. Two rather straight lines are curves of the fold–Neimark-Sacker bifurcation, the dotted denote
Chenciner bifurcations. Both straight curves intersect with one dotted curve, which corresponds
to a codim 3 bifurcation, apparently a fold–Chenciner bifurcation. The role of the twist terms
is to change from one two-parameter unfolding to another. We note that in a different setting a
similar picture is found in [24].

After the whole discussion of bifurcations of cycles and invariant curves we now give two phase
portraits near the bubbles. These show how co-existing attractors complicate the description of
the unfolding.

4.2 Nonsymmetric NS-NS: A case study

We use an approach for the double NS bifurcation similar to that for the flip-NS bifurcation. The
natural way to perturb the normal form 2 is to introduce relatively low-order resonances. These
will be 2 (ε1w̄

q1−1, 0) and (0, ε2z̄
q2−1). Now the choice q1 = 7, q2 = 8 gives the lowest orders

compatible with Proposition 2.1. Then, as before, a final perturbation to break the invariance of
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Figure 7: From one unfolding to another depending on the twist-term. The dotted lines are
Chenciner bifurcation curves, which do not intersect each other. The stars indicate the position
of the codim 3 bifurcations.

-0.6
0

0.6 -0.6

0

0.6

0

0.6

−0.04

0

0.04 −0.5

0

0.5−0.5

0

0.5

(a) (b)

z

x y

z

x

y

Figure 8: Phase portraits near bubbles: (a) µ2 = 0.01335, µ3 = 0.9003383720148196, �, period-7
saddle cycle of which the 1 dimensional unstable manifold (black curve) almost reconnects to the
other period-7 saddle cycle denoted by �. Period-14 cycles are stable foci and denoted by • and
the grey shows the doubled invariant curve. (b) µ2 = 0.0352, µ3 = 0.89479, 2-torus surrounded
by a ‘period-14’ invariant curve.

the w− and z−planes is added. The model map is now given as

F2 :

(
w
z

)
7→
(
weiµ3(1 + µ1)
zeiµ4(1 + µ2)

)

+

(
weiµ3

(
f̂2100|w|2 + f̂1011|z|2 + f̂3200|w|4 + f̂2111|w|2|z|2 + f̂1022|z|4

)

zeiµ4

(
ĝ1110|w|2 + ĝ0021|z|2 + ĝ2201|w|4 + ĝ1121|w|2|z|2 + ĝ0032|z|4

)
)

+

(
ε1w̄

6 + ε3(i<(w)6 + =(w)6 + (1 + i)
(
<(z)6 + =(z)6

)

ε2z̄
7 + ε3((1 + 2i)<(w)6 + (1 + i)=(w)6 + =(z)6)

)
.

(8)
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Next we choose the constants according to Table 3 and ε1 = 0.012i, ε2 = 0.015, ε3 = 0.0009 such
that also here we have the heteroclinic bifurcation.

f̂2100 = 0.03-0.03i f̂3200 = 0.000729-0.00018i

f̂1011 = 0.09+0.015i f̂2111 = 0.000576+0.0001125i

ĝ1110 = -0.075-0.0147i f̂1022 = 0.000441+0.00027i
ĝ2210= 0.000324+0.000576i ĝ1121= 0.000225+0.00036i
ĝ0032= -0.0045-0.00018i ĝ0021 = -0.03+0.006i

Table 3: Numerical values of the coefficients of map (8)

The situation is much more complicated than in the previous study, since controlling the
remaining three parameters to study bifurcations of invariant objects leads to an overwhelming
amount of information. However, as before, analysis of the cycles dresses the skeleton provided by
the study of the amplitude map. We will restrict ourselves to the study of bifurcations of cycles
and our results are much less detailed than those of the previous subsection. As before we fix the
parameter µ1 = −0.04 and then increase µ2 to control the bifurcation sequence, while we may use
µ3 and µ4 to adjust the frequencies to the rationals.

We remark that this setup has been suggested in [38]. There, there is an thorough exploration
of the dynamics on the invariant 2-tori, sketches of curves of homoclinic tangency and portraits of
resonance tongues. The resonances which we study on the 2-torus display a similar organization
in parameter-space.

The main structure of the tongues is given in Figure 9. If we start with µ2 small, then there
is an invariant curve, possibly phase-locked. In the lower part of the tongue there is a cycle of
period 8 on the invariant curve. If we increase µ2, this first resonance tongue will display a bubble
near the CN -bifurcation leading to a stable 2-torus. This bubble is similar to the one in the
case study of the flip-NS bifurcation. There are fold-Neimark-Sacker bifurcation points, where the
ellipse touches the tongue, and Chenciner points from which two invariant curves originate. These
collide along two complicated sets in three-dimensional parameter space.

There is no other way to track this phenomenon but to follow a fold bifurcation curve near
this set. As we introduced two resonances, we were able to locate a cycle of period 56. From the
Neimark-Sacker bubble, two ellipses corresponding to fold bifurcations of the cycle of period 56
emerged. On both ellipses there are two 1:1 resonance points, which are pairwise connected by a
Neimark-Sacker bifurcation curve. We have not studied the orientation of these resonance points
extensively, however, we note that near the CN -bifurcation, also fold-Neimark-Sacker bifurcation
points were found, which disappeared while following the period 56 cycle for bigger µ2. Apparently
they merged with the 1:1 resonances in a triple-one bifurcation. We have not attempted to find
global bifurcations, but they are certainly present.

The region where these resonances exist, seems to be a torus. Indeed, increasing µ2 we found
two swallow-tail structures on the inner-ellipse, which then transformed into a flame, i.e. a region
where there are coexisting attractors of period-56, see [39, 40]. The 1:1 resonances are still present
and the connecting Neimark-Sacker bifurcation curves as well.

Now let us take µ2 near the TT -boundary, i.e. where a motion on a 3-torus may be expected,
see Figure 9(c). On first sight we recognize the outer-ellipse and the inner-flame together with the
1 : 1-strong resonances. However, apart from the two Neimark-Sacker bifurcation curves similar to
those in Figures 9(a) and 9(b), a third curve(dashed) is present. It touches both fold bifurcation
curves and makes two loops. On the left loop it intersects one of the Neimark-Sacker bifurcation
curves. Here we have a double Neimark-Sacker bifurcation. We conjecture that it appears between
two codim-3 bifurcations where we have two multipliers equal to one and a complex pair of modulus
one. Thus, for our choice of the coefficients, a double Neimark-Sacker bifurcation appears in the
unfolding of a double Neimark-Sacker bifurcation.
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Figure 9: Bifurcation diagrams for µ1 = −0.04. The three-dimensional figures displays the period-
8 tongue, the bubble inside and the emanating tube where period-56 cycles exist. The three slices
correspond to the enlargements in figures (a),(b) and (c). The labels are as in the previous figures,
except for CP for cusp, and NN for double Neimark-Sacker bifurcations. (a)µ3 = 0.8972; The
period-8 tongue and the Neimark-Sacker bubble with Chenciner points on it, similar to that in the
flip-Neimark-Sacker bifurcation. The upper ellipse are two curves of fold bifurcation of a period-56
cycle, which are indistinguishable. (b)µ3 = 0.902; The inner ellipse has developed two swallow-
tails. (c)µ3 = 0.9073; An extra Neimark-Sacker bifurcation curve is present, which intersects the
one that connects two R1-points at NN .

5 Center Manifold Reduction

So far we have been dealing with the normal forms and their perturbations in the minimal di-
mensions. To predict the bifurcation diagram of a given map in Rn with a flip-NS or NS-NS
bifurcation, the critical normal form coefficients on the center manifold have to be computed.
For an introduction to the properties of the center manifold we refer to [28, 29]. Although it is
not unique, the qualitative information does not depend on the particular selection of the center
manifold. For that we employ the same technique as in [4]. Although we have not dealt with
the fold-Neimark-Sacker bifurcation in this paper (see [5]), we compute its critical coefficients so
that, together with [4], all codim 2 bifurcations of fixed points for maps are covered. We restrict
ourselves to at most third-order terms, since this is enough to determine the unfolding except for
the stability of the 2-torus for the flip-NS bifurcation or the 3-torus for the double NS bifurcation.
The computations can easily be extended to include the 4th- and 5th-order terms.

Let us introduce some notations by writing the map at the critical parameter values as

F (u) = Au+
1

2
B(u, u) +

1

6
C(u, u, u) + O(‖u‖4), u ∈ Rn, (9)

where ‖u‖ =
√
〈u, u〉 is the standard norm in Rn, A = DFu(0) and the multi-linear functions
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B(ξ, η) = DFuu(0)[ξ, η], C(ξ, η, χ) = DFuuu(0)[ξ, η, χ].

Proposition 5.1 Let Fi for i = 1, 2, 3 be sufficiently smooth maps, and (kφ mod 2π) 6= 0 for
k = 1, 2, 3, 4 and (φ1/φ2) /∈ ±{3, 2, 3

2 , 1,
2
3 ,

1
2 ,

1
3}.

• Let F1 : Rn → Rn, n ≥ 3, be a map whose fixed point at origin has only the algebraically
simple multipliers {−1, eiφ, e−iφ} on the unit circle. Then, there is a smooth local parame-
terization of the center manifold by (x, z) ∈ R×C such that the 5-jet of the map will assume
the form (1) with the 3rd-order coefficients given by

f300 = 1
6 〈p1, C(q1, q1, q1) + 3B(q1, h200)〉,

f111 = 〈p1, C(q1, q2, q̄2) +B(q1, h011) + 2<(B(q2, h101))〉,
g210 = 1

2 〈p2, C(q1, q1, q2) +B(q2, h200) + 2B(q1, h110)〉,
g021 = 1

2 〈p2, C(q2, q2, q̄2) +B(q2, h011) + 2B(q̄2, h020)〉,
(10)

where
h200 = (In −A)−1B(q1, q1),
h011 = (In −A)−1B(q2, q̄2),
h110 = −(eiφIn +A)−1B(q1, q2),
h020 = (e2iφIn −A)−1B(q2, q2),

and vectors q1, p1, q2, p2 satisfy

Aq1 = −q1, AT p1 = −p1, 〈p1, q1〉 = 1,
Aq2 = eiφq2, AT p2 = e−iφp2, 〈p2, q2〉 = 1.

• Let F2 : Rn → Rn, n ≥ 3, be a map be a map whose fixed point at origin has only the
algebraically simple multipliers {1, eiφ, e−iφ} on the unit circle. Then, there is a smooth
local parameterization of the center manifold by (x, z) ∈ R×C such that the 3-jet of the map
will assume the form

(
x
z

)
7→
(
x+ f011zz̄ + f200x

2 + f300x
3 + f111xzz̄

eiφz + g110xz + g210zx
2 + g021z

2z̄

)
, (11)

where

f200 =
1

2
〈p1, B(q1, q1)〉, f011 = 〈p1, B(q2, q̄2)〉, g110 = 〈p2, B(q1, q2)〉,

while f300, f111, g210 and g021 coincide with those in (10), where, however,

h200 = (A− In)INV (2f200q1 −B(q1, q1)) ,
h011 = (A− In)INV (f011q1 −B(q2, q̄2)) ,
h110 = (A− eiφIn)INV (g110q2 −B(q1, q2)) ,
h002 = (e2iφIn −A)−1B(q2, q2),

where h200 is the unique solution of (A−In)h200 = (2f200q1 −B(q1, q1)) satisfying 〈p1, h200〉 =
0, and h011, h110 are defined similarly. The vectors q1, p1, q2, p2 satisfy

Aq1 = q1, AT p1 = p1, 〈p1, q1〉 = 1,
Aq2 = eiφq2, AT p2 = e−iφp2, 〈p2, q2〉 = 1.

• Let F3 : Rn → Rn, n ≥ 4, be a map whose fixed point at origin has only the algebraically
simple multipliers {e±iφ1 , e±iφ2} on the unit circle. Then, there is a smooth local parameter-
ization of the center manifold by (w, z) ∈ C × C such that the 5-jet of the map will assume
the form (2) with the 3rd-order coefficients given by

f2100 = 1
2 〈p1, C(q1, q1, q̄1) +B(q1, h1100) + 2B(q̄1, h2000)〉,

f1011 = 1
2 〈p1, C(q1, q2, q̄2) +B(q1, h0011) +B(q̄2, h1010) +B(q2, h1001)〉,

g1110 = 1
2 〈p2, C(q1, q̄1, q2) +B(q2, h1100) +B(q̄1, h1010) +B(q1, h0110)〉,

g0021 = 1
2 〈p2, C(q2, q2, q̄2) +B(q2, h0011) + 2B(q̄2, h0020)〉,
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where

h2000 = (e2iφ1In −A)−1B(q1, q1), h0020 = (e2iφ2In −A)−1B(q2, q2),
h1100 = (In −A)−1B(q1, q̄1), h0011 = (In −A)−1B(q2, q̄2),
h1010 = (ei(φ1+φ2)In −A)−1B(q1, q2), h1001 = (ei(φ1−φ2)In −A)−1B(q1, q̄2).

h0110 and h0101 can be computed by complex conjugation, and vectors q1, p1, q2, p2 satisfy

Aq1 = eiφ1q1, AT p1 = e−iφ1p1, 〈p1, q1〉 = 1,
Aq2 = eiφ2q2, AT p2 = e−iφ2p2, 〈p2, q2〉 = 1.

Proof. See Section 8.3. �

Remark 5.2 For the flip-Neimark-Sacker bifurcation we need to proceed with the quartic and
quintic terms, only if we find f300<(e−iφg021) > 0 and f300<(e−iφg021) − f111<(e−iφg111) < 0.

Remark 5.3 Remark that for the fold-Neimark-Sacker bifurcation (A− In) is singular, but that
2f200q1−B(q1, q1) is orthogonal to the null-space of (A− In). Therefore the bordered nonsingular
equation (

A− In q1
pT1 0

)(
h200

0

)
=

(
2f200q1 −B(q1, q1)

0

)

yields the desired vector h200. Similarly we obtain h011 and h110.
We may further transform (11) to the hypernormalforms

(
x
z

)
7→
(
x+ szz̄ + x2 + cx3

eiφz + axz + bzx2

)
, (12)

if f200f011 6= 0 and where the coefficients for (12) are given by

b =
1

f011f2
200

(
f011g102 + g110

(
1

2
f111 + <

(
g021e

−iφ
))

− f200g021e
−iφ

)
,

a =
g011
f200

, c =
f300

(f200)2
, s = sign (f200f011) .

6 Examples

Here we give examples of a flip-NS and a double NS bifurcation in time-periodic ODE-systems
appearing in applications.

6.1 Example of flip-NS bifurcation: Control of a robot-arm.

We consider a model describing motions of a robot-arm from [31, 10]. Through two torques M1

and M2 the endpoint of the arm should be controlled to move on a circle. The equations of motion
are

(
M1

M2

)
=

(
ρ
3 + 4

3 + cosφ2 −( 1
3 + 1

2 cosφ2)
−( 1

3 + 1
2 cosφ2)

1
3

)(
φ̈1

φ̈2

)
+

(
k1φ̇1

k2φ̇2

)

+

( 1
2 φ̇2(φ̇2 − 2φ̇1) sinφ2

1
2

(
φ̇1

)2

)
+ kG

(
(ρ2 + 1) cosφ1 + 1

2 cos(φ2 − φ1)
− 1

2 cos(φ2 − φ1)

)
.

A reference solution is specified by

xspec = l(cosφ1 + cos(φ2 − φ1)) = L− r cos(ωt),

yspec = l(sinφ1 − sin(φ2 − φ1)) = r sin(ωt)
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and we want to know if it is stable under perturbations. To this end, we write ψi = φi − φi,spec
and Mi = Mi,spec + ∆Mi to measure deviations. To obtain stability the following control law was
stipulated: ∆M1 = Rψ1 and ∆M2 = Rψ2/3. The above relations are inserted into the equations
of motion and expanded in terms of ψi, ψ̇i and ψ̈i for i = 1, 2 up to third order. The third order
approximation near the origin is sufficient to characterize almost all bifurcations of codimension
one and two. This yields a four dimensional vector field with periodic coefficients as functions of
φ1 and φ2 and their derivatives. These can be expressed in terms of xspec and yspec. Then time
was scaled such that the period is T = 2π. This affects the damping and control coefficients, see
Eq. (13).

Under variation of the control parameter R and the angular velocity ω, the stability of the
origin, which is always a solution of the new system, is analyzed by considering the time–T map
numerically. This yielded a local bifurcation diagram with period-doubling and Neimark-Sacker
bifurcations, see Figure 10.
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Figure 10: Local bifurcation diagram near the flip-Neimark-Sacker bifurcation. PD1 = period
doubling of the origin, NS1 Neimark-Sacker of the origin, NS2 = Neimark-Sacker of the period
two point, C̃D = period doubling of an invariant circle (sketch). Also displayed near C̃D is an
Arnol’d tongue of a cycle of period 11 bounded by LP 11

1,2. On this tongue are two fold-flip points
FF 11, see also the rotated magnification of this piece together with the period-doubling ellipse
PD11. The DPD points have not been computed.
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For the following parameter values a period-doubling curve and a Neimark-Sacker curve are inter-
secting:

m1 = m2 = 10, ρ = m1

m2
, l = .4, L = .5, r = .1, ω = 18.7468,

R = −114.5978

m2ω2l2
, k1 = k2 =

0.5

m2ω2l
, kg =

9.81

ω2l
.

(13)

Using the Runge-Kutta-Fehlberg integrator of order 7-8 combined with automatic differentiation
(as in [4]), we obtained the Poincaré map with the derivatives up to third order. Thus we were
able to evaluate the formulas derived in section 4.1 and 2.2 and to obtain

a11 = −12.7794, a12 = −2.0639, a21 = 1.4932, a22 = −1.7381.

This corresponds to the “simple” case, however a stable doubled invariant circle appears nearby,
see Figure 11.
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Figure 11: The stable doubled invariant curve.

6.2 Example of double NS bifurcation: Control of vibrations.

Here we consider a system of two coupled oscillating masses from [32], where one mass is used to
suppress vibrations of the other. Using averaging, many details of periodic solutions are found,
while here we consider the trivial solution to demonstrate the results of this article only.

The system is given by





ẍ1 + κ1(ẋ1 − ẋ2) +Q2(1 + ε cos(ηt))(x1 − x2) = 0,
ẍ2 −Mκ1(ẋ1 − ẋ2) −MQ2(1 + ε cos(ηt))(x1 − x2)

+κ2ẋ2 + x2 − βV 2(1 − γẋ2
2)x2 = 0.

The natural frequencies of this system are

Ω2
1,2 =

1

2
(1 +Q2(1 +M)) ∓

√
1

4
(1 +Q2(1 +M))2 −Q2.

Near the parametric resonance η0 = Ω2 −Ω1, the trivial solution exhibits a double NS bifurcation
when k1 = (βV 2 − k2)/(1 +M) = .091666 . . . and η = 0.41101 . . . .

For numerical demonstration we use the values from [32]:

ε = 0.1, k2 = 0.1, β = 0.1, V =
√

2.1, γ = 4, Q = 0.95, M = 0.2.
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Figure 12: Local bifurcation diagram near the double Neimark-Sacker-bifurcation. NS1 =
Neimark-Sacker of the origin, C̃N = transition from invariant circle to 2-torus(sketch).

As for the previous example we compute the normal form coefficients and we find

a11 = −2.0199, a12 = −2.7841, a21 = −0.2282, a22 = −4.6230.

Now we can look up the unfolding in [2] and it is the simple case II. Taking parameters around
the double NS point we have two routes from the stable trivial solution to a stable 2-torus.

Alternatively, one could have considered the averaged system. Then instead of a double NS
one deals with a double Hopf bifurcation and one may apply center manifold reduction for ODE’s
from [2] to find a similar result.

7 Conclusions

This paper completes in some sense the analysis of local codimension two bifurcations of fixed
points for maps. Together with the descriptions in [2, 5] for all cases there is now a proper
analysis of the truncated normal form. Also essential critical normal form coefficients on center
manifolds are available now for all cases, so that analysis of concrete maps can be performed
straightforwardly. A work in progress is the implementation of these formulas into MATCONT
[30].

We have combined various analytical and numerical methods to study the dynamics in the
symmetric and perturbed normal forms. Although the theoretical picture already shows a richness
of bifurcations, we notice that our studies indicate even further complications. Here we have
focused primarily on local bifurcations, but global bifurcations are present.

There are several open problems for future research. First of all, in both the flip-Neimark-
Sacker and the double Neimark-Sacker bifurcation the heteroclinic structures involve complex
dynamics which is not yet well described. The resonances on the 2- and 3-tori can be mapped
in more detail. Then the effect of asymmetric perturbations and the relation of the truncated
normal form and the original map can be investigated in more detail. Studies in this direction
have been performed in [20, 33, 34, 6, 35], but might be done even more systematically using
available symbolic and numerical tools.
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8 Appendix: Proofs

8.1 Section 2

Proof of Proposition 2.1. The proof proceeds in several steps. First we consider the flip-NS
bifurcation and then repeat the same steps for the double NS bifurcation, where only some details
are different.

Case I:Flip-NS

Step 1. Consider a map ξ 7→ F (ξ, α), ξ = (x, z) ∈ R × C, whose linear part at (ξ, α) = (0, 0) is
given by

A =

(
−1 0

0 eiφ

)
.

We may apply near-identity transformations to remove as much nonresonant monomials of degree
2 and higher. Consider an elementary transformation (x, z) 7→ N(x, z) = (x, z)T +(c1, c2)

Txizj z̄k

with i+ j + k ≥ 2 and some constants c1, c2. An xizj z̄k-monomial can be removed from F (·, 0) if
adA1

(N)(x, z) := [N,A](x, z) 6= 0, where [·, ·] is the Lie bracket operation. This leads to search of
zeroes of a component of

adA(N)(x, z) =

(
c1
(
−1 − (−1)ieiφ(j−k)

)

c2
(
1 − (−1)ieiφ(j−k−1)

)
)
xizj z̄k, 2 ≤ i+ j + k ≤ 5.

Due to the absence of strong resonances, we find that F (ξ, 0) may be transformed to a map with
the 5-jet

(
x
z

)
7→
(

−x+ f300x
3 + f111x|z|2 + f500x

5 + f311x
3|z|2 + f122x|z|4

eiφz + g210x
2z + g021z|z|2 + g410x

4z + g221x
2|z|2 + g032z|z|4

)
, (14)

where the coefficients fijk are real, while gijk are complex. The latter map coincides with NF1

for α = 0.
Step 2. Since 1 is not an eigenvalue of A, we may assume that the origin always is a fixed
point. We write F (ξ, α) = A(α)ξ + R(ξ, α), where R(ξ, α) = O(‖ξ‖2). Now we introduce the
parameter-dependent eigenvectors of A and AT ,

A(α)qi(α) = λiqi(α), AT (α)pi(α) = λipi(α), (15)

where λ1(0) = −1, λ2(0) = eiφ and λ3(0) = e−iφ. The vectors pi(α) can be scaled such that
〈pi(α), p(α)j〉 = δij , the Kronecker delta for i, j = 1, 2, 3. Then the variable ξ may be written as
ξ = η1q1(α) + η2q2(α) + η̄2q̄2(α), where η̄2 is treated as an independent variable. The map F ,
written in the η-coordinates and truncated at fifth order, takes the form

F (η, α) =

(
λ1η1 +

∑
2≤i+j+k≤5 fijk(α)ηi1η

j
2η̄
k
2

λ2η2 +
∑

2≤i+j+k≤5 gijk(α)ηi1η
j
2η̄
k
2

)
. (16)

Now we introduce a parameter-dependent coordinate transformation η = G(ξ, α) such that Q :=
j5(F (G(ξ, α), α) −G(NF1(ξ, α), α)) = 0, the 5-jet w.r.t. ξ. The general form of G is

G(ξ, α) =

( ∑
1≤i+j+k≤5 Fijk(α)ξi1ξ

j
2 ξ̄
k
2∑

1≤i+j+k≤5 Gijk(α)ξi1ξ
j
2 ξ̄
k
2

)
,

where F100(0) = G010(0) = 1 and F010(0) = F001(0) = G100(0) = G001(0) = 0. We collect all
coefficients Qijk of the monomials ξi1ξ

j
2 ξ̄
k
2 . Such a Qijk is a function of Fijk , Gijk , µi and the critical

normal form coefficients F̂ijk . Thus we interpret Q as a function from R55 × C55 to itself. The
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determinant DQ of the Jacobian matrix of Q w.r.t. Fijk , Gijk , µi and F̂ijk evaluated at the critical
point is given by

DQ = −251i sin(φ)e
i45φ

2 sin(φ) sin(3φ) sin(5φ) cos(φ/2)(cos(2φ))3(cos(φ))10

(cos(6φ) − 1)3(cos(5φ) + 1)(cos(4φ) − 1)3(cos(3φ) + 1)2

(cos(2φ) − 1)14(cos(φ) + 1)3
(17)

Due to the non-resonance conditions imposed on φ, we see that DQ 6= 0.
Step 3. Finally we prove the regularity of the map G̃ : α 7→ µ. From (16) and (1) we write
λ1 = −1+ Ã(α) and λ2 = cos(φ)+ B̃(α)+ i sin(φ)+ iC̃(α), or |λ2| = 1+cos(φ)B̃+sin(φ)C̃+h.o.t.
Thus we identify (

µ1

µ2

)
=

(
Ã(α)

cos(φ)B̃(α) + sin(φ)C̃(α)

)
+ h.o.t., (18)

and we see that det
(
dµ
dα

)
α=0

= det
(
d(λ1,|λ2|)

dα

)
α=0

6= 0. Therefore we may use (1) as the unfolding

for this bifurcation.

Case II:NS-NS

Step 1. Now consider a map y 7→ F (ξ, α), ξ = (w, z) ∈ C2, which at (ξ, α) = (0, 0) has the linear
part given by

A =

(
eiφ1 0
0 eiφ2

)
.

As above we write N(w, z) = (w, z)T + (c1, c2)
Twiw̄jzkz̄l with i+ j + k + l ≥ 2 and we find

adA(N)(x, z) =

(
c1
(
1 − ei{φ1(i−j−1)+φ2(k−l)}

)

c2
(
1 − ei{φ1(i−j)+φ2(k−l−1)}

)
)
wiw̄jzkz̄l, 2 ≤ i+ j + k + l ≤ 5.

Under the conditions stated we find that the map F (ξ, 0) may be transformed into a map with
the 5-jet

(
w
z

)
7→

(
eiφ1w
eiφ2z

)

+

(
f2100w|w|2 + f1011w|z|2 + f3200w|w|4 + f2111w|w|2|z|2 + f1022w|z|4
g1110z|w|2 + g0021z|z|2 + g2201z|w|4 + g1121z|w|2|z|2 + g0032z|z|4

)
.

(19)

Remark that the coefficients fijkl and gijkl are complex.
Step 2. For the double Neimark-Sacker bifurcation a similar preparation but with two complex
variables leads to a function Q : C250 → C250. The Jacobian DQ at the critical point is the
product of expressions like (cos(3φ1 −φ2)−1)4 and (cos(φ1 +5φ2)−1), but too lengthy to display
here. From the non-resonance conditions required we obtain that DQ 6= 0 and that these are the
minimal set of such conditions.
Step 3. As before we write λ1(α) = cos(φ1) + Ã(α) + i sin(φ1) + iB̃(α) and λ2(α) = cos(φ2) +
C̃(α) + i sin(φ2) + iD̃(α) and at first order the map G̃ : α 7→ µ is given as

(
µ1

µ2

)
=

(
cos(φ1)Ã(α) + sin(φ1)B̃(α)

cos(φ2)C̃(α) + sin(φ2)D̃(α)

)
+ h.o.t., (20)

The map regularity of G̃ : α 7→ µ at 0 is now ensured by |Dα(µ)|α=0 = |Dα(|λ|)|α=0 6= 0. �

Computations for Remark 2.2. It is sufficient to verify the statement for the normal forms,
so DGi should be nonzero. A straightforward calculation shows that

detDG1(0, 0) = 16 sin2(φ)

∣∣∣∣
d(λ1, λ2)

d(α1, α2)

∣∣∣∣ .
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For the regularity of G2 we use DF2 as in the beginning of Section 2 and introduce BT = C =(
1 0 0 0 0 0
0 0 0 0 0 1

)
. Then indeed the 8× 8-matrix in the Remark is nonsingular. After some

tedious algebra one finds

d(g11, g22)

d(α1, α2)
=

(
∂(cos(φ1)Ã+sin(φ1)B̃)

∂α1

∂(cos(φ1)Ã+sin(φ1)B̃)
∂α2

∂(cos(φ2)C̃+sin(φ2)D̃)
∂α1

∂(cos(φ2)C̃+sin(φ2)D̃)
∂α2

)
.

In fact we have detDG2(0, 0) = 16(cos(φ1) − 1)(cos(φ2) − 1)
∣∣∣d(|λ1|,|λ2|)
d(α1,α2)

∣∣∣. �

Proof of Proposition 2.3. We introduce a special change of coordinates M consisting of the
resonant monomials in the 3-jet of (3). The transformation leads to a new map F with the same
3-jet but alters the 5-jet. Then we choose the mi, i = 1, 2, 3, 4 such that as many as possible of
the ci, i = 1, 2, .., 6 are eliminated. We write

M(x, y) =

(
x+m1x

3 +m2xy
2

y +m3x
2y +m4y

3

)
,

F (x, y) =

(
x+ a11x

3 + a12xy
2 + c1x

5 + c2x
3y2 + c3xy

4

y + a21x
2y + a22y

3 + c4x
4y + c5x

2y3 + c6y
5

)
.

The condition j5(H(M(x, y)) −M(F (x, y))) = 0 leads to the following linear system in the mi

c1 = h50, c6 = h05,

2




a12 a21 − a11 −a12 0
0 a22 0 −a12

−a21 0 a11 0
0 −a21 a12 − a22 a21







m1

m2

m3

m4


 =




h32 − c2
h14 − c3
h41 − c4
h23 − c5


 .

(21)

Note that the coefficients of x5- and y5-terms are not affected by this transformation. The matrix
has determinant zero and its kernel has dimension 1. Therefore we can select only three terms
to be removed out of six fifth-order terms. If we choose not to kill c4, then this coincides with a
natural nondegeneracy condition in the bifurcation analysis. Thus we set c2 = c3 = c5 = m3 = 0
and solve equation (21) in m1,m2,m4 and c1, c4, c6. We get the new coefficients

c1 = h50, c6 = h05, c4 = h41 + a21

(
h32

a12
− h14(a11 − a21)

a12(a12 − a22)
− h23(a11 − a21)

a21(a12 − a22)

)
.

Then we apply a linear scaling x→ x/
√
|a11|, y → y/

√
|a22| and obtain the desired map. �

8.2 Section 3

Proof of Proposition 3.1

1. The fixed point equation is given by x = (1 + µ1)x + s1x
3 + c1x

5. For µ1 small we have
x+ =

√−µ1s1 +O(µ1). The extra fixed point exists for µ1s1 < 0. We evaluate the Jacobian

DFµ(x+, 0) =

(
1 + µ1 + 3s1x

2
+ + 5c1x

4
+ 0

0 1 + µ2 + s1δx
2
+ + c4x

4
+

)

=

(
1 − 2µ1 + O(µ2

1) 0
0 1 + µ2 − δµ1 + O(µ2

1)

)
.

The multiplier in the x-direction is µx̂ = 1 − 2µ1 + O(µ2
1), so in this direction it is stable if

s1 < 0 and unstable if s1 > 0. In the y-direction it is stable if µ2 − δµ1 < 0.

2. This is analogous to the preceding item.
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3. For a nontrivial fixed point we search for nonzero (x, y) with

(
s1 s2θ
s1δ s2

)(
x2

y2

)
= −

(
µ1

µ2

)
+

(
c1x

4

c4x
4 + c6y

4

)
.

A solution is (x2, y2) = (ρ2
1, ρ

2
2) = 1

s1s2(δθ−1)(s2(µ1 − θµ2), s1(µ2 − δµ1))+O(‖µ‖2). It exists

if both components are positive. Now we turn to the stability of this point. From the Routh-
Hurwitz criterion it follows that the roots of λ2 + a1λ + a0 = 0 are strictly inside the unit
circle if and only if

|a1| < (1 + a0), (22a)

|a0| < 1. (22b)

We give the Taylor expansions in µ of the trace and determinant:

a1 = tr(DFµ(ρ1, ρ2)) = 2 − 2

δθ − 1
((δ − 1)µ1 + (θ − 1)µ2)

+z20µ
2
1 + z11µ1µ2 + z02µ

2
2 + O(‖µ‖2),

a0 = det(DFµ(ρ1, ρ2)) = 1 − 2

δθ − 1
((δ − 1)µ1 + (θ − 1)µ2)

ẑ20µ
2
1 + ẑ11µ1µ2 + ẑ02µ

2
2 + O(‖µ‖2),

where

z20 − ẑ20 =
−4δ

δθ − 1
, z11 − ẑ11 =

4(δθ + 1)

δθ − 1
, z02 − ẑ02 =

−4θ

δθ − 1
.

A little algebra shows that conditions (22a) and (22b) are equivalent to

4

δθ − 1
(δµ1 − µ2) (θµ2 − µ1) =4s1s2(δθ − 1)ρ2

1ρ
2
2 < 0 + O(‖µ‖2), (23a)

− 2

δθ − 1
((θµ2 − µ1) + (δµ1 − µ2)) =2(s1ρ

2
1 + s2ρ

2
2) < 0 + O(‖µ‖2), (23b)

if µ is sufficiently small.

4. Violation of (22b) corresponds to a Neimark-Sacker bifurcation of the nontrivial fixed point.
This can only occur if s1s2 < 0. Consider now µ1 as a perturbation parameter, then a first
order approximation for the critical value is given by µ2,c = −(δ−1)µ1/(θ−1). Now the first

order approximation of the multiplier is λ = 1 + 2µ1

√
(1 − δθ)/(θ − 1), which is complex if

δθ > 1. For sufficiently small µ1 we are not near strong resonances. Then we used one more
order in the approximations of x, y, µ2, λ and the (adjoint) eigenvectors p, q of the Jacobi

matrix along the bifurcation curve. Then we verified transversality d|λ|
dµ2

|µ2=µ2,c
= 1

2 , and
for the nondegeneracy we computed the leading term of the Lyapunov coefficient LNS and
found

LNS = <(λ̄〈p, C(q, q, q̄)
+2B(q, (In −A)−1B(q, q̄)) +B(q̄, (λ2In −A)−1B(q, q))〉)

= µ1s1

(
12(2δθ−δ−θ)

θ(θ−1) + c1
8(2δθ−δ−1)
(θ−1)(δθ−1) − c4

8
(δθ−1) + c6

8δ(2δθ−θ−1)
θ(θ−1)(δθ−1)

)

+O(µ2
1).

If LNS 6= 0 a closed invariant curve appears, which is stable if LNS is negative and unstable
if LNS is positive.

5. First we compute a vector field, whose time-1 map approximates the map (6) as in [3]. Then
after a singular rescaling of the vector field we use the Pontryagin-Melnikov method. The
three steps in our calculation closely follow the presentation in [37].
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Step 1. If we perform Picard iterations as in for example [3], then we find that the following
vector field contains all relevant terms.

(
ẋ
ẏ

)
=

(
x(µ1 − 1

2µ
2
1 + ã11x

2 + ã12y
2 + c̃1x

4 + c̃2x
2y2 + c̃3y

4)
y(µ2 − 1

2µ
2
2 + ã21x

2 + ã22y
2 + c̃4x

4 + c̃5x
2y2 + c̃6y

4)

)
,

where ãij , c̃i are functions of ci and aij of map (6). After applying the scaling (x, y) →
(x/

√
1 − 2µ1, y/

√
1 − 2µ2), these coefficients are given as

ã11 = s1, ã12 = −s1θ(1 − µ1 + µ2),
ã21 = s1δ(1 + µ1 − µ2), ã22 = −s1,
c̃1 = c1 − 3

2 , c̃4 = c4 − δ(1 + 1
2δ),

c̃2 = θ(δ + 2), c̃5 = δ(θ + 2),
c̃3 = −θ(1 + 1

2θ), c̃6 = c6 − 3
2

(24)

Step 2. We make a change of variables and perform a singular rescaling

(t, x2, y2, µ1, µ2) 7→
(

1

2
ε−1xpyqt, εx, εy,−s1ε,

(
δ − 1

θ − 1

)
s1ε+ ε2ν

)
,

which results in the following vector field

(
ẋ
ẏ

)
= s1x

p−1yq−1

(
x(−1 + x− θy),

y
(
δ−1
θ−1 + δx− y

)
)

+ εxp−1yq−1

(
g1(x, y)
g2(x, y)

)
+ O(ε2), (25)

where

g1(x, y) = x
(
− 1

2 − yθ
(
δ+θ−2
θ−1

)
+ c̃1x

2 + c̃2xy + c̃3y
2
)
,

g2(x, y) = y

(
ν − 1

2

(
δ−1
θ−1

)2

− xδ
(
δ+θ−2
θ−1

)
+ c̃4x

2 + c̃5xy + c̃6y
2

)
.

For ε = 0 this is a Hamiltonian system with

H(x, y) = s1x
pyq(δθ − 1)

(
1 − x

θ − 1
− y

δ − 1

)
, p = − (δ − 1)

δθ − 1
, q = − (θ − 1)

δθ − 1
.

Step 3. We have p, q > 0 due to the non-degeneracy conditions. Now we treat the term
proportional to ε in (25) as a small perturbation of the Hamiltonian system. We should
therefore evaluate the Pontryagin-Melnikov function (see [36]) for the critical level set H = 0,
which consists of three heteroclinic orbits.

∆(h, ν) =

∮

Γh

dH(s(τ), ν) ∧ g(s(τ), ν) dτ,

where s(τ) corresponds to a nontrivial heteroclinic solution in the positive quadrant of the
Hamiltonian system on the level curve H = h. Then the equation ∆(0, ν) = 0 defines a
quadratic approximation to a curve on which the heteroclinic connection “survives” in (25)
for small ε 6= 0.

∆(0, ν) =
∮
Γ0

g1(x, y)dy − g2(x, y)dx

=
∮
Γ0

xpyq−1(− 1
2 − yθ

(
δ+θ−2
θ−1

)
+ c̃1x

2 + c̃2xy + c̃3y
2)dy

− xp−1yq(ν − 1
2

(
δ−1
θ−1

)2

− xδ
(
δ+θ−2
θ−1

)
+ c̃4x

2 + c̃5xy + c̃6y
2)dx

= −I(p−1,q)

(
ν − p

2q −
(δ−1)2

2(θ−1)2

)
+ I(p,q)

(
δ(θ+δ−2)
θ−1

)

+ I(p−1,q+1)

(
θp(θ+δ−2)
(q+1)(θ−1)

)
− I(p+1,q)

(
c̃4 + p+2

q
c̃1

)

− I(p,q+1)

(
c̃5 + p+1

q+1 c̃2

)
− I(p−1,q+2)

(
c̃6 + p

q+2 c̃3

)
,

(26)
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where Green’s formula is used and we defined I(i,j) =
∫
Γ0

xiyjdx. On the critical level curve

we have y = δ−1
θ−1(1 − x) and with this substitution we find

Ii,j =

(
δ − 1

θ − 1

)j ∫ 1

0

xi(1 − x)jdx =

(
δ − 1

θ − 1

)j
Γ(1 + i)Γ(1 + j)

Γ(2 + i+ j)
. (27)

Using the definition of the Γ-function and substituting the c̃i we can now find ν from (26)

ν = (δθ−1)2

2(θ−1)3 + c1

(
δ(2δθ−δ−1)

(2δθ−θ−δ)(θ−1)

)
+ c4

(
δ

(2δθ−θ−δ)

)
− c6

(
θ(2δθ−θ−1)(δ+1)2

(2δθ−θ−δ)(θ−1)3

)
.

Since the time-1 flow approximates the map (6) up to order 2 in µ, this calculation shows
that the curve

µ2 = − δ − 1

θ − 1
µ1 + νµ2

1 + O(µ3
1), (28)

is an approximation of the heteroclinic connection in the map (6).

Remark 8.1 The following vector field corresponds to the truncated amplitude system for the
double Hopf bifurcation for vector fields:

(
ẋ
ẏ

)
=

(
x(µ1 + x2 − θy2 + Θy4)
y(µ2 + δx2 − y2 + ∆x4)

)
.

An analogous computation shows that

µ2 = − δ − 1

θ − 1
µ1 +

(θ − 1)3δ∆ + (δ − 1)3θΘ

(2δθ − θ − δ)(θ − 1)2
µ2

1 + O(µ3
1) (29)

is the approximation of the heteroclinic bifurcation curve for this vector field. Thus the µ2
1-term

given in [2] needs correction. In [37] a different scaling is used, but the final result is wrong as
well.

8.3 Section 5

Proof of Proposition 5.1 The truncated critical normal form (11) is given by [5]. As in [3]
and[4], select a parameterization u = H(w) =

∑
|ν|≥1

1
ν!hνw

ν of the critical center manifold such

that the 3-jet of the restriction of (9) to this manifold is put in the corresponding Poincaré normal
form. Then, the invariance of the center manifold allows one to find recursively all hν , as well
as the coefficients of the critical normal form, from appearing linear systems and their Fredholm
solvability conditions. �
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