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Abstract
This paper describes a new algorithm to compute the dominant poles of a high-order
multi-input multi-output (MIMO) transfer function. The algorithm, called the Subspace
Accelerated MIMO Dominant Pole Algorithm (SAMDP), is able to compute the full set of
dominant poles efficiently. SAMDP can be used to produce good modal equivalents automat-
ically. The general algorithm is robust, applicable to both square and non-square transfer
function matrices, and can easily be tuned to suit different practical system needs.

1 Introduction

Current model reduction techniques for power system stability analysis and controller design [1-5]
produce good results but are not applicable to large scale problems. If only a small part of the
system pole spectrum is controllable-observable for the transfer function, a low-cost alternative for
large-scale systems is modal model reduction. Modal reduction approximates the transfer function
by a modal equivalent that is computed from the dominant poles and their corresponding residues.
To produce a good modal equivalent, specialized eigensolution methods are needed. An algorithm
that automatically and efficiently computes the full set of dominant poles of a scalar transfer
function was presented recently [6], but existing methods for multi-input multi-output (MIMO)
transfer functions [7] are not capable enough to produce good modal equivalents automatically.
A survey on model reduction methods employing either singular value decompositions or moment
matching based methods is found in [8,9]. An introduction on modal model reduction on state
space models can be found in [10], while [11] describes a possible enhancement to modal model
reduction.

In this article, a new extension of the Subspace Accelarated Dominant Pole Algorithm (SADPA)
[6] will be proposed: Subspace Accelerated MIMO Dominant Pole Algorithm (SAMDP). The
SADPA is a generalization of the Dominant Pole Algorithm [12], that automatically computes a
high quality modal equivalent of a transfer function. The SAMDP can also be seen as a gener-
alization of the MIMO Dominant Pole algorithm [7]. SAMDP computes the dominant poles and
corresponding residue matrices one by one by selecting the most dominant approximation every
iteration. This approach leads to a faster, more robust and more flexible algorithm. To avoid
repeated computation of the same dominant poles, a deflation strategy is used. The SAMDP
directly operates on implicit state space systems, also known as descriptor systems, which are
very sparse in practical power system applications.

The article is organized as follows. Section 2 summarizes some well known properties of
MIMO transfer functions and formulates the problem of computing the dominant poles of a MIMO
transfer function. Section 3 describes the new SAMDP algorithm. In section 4, numerical aspects
concerning practical implementations of SAMDP are discussed. Extensive numerical results are
presented in 5. Section 6 concludes.
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2 MIMO transfer functions, sigma plots and dominant poles
For a multi-input multi-output (MIMO) system

x(t) = Ax(t)+ Bu(t) .
{y(t) = CTx(t) + Du(t), (1)

where A € R™*™ B € R™*™, C € R"*?, x(t) € R", u(t) € R™, y(¢t) € R? and D € RP*™ the
transfer function H(s) : C — CP*™ is defined as

H(s)=CT(sI - A)™'B+ D, (2)

where I € R™ "™ is the identity matrix and s € C. Without loss of generality, D = 0 in the
following.

It is well known that the transfer function of single-input single-output system is defined by
a complex number for any frequency. For a MIMO system, the transfer function is a p x m
matrix and hence does not have a unique gain for a given frequency. The SISO concept of a
single transfer function gain must be replaced by a range of gains that have an upper bound for
non-square matrices H (s), and both upper and lower bounds for square matrices H(s). Denoting
the smallest and largest singular values [13] of H (jw) by 0min(w) and omax(w), it follows for square
H(s) that
[ (jw)u(jw)||2

[lu(jw)ll2
ie. for a given frequency w, the gain of a MIMO transfer function is between the smallest and
largest singular value of H(jw), which are also called the smallest and largest principal gains [14].
For non-square transfer functions H(s), only the upper bound holds. Plots of the smallest and
largest principal gains against frequency, also known as sigma plots, are used in the robust control
design and analysis of MIMO systems [14].

Let the eigenvalues (poles) of A and the corresponding right and left eigenvectors be given by
the triplets (\j,x;,y;), and let the right and left eigenvectors be scaled so that y;x; = 1. Note
that y’xy = 0 for j # k. The transfer function H(s) can be expressed as a sum of residue matrices
R; € CP*™ over first order poles [15]:

Umin(jw) S S Umax(jw)v

H(s)zzsi{j)\/

Jj=1

where the residue matrices R; are
R;j = (CTx))(y; B).

A pole \; that corresponds to a residue R; with large norm ||Rj||2 = omax(R;) is called a
dominant pole, i.e. a pole that is well observable and controllable in the transfer function. This
can also be observed from the corresponding omax-plot of H(s), where peaks occur at frequencies
close to the imaginary parts of the dominant poles of H(s). An approximation of H(s) that
consists of k < n terms with ||R;||2 above some value, determines the effective transfer function
behaviour [16] and will be referred to as transfer function modal equivalent:

Hi(s) = Y

i=1 J

Because a residue matrix R; is the product of a column vector and a row vector, it is of unit rank.
Therefore at least min(m, p) different poles are needed to obtain a modal equivalent with nonzero
Omin(w) plot [7,17].

The problem of concern can now be formulated as: Given a MIMO linear, time invariant,
dynamical system (A4, B,C, D), compute k < n dominant poles A; and the corresponding right
and left eigenvectors x; and y;.



3 Subspace Accelerated MIMO Dominant Pole Algorithm
(SAMDP)

The subspace accelerated MIMO dominant pole algorithm (SAMDP) is based on the dominant
pole algorithm (DPA) [12], the subspace accelerated DPA (SADPA) [6] and the MIMO dominant
pole algorithm (MDP) [7]. First, a Newton scheme will be derived for computing the dominant
poles of a MIMO transfer function. Then, the SAMDP will be formulated as an accelerated
Newton scheme, using the same improvements that were used in the robust SADPA algorithm.

All algorithms are described as directly operating on the state-space model. The practical
implementations (see section 4.1) operate on the sparse descriptor system model, which is the
unreduced Jacobian for the power system stability problem, analized in the examples of this paper
(see section 5).

3.1 Newton scheme for computing dominant poles

The dominant poles of a MIMO transfer function H(s) = CT(sI — A)~'B are those s € C for
which opax(H(s)) — oco. For square transfer functions (m = p), there is an equivalent criterion:
the dominant poles are those s € C for which Apin(H1(s)) — 0. In the following it will be
assumed that m = p; for general MIMO transfer functions, see 4.3.

The Newton method can be used to find the s € C for which the objective function

f:C—C:s— A\uin((CT(sI — A)7'B)™Y) (3)

is zero. Let (u(s),u(s),v(s)) be an eigentriplet of H~!(s) € C™*™ ie. H 1 (s)u(s) = u(s)u(s)
and v*(s)H1(s) = u(s)v*(s), with v*(s)u(s) = 1. The derivative of u(s) is given by [18]

dp, ., dH™!
L (s) = v () (s)u(s) @
where
W) = ~H O () (s)
= H Ys)CT(sI — A)"2BH '(s). (5)

Note that it is assumed that H~!(s) has distinct eigenvalues and that the function that selects
Lmin(s) has derivative 1. Substituting (5) in (4), it follows that

%(S) = v*(s)H Y(s)CT(sI — A)">BH '(s)u(s)
= 12 (s)v*(s)CT(sI — A)"2Bu(s).

The Newton scheme then becomes

gkl gk _ f(s%)
f'(s%)
_ Sk o Hmin
w2, v*CT(skI — A)=2Bu
& 1 1

- S

" limin v*CT(skI — A)=2Bu’

where (fmin, W, V) = (fmin(8), Umin(s¥), v, (s%)) is the eigentriplet of H~!(s*) corresponding
t0 Amin(H ~1(s1)). An algorithm, very similar to the DPA algorithm [12], for the computation of
single dominant pole of a MIMO transfer function using the above Newton scheme, is shown in
Alg. 1. In the neighborhood of a solution, Alg. 1 converges quadratically.



Algorithm 1 A MIMO Dominant Pole Algorithm.
INPUT: System (A, B, (), initial pole estimate s;
OUTPUT: Dominant pole A and corresponding right and left eigenvectors x and y.
1: Set k=1
2: while not converged do
3. Compute eigentriplet (fimin, u,v) of H~1(sy)
4:  Solve x € C™ from

(sgI — A)x = Bu

5:  Solve y € C" from
(sgl — A)*'y =Cv

6:  Compute the new pole estimate

1 1
Hmin y*X

Sk+1 = Sk —

7. The pole A = si41 has converged if
[|Ax — sp41x]|]2 < €
for some € < 1

8: Set k=k+1
9: end while

3.2 SAMDP as an accelerated Newton scheme

The three strategies that are used for SADPA [6], are also used to make SAMDP, a generalization
of Alg. 1: subspace acceleration, selection of most dominant approximation and deflation. A
global overview of the SAMDP is shown in Alg. 2. Each of the three strategies is explained in the
following paragraphs.

3.2.1 Subspace acceleration

The approximations x and y that are computed in steps 4 and 5 of Alg. 1 are kept in orthogonal
search spaces X and Y, using modified Gram-Schmidt (MGS) [13]. These search spaces grow
every iteration and will contain better approximations (see step 6 and 7 of Alg. 2).

3.2.2 Selection strategy

Every iteration a new pole estimate s must be chosen. There are several strategies (see [6] and
section 4.2). Here the most natural choice is to select the triplet (A;,%;,y;) with largest residue
norm ||R;||2. SAMDP continues with siy1 = A;. See Alg. 3.

Algorithm 3 (A, X,Y) = Sort(A, X, Y, B,C)
INPUT: A € C", X,Y € C"¥*, B € R™P (' € Rn*m
OUTPUT: A € C", X,Y € C** with \; the pole with largest residue matrix norm and x; and
y1 the corresponding approximate right and left eigenvectors.
1: Compute residue matrices R; = (CTx;)(y} B)
2: Sort A, X, Y in decreasing ||R;||2 order

3.2.3 Deflation

An eigentriplet (S\j,fcj,yj) has converged if ||Ax; — 5\]5(]-”2 is smaller than some tolerance e. If
more than one eigentriplet is wanted, repeated computation of already converged eigentriplets



Algorithm 2 Subspace Accelerated MDP Algorithm.

INPUT: System (A4, B,C), initial pole estimate s; and the number of wanted poles pqz
OUTPUT: Dominant pole triplets (A;,r;,1;), i =1,..., Prmax
1:k=1,pfound:O,X:Y:A:R:L:H
2: while Pround < Pmax do
3. Compute eigentriplet (pmin, u,v) of H1(sg)
4:  Solve x € C™ from
(s — A)x = Bu

5. Solve y € C" from
(sgl — A)*'y =Cv

X = Expand(X, R, L,x) {Alg. 4}

Y = Expand(Y, L, R,y) {Alg. 4}
Compute G=Y*X and T=Y*AX
Compute eigentriplets of (T, G):

(S‘hiiayi), 7121,7]6
10:  Compute approximate eigentriplets of A as

(Xlzj\ukl:XiwyZ:Yyl)a lzl7ak

11: /A\:[Xl,...,ﬂk]
12 X = [X1,...,Xg)

B Y =[y,..9

14: (A, X,Y) =Sort(A, X,Y,B,C) {Alg. 3}

15: if HA)AQ — 5\1)21”2 < ¢ then

16: (AR, L, X,Y) =
Deflate(A1, X1, 91, A, R, L, Xo.,, Yaui,) {Alg. 5}

17: pfom}d = ?found +1
18: Set A1 = Ao
19:  end if

20 Setk=k+1 X
21:  Set the new pole estimate sp4+1 = A1
22: end while




must be avoided. This can be achieved by using deflation [19,20].
If already the right and left eigenvectors x; and y; are found, then it can be verified that, if
the exact vectors are found, the matrix

~ X;y: Xy
A=y - 220 4y - 220
Y;iXj Y;iXj
has the same eigentriplets as A, but with the found eigenvalues transformed to zero.
Using this, the space X needs to be orthogonally expanded with II;(I — ;1?) - X and simi-
. X5

*

YiX;
=

XY

larly, the space Y needs to orthogonally expanded with IT;(1 —
implemented using modified Gram-Schmidt (MGS) (see Alg. 4).

) - y. These projections are

Algorithm 4 X = Expand(X, R, L, x)
INPUT: X € C"*F with X*X =1, R,L € C"*P, x € C"
OUTPUT: X ¢ Cnx(’fljU with X*X = I and

xp+1 =115 (1 ) X

- *
1_7 r;

e —TTP _ il
x=15_,(/ T

2: x = MGS(X, x)
30 X = [X,x/[|x|2]

) x

If a complex pole has converged, its complex conjugate is also a pole and the corresponding
complex conjugate right and left eigenvectors can also be deflated. A complex conjugated pair is
counted as one pole. The complete deflation procedure is shown in algorithm 5.

Algorithm 5

(A,R,L,X,Y) = Deflate(\,x,y, A, R, L, X,Y)

INPUT: A eC,x,yeC", AcCP, R, L cC"*P,
X,Y e Cv¥ o

OUTPUT: A €C% R,L € C"*9 X,Y € C"* =4, where ¢ = 1 if A has zero imaginary part and
q = 2 if A has nonzero imaginary part.

1: A= [A, )\}

2: R= [R, X]

3 L= [L, y]

4: g=1

5: if imag(\) # 0 then

6:  {Also deflate complex conjugate}
7 A= [A, 5\]

8: R = [R, )_(]

9: L= [L, }7}
10 q=2
11: end if
122 X =Y =]
13: for j=1,...,k—1do
14: X = Expand(X,R, L, X;)
15 Y = Expand(Y, L, R, Y;)
16: end for

4 Practical implementations of SAMDP

In this section, aspects concerning practical implementations of SAMDP and the generalization
of SAMDP to non-square MIMO transfer functions (m # p) are discussed.



4.1 Sparse descriptor system models

The sparse descriptor system formulation of (1) becomes

{0

where A € RVXN B ¢ RV*m O ¢ RVN*P x(t) € RN, u(t) € R™, y(t) € RP, D € RP*™ and
I; € RV*N is a diagonal matrix with diagonal elements either 0 or 1. The corresponding transfer
function Hy(s) : C — CP*™ is defined as

Ax(t) + Bu(t)
CTx(t) + Duf(t), (6)

Hy(s) = CT(sly— A)™'B+ D, (7)

where s € C. Without loss of generality, D = 0 in the following.

The algorithms presented in this paper can easily be adapted to handle sparse descriptor
systems. The changes essentially boil down to replacing I by I; on most places and noting that
for eigentriplets (A;,x;,y;) the relation y;I;x; = 0,7 # j holds. For completeness, the changes
are given for each algorithm:

e Algorithm 1:

— Replace I by I; in step 4 and 5.

— Step 6 becomes
1 1

Hmin y*IdX '

Sk+1 = Sk —
— The criterion in step 7 becomes
[|Ax — spr1lax|]2 < e.

e Algorithm 2:

— Replace I by I; in step 4 and 5.
— Replace step 6 and 7 by

X Expand(X, R, I, - L,x),
Y = Expand(Y,L,I;- R,y).

In step 8, use G = Y*I; X.

The criterion in step 15 becomes

||A)A(1 — 5\1]d§<1||2 < €.

e Algorithm 5:

— Replace step 16 and 17 by

X = Expand(X,R,1I;- L, X;),

Y = Expand(Y,L,I;-R,Y;).

All the experiments described in this paper were done using implementations that operate on the
sparse descriptor system model.



4.2 Computational optimizations

If a large number of dominant poles is wanted, the search spaces X and Y may become very large.
By imposing a certain maximum dimension k. for the search spaces, this can be controlled:
when the dimension of X and Y reaches kpax, they are reduced to dimension kpin < kmax by
keeping the ki, most dominant approximate eigentriplets. The process is restarted with the
reduced X and Y, a concept known as implicit restarting [6,19]. This procedure is continued until
all poles are found.

The systems in step 4 and 5 of Alg. 2 can be solved with the same LU-factorization of (sxlq—A),
by using L and U in step 4 and U* and L* in step 5. Because in practice the sparse Jacobian is
used, computation of the LU-factorization is inexpensive.

In step 3 of Alg. 2, the eigentriplet (pmin,u, v) of H~!(s) must be computed. This triplet can
be computed with inverse iteration [19], or, by noting that this eigentriplet corresponds to the
eigentriplet (Omax, u,v) of H(s), with pimin = 051,, with the power method [19] applied to H(s).
Note that there is no need to compute H(s) explicitly. However, if the number of states of the
system is large, and the number of inputs/outputs of matrix H(s) is large as well, applying the
power or inverse iteration methods at every iteration may be expensive. It may then be more
efficient to only compute a new eigentriplet (pmin,u,v) after a dominant pole has been found, or
once every restart.

As more eigentriplets have converged, approximations of new eigentriplets may become poorer
due to rounding errors in the orthogonalization phase and the already converged eigentriplets.
It is therefore advised to take a small tolerance e = 10719, Besides that, if the residual for the
current approximation drops below a certain tolerance €, > €, one or more iterations may be saved
by using generalized Rayleigh quotient iteration [21] to let the residual drop below e. In practice,
a tolerance ¢, = 107 is safe enough to avoid convergence to less dominant poles.

The SAMDP requires a single initial shift, even if more than one dominant pole is wanted,
because the selection strategy automatically provides a new shift once a pole has converged. On
the other hand, if one has special knowledge of the transfer function, for instance the approximate
location of dominant poles, this information can be used by providing additional shifts to SAMDP.
These shifts can then be used to accelerate the process of finding dominant poles.

As is also described in [6], one can easily change the selection strategy to use any of the existing
indices of modal dominance [10,22]. For instance, a good strategy for selecting dominant poles is:
select the pole \; with largest ||R;||2/|Re(\;)| for a complex estimate, and the largest || R;||2/| |
for a real estimate. Also other strategies, such as to select the approximation closest to some
target, are possible.

Finally, the procedure can be automated even further by providing the desired maximum error
1H(s)||2—||Hk(s)||2]| for a certain frequency range: the procedure continues computing new poles
until the error bound is reached. Note that such an error bound requires that the transfer function
of the complete model is known for a range of s € C (which is usually the case for sparse descriptor
systems).

4.3 General MIMO transfer functions (m # p)

For a general non-square transfer function H(s) = CT (s — A)"1B € CPX™ (p # m), the objective
function (3) cannot be used, because the eigendecomposition is only defined for square matri-
ces. However, the singular value decomposition is defined for non-square matrices and hence the

objective function becomes
1

— 0
Omax(H(s))

Let (omax(8),u(s), v(s)) be a singular triplet of H(s), ie. H(s)v(s) = omax(s)u(s) and H*(s)u(s) =
Omax(8)v(s). It follows that H*(s)H(s)v(s) = 02,,,v(s), so the objective function (8) can also be
written as

fiC—R:s+—

1

f:C—R:s+— o (- () H ()

(9)



with Amax = 02,,. Because f(s) in (9) is a function from C — R, the derivative df (s)/ds : C —

R is not injective. A complex scalar z = a+ jb € C can be represented by [a,b]” € R2. The partial
derivatives of the objective function (9) become

af 1

da (3) = momax(s)(y Igx +x IdY)v
af 1 . ” x
%(5) = m]ffmax(s)(x Loy —y"14x),

where
y= (s —A)'Bv, x=(s[—-A)"*Cu.

The derivative of (9) then becomes

Umax * *
Vf= QW[Re(y I;x), Im(y*14x)],

where Re(a + jb) = a and Im(a 4 jb) = b. The Newton scheme is

it
[Re(sz
Im(s

] (VI )

—_— — — —

:| - [Re(y*ldx)7 Im(y*ldx)]Tamaxa

where AT = A*(AA*)~! denotes the pseudo-inverse of a matrix A € C"*™ with rank(4) = n
(n <m) [13].

This Newton scheme can be proven to have superlinear convergence locally. Because the
SAMDP uses subspace acceleration, which accelerates the search for new directions, and relies on
Rayleigh quotient iteration for nearly converged eigentriplets, it is expected that performance for
square and non-square systems will be equally good, as is also confirmed by experiments.

5 Numerical Results

The algorithm was tested on a number of systems, for a number of different input and output
matrices B and C. Here the results for the Brazilian Interconnected Power System (BIPS) are
shown. The BIPS data corresponds to a year 1999 planning model, having 2,370 buses, 3,401
lines, 123 synchronous machines plus field excitation and speed-governor controls, 46 power system
stabilizers, 4 static var compensators, two TCSCs equipped with oscillation damping controllers,
and one large HVDC link. Each generator and associated controls is the aggregate model of a
whole power plant. The BIPS model is linearized about an operating point having a total load
of 46,000 MW, with the North-Northeast generators exporting 1,000 MW to the South-Southeast
Region, through the planned 500 kV, series compensated North-South intertie.

The state space realization of the BIPS model has 1,664 states and the sparse, unreduced
Jacobian has dimension 13,251. The sparse jacobian structure and the full eigenvalue spectrum,
for this 1,664-state BIPS model, are pictured in [7]. Like the experiments in [6, 7], the practical
implementation operates on the sparse unreduced Jacobian of the system, instead of on the dense
state matrix A.

In the experiments, the convergence tolerance used was € = 107'°. The spaces X and V were
limited to size 10 (kmin = 2, kmar = 10). New orientation vectors u and v (see step 3 in Alg. 2)
were only computed at restarts and after a pole had converged. All experiments were carried out
in Matlab 6.5 [23] on an Intel Centrino Pentium 1.5 GHz with 512 MB RAM.

To demonstrate the performance of SAMDP, it was applied to two square transfer functions
and two non-square transfer functions of BIPS to compute a number of dominant poles (complex
conjugate pairs are counted as one pole). Table 1 shows the statistics of SAMDP for the transfer
functions. The eigenvalue spectrum of the 8 x 8 MIMO modal equivalent, whose sigma plots are



Table 1: Results of SAMDP for the 8 x 8, 28 x 28, 8 x 6, and 28 x 25 transfer functions of the

Brazilian Interconnected Power System (BIPS). Shift s; = 0.14.

Transfer function | #poles | #states | #LU | Time (s)
8x8 160 234 1336 970
8 x8 200 291 1600 1260

28 x 28 120 199 4354 2740
28 x 28 180 286 4694 3610
28 x 28 200 326 4982 3960
8 X6 160 227 1087 870
28 x 25 200 321 5425 4560
* o
s N W .
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Figure 1: Pole spectrum of the 291rst order modal equivalent of the 8 x 8 transfer function.
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Figure 2: Pole spectrum of the 326th order modal equivalent of the 28 x 28 transfer function.
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Figure 3: Sigma plot of modal equivalent and complete model for the 8 x 8 Brazilian system
transfer function (1,664 states in the complete model, 234 in the reduced model, £ = 0%).
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Figure 4: Sigma plot of modal equivalent and complete model for the 8 x 8 Brazilian system
transfer function (1,664 states in the complete model, 291 in the reduced model, £ = 0%).
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Figure 5: Sigma plot of modal equivalent and complete model for the 8 x 8 Brazilian system
transfer function (1,664 states in the complete model, 234 in the reduced model, £ = 15%).
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given in figures 4 and 6, is pictured in Fig. 1. The eigenvalue spectrum of the 28 x 28 MIMO
modal equivalent, whose sigma plot is given in Fig. 9, is pictured in Fig. 2.

SAMDP is able to automatically compute a modal equivalent for the 8 x 8 transfer function
of acceptable size that captures both the oy and opax curves very well, as shown in the sigma
plots in figures 3 to 6. The 8 x 8 transfer function is taken from [7], where a fairly low performance
modal equivalent, having 39 states, was obtained through repeated MDP runs, in a procedure that
required considerable human interaction. The reader is referred to [7] for more practical details on
this 8 x 8 power system transfer function and a complete list of the 39 dominant poles. Figures 5
and 6 shows sigma plots for a non-zero damping ratio £ = 15%. As is motivated in [7], sigma plots
for non-zero damping ratios are helpful to identify dominant poles distant from the imaginary
axis.

The second example is a 28 x 28 transfer function of the BIPS model. Here one is in particular
interested in a good fitting of the o, curve: it will be used for estimating the major electrome-
chanical modes, with applications in the damping analysis and control of power system oscillations.
Matrix B € R™"*?8 is comprised of mechanical power input disturbance vectors for 28 generators,
while C' € R"*28 is comprised of output row vectors for the rotor speed deviations of the same
generators. These 28 generators were selected for being of large size and also located in strategic
parts of the BIPS, so that the MIMO function has good observability /controllability of the major
system electromechanical modes. From figures 7 to 9 it can be observed that the SAMDP is able
to approximate the o ac-curve well. Although not shown in the results, a good approximation of
the omin curve for this problem requires many more states in the modal equivalent.

Figures 10 and 11 show the o,.x plots for the non-square 8 x 6 and 28 x 25 transfer functions,
which were obtained by truncating the last columns of B of the 8 x 8 and 28 x 28 transfer functions
respectively. The results confirm that SAMDP is also applicable to non-square transfer functions,
with comparable performance.

It must be noted that all modal equivalents in this section are automatically computed by
SAMDP, without human interaction, and can be reduced even further by neglecting less dominant
contributions, or by application of the Balanced Model Reduction algorithm [10] to a state space
realization of the modal equivalent, as described in a paper submitted to Trans. on Power Systems
[24].

6 Conclusions

The SAMDP algorithm is a fast and robust method to compute dominant poles and correspond-
ing residue matrices of both square and non-square MIMO transfer functions. The algorithm is
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Figure 7: Sigma plot of modal equivalent and complete model for the 28 x 28 Brazilian system
transfer function (1,664 states in the complete model, 199 in the reduced model, £ = 0%).
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Figure 8: Sigma plot of modal equivalent and complete model for the 28 x 28 Brazilian system
transfer function (1,664 states in the complete model, 296 in the reduced model, £ = 0%).
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Figure 9: Sigma plot of modal equivalent and complete model for the 28 x 28 Brazilian system
transfer function (1,664 states in the complete model, 326 in the reduced model, £ = 0%).
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Figure 10: Sigma plot of modal equivalent and complete model for the 8 x 6 Brazilian system
transfer function (1,664 states in the complete model, 227 in the reduced model, £ = 0%).
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Figure 11: Sigma plot of modal equivalent and complete model for the 28 x 25 Brazilian system
transfer function (1,664 states in the complete model, 321 in the reduced model, £ = 0%).
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a variant of the SADPA [6] and has several advantages compared to existing methods: a natural
selection method is used to converge to both real and complex dominant poles, subspace acceler-
ation accelerates the algorithm and provides new pole estimates, and deflation techniques prevent
the algorithm from (re-)computing already found poles. Finally, SAMDP is completely automatic:
with a single shift, it is able to compute as many dominant poles as wanted, without intermediate
human interaction.

The algorithm as presented in this article should be adequate for computer implementation by
an experienced programmer. The paper results are related to the analysis and control of small
signal stability, but the SAMDP algorithm is general and could be effectively applied to problems
in other engineering fields that allow sparse descriptor system formulations. It can easily be
adjusted to take advantage of specific properties or knowledge of the system.
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