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Abstract. Although adaptive finite element methods (FEMs) are recognized as power-
ful techniques for solving mixed variational problems of fluid mechanics, usually they are
not even proven to converge. Only recently, in [SINUM, 40 (2002), pp.1207-1229] Bänsch,
Morin and Nochetto introduced an adaptive Uzawa FEM for solving the Stokes problem,
and showed its convergence. In their paper, numerical experiments indicate (quasi-) opti-
mal triangulations for some values of the parameters, where, a theoretical explanation of
these results is still open.

In this paper, we present a similar adaptive Uzawa finite element algorithm that uses
a generalization of the optimal adaptive FEM of Stevenson [SINUM, 42 (2005), pp.2188-
2217] as an inner solver. By adding a derefinement step to the resulting adaptive Uzawa
algorithm, in order to optimize the underlying triangulation after each fixed number of
iterations, we show that the overall method converges with optimal rates with linear
computational complexity.

1. Introduction

Nowadays adaptive finite element algorithms are being used to solve efficiently partial
differential equations (PDEs) arising in science and engineering. The general structure of
the loop of an adaptive algorithm is

Solve → Estimate → Refine, Derefine

Only recently, however, in the works of Dörfler ([Dör96]) and Morin, Nochetto, Siebert
([MNS00]), adaptive FEMs for elliptic problems were shown to converge. Later, in ([BDD04]),
Binev, Dahmen and DeVore, and in ([Ste05a]), Stevenson showed that adaptive FEMs of
this type converge with optimal rates and with linear computational complexity.

Typically, problems in fluid mechanics naturally lead to mixed variational problems.
Concerning the adaptive solution of mixed variational problems, the situation is more
complicated, and we are not aware of any proof of optimality of adaptive finite element
algorithms.
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In ([BMN02]), Bänch, Morin and Nochetto introduced an adaptive FEM for the Stokes
problem, and they proved convergence of the method. Since convergence alone does not
imply that the adaptive method is more efficient than its non-adaptive counterpart, an
analysis of the convergence rates of an adaptive approximation is important. The numerical
experiments in ([BMN02]) show (quasi-) optimal triangulations for some values of the
parameters, where, however, a theoretical explanation of these results is still an open
question.

In this paper, we present a detailed design of adaptive FEM algorithm for the Stokes
problem, and analyze its computational complexity. As in [BMN02], we apply a fixed point
iteration to an infinite dimensional Schur complement operator, where to approximate the
inverse of the elliptic operator we use a generalization of the optimal adaptive finite element
method of Stevenson for elliptic equations. By adding a derefinement step to the resulting
adaptive fixed point iteration, in order to optimize the underlying triangulation after each
fixed number of iterations, we show that the resulting method converges with the optimal
rate and that it has optimal computational complexity.

2. Mixed Variational Problems. Well-Posedness and Discretization

Let X and Q be Hilbert spaces, and let the bilinear forms

(2.1) a : X ×X → R, b : X ×Q → R

be continuous. We consider the following mixed variational problem

(2.2)





Given f ∈ X ′, g ∈ Q′

find (u, p) ∈ X ×Q such that

a(u, v) + b(v, p) = f(v) for all v ∈ X.

b(u, q) = g(q) for all q ∈ Q.

By the Riesz representation theorem, the bilinear forms a : X×X → R and b : X×Q →
R induce corresponding operators A ∈ L(X,X ′), B ∈ L(X, Q′) and their adjoints such
that

(2.3)
a(u, v) = (A u)(v) = (A ∗v)(u) for all u, v ∈ X

b(v, q) = (Bv)(q) = (B∗q)(v) for all v ∈ X, q ∈ Q

Now we can rewrite (2.2) as the following operator problem

(2.4)





Given f ∈ X ′, g ∈ Q′

find (u, p) ∈ X ×Q such that

A u + B∗p = f

Bu = g,
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or with

(2.5) L :=

(
A B∗

B 0

)
: X ×Q → X ′ ×Q′,

as 



Given F = (f, g) ∈ X ′ ×Q′

find U = (u, p) ∈ X ×Q such that

L u = F.

Theorem 2.1. [GR86] The mapping (2.5) is an homeomorphism, i.e., there exist constants
cL , CL > 0 such that

(2.6) cL (‖v‖2
X + ‖q‖2

Q)1/2 ≤ ‖L (v, q)‖X′×Q′ ≤ CL (‖v‖2
X + ‖q‖2

Q)1/2

if and only if the following conditions are satisfied
(i) There exists a constant ᾱ > 0 such that

(2.7) a(v, v) ≥ ᾱ‖v‖2
X for all v ∈ Ker B

(ii) there exists a constant β̄ > 0 such that

(2.8) inf
q∈Q

sup
v∈X

b(v, q)

‖v‖X‖q‖Q

≥ β̄

3. Stokes Problem

The motion of an incompressible viscous fluid enclosed in a domain Ω ⊂ R2 is described
by the Stokes equations

−
n∑

j=1

∂

∂xj

σij(u) = f̃i in Ω(3.1)

σij(u) = −p̃δij + 2µeij(u) in Ω(3.2)

eij(u) =
1

2
(
∂ui

∂xj

+
∂uj

∂xi

) in Ω(3.3)

divu = 0 in Ω(3.4)

u = 0 on ∂Ω(3.5)

where u is a velocity field, p̃ is the pressure, µ is the viscosity of the fluid, f defines the
body forces per unit mass, and {σij}, {eij} are the stress and deformation rate tensors,
respectively. Here, for simplicity of the presentation we assumed that Ω ⊂ R2. However,
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we expect that the results of this paper can be generalized to the 3-D case. Elimination of
{σij} leads to the equivalent formulation

(3.6)





−µ∆u +∇p̃ = f̃ in Ω

divu = 0 in Ω

u = 0 on ∂Ω

Finally, introducing the scaled variables p = µ−1p̃, f = µ−1f̃ , we obtain the parameter-
independent Stokes problem

(3.7)





−∆u +∇p = f in Ω

divu = 0 in Ω

u = 0 on ∂Ω

Next we formulate the variational form of the Stokes problem, which is the following
mixed variational problem

(3.8)





With X = [H1
0 (Ω)]2, Q = L2,0(Ω) = {w ∈ L2(Ω) :

∫

Ω

w = 0}, and

for given f ∈ X′,

find (u, p) ∈ X×Q such that

a(u, v) + b(v, p) = f(v) for all v ∈ X.

b(u, q) = 0 for all q ∈ Q.

where

(3.9)

a(u,v) =

∫

Ω

∇u : ∇v =

∫

Ω

2∑
i=1

∇ui∇vi

b(v, q) = −
∫

Ω

qdivv

We will equip the space of vector-fields X with norm

(3.10) ‖v‖X := a(v,v)1/2 for all v ∈ X,

which is, in fact, the [H1(Ω)]2-seminorm. By Poincaré’s inequality, on [H1
0 (Ω)]2 it is a norm

that is equivalent to the standard [H1(Ω)]2-norm. We equip X′ with dual norm

(3.11) ‖f‖X′ := sup
06=v∈X

|f(v)|
‖v‖X .

Equipped with these norms, A : X → X′ is an isomorphism. We equip the space Q with
the L2(Ω) norm, i.e.,

(3.12) ‖q‖Q := ‖q‖L2(Ω) for all q ∈ Q.
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Again, as we have done in (2.3), we will introduce the operators induced by the bilinear
forms of the Stokes problem, where now B = −div and B∗ = ∇, and write the problem
as the equivalent operator problem (2.4). To convince ourselves that the mapping L :
X×Q → X′×Q′ is an homeomorphism, so that the Stokes problem is well-posed, we will
check the conditions of Theorem 2.1. The ellipticity (2.7) is valid with α = 1.

To verify the inf-sup condition (2.8) we recall the following theorem from ([GR86]).

Theorem 3.1. Let Ω be a bounded connected domain with Lipschitz continuous boundary.
Then there exists a c, which depends on Ω, such that

(3.13) ‖p‖L2(Ω) ≤ c‖∇p‖[H−1(Ω)]2 for all p ∈ L2,0(Ω)

Using Theorem 3.1, the inf-sup condition (2.8) easily follows. Indeed, given q ∈ Q, we
can find v ∈ X, such that ‖v‖X = 1 and

(3.14)
1

c
‖q‖Q ≤ ‖∇q‖X′ =< v,∇q >X×X′= (B∗q)(v) = (Bv)(q) = b(v, q)

Given some pair (Xi, Qi) ⊂ X×Q of FEM spaces, the discrete problem reads as follows

(3.15)





Given f ∈ X′

find (ui, pi) ∈ Xi ×Qi such that

a(ui,v) + b(v, pi) = f(v) for all v ∈ Xi.

b(ui, q) = 0 for all q ∈ Qi.

Theorem 3.2. [BF91] Let (u, p) ∈ X×Q be the solution of Stokes problem, and assume
that for some constant β̄ > 0 the pair (Xi, Qi) satisfies

(3.16) inf
qi∈Qi

sup
vi∈Xi

b(vi, qi)

‖vi‖X‖qi‖Q

≥ β̄.

Then the following error estimate holds for the discrete solution (ui, pi) ∈ Xi ×Qi

(3.17) ‖u− ui‖X + ‖p− qi‖Q ≤ C( inf
vi∈Xi

‖u− vi‖X + inf
qi∈Qi

‖p− qi‖Q),

where C > 0 is a constant only dependent on the bilinear forms a and b and the constant
β̄.

Although the above error estimate indicates the importance of the discrete inf-sup con-
dition (3.16), in this paper we develop an adaptive algorithm where there is no need to
pose such a requirement on the approximation spaces.

4. Nonconforming triangulations and adaptive hierarchical
tree-structures

Let us consider finite element approximations with respect to partitions into triangles
(triangulations). In this section, we describe the type of triangulations that we shall use
throughout the paper. Let T be a triangulation of Ω. If for any pair of distinct triangles
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Figure 1. Non-hanging and hanging vertices.

Figure 2. A triangle and its red-refinement.

K1, K2 ∈ T with K1∩K2 6= ∅, their intersection is a common lower dimensional face of both
K1 and K2, then T is called conforming and otherwise we shall call it a nonconforming
triangulation. All vertices of triangles K ∈ T will be called vertices of the triangulation
T . A vertex of the triangulation T is called a non-hanging vertex if it is a vertex for all
K ∈ T that contain it, otherwise it is called a hanging vertex (see Fig. 1). We shall say
that an edge ` of a triangle K ∈ T is an edge of the triangulation T if it doesn’t contain
a hanging vertex in its interior. The set of all edges of T will be denoted by ĒT , and the
set of all non-hanging vertices of T by V̄T . The set of all interior edges of T and the set
of all interior non-hanging vertices of T will be denoted by ET and VT respectively. If two
triangles K1, K2 ∈ T share some edge ` ∈ ET , they will be called edge neighbors, and if
they share a vertex we will call them vertex neighbors.

A subdivision of a triangle K into 4 subtriangles by connecting the midpoints of the
edges is called a red-refinement of K (see Fig. 2). In this paper we restrict ourselves to
triangulations that can be created by (recursive), generally non-uniform red-refinements
starting from some fixed initial conforming triangulation T0. Generally these triangulations
are nonconforming. For reasons that will become clear later, we will have to limit the
‘amount of nonconformity’ by restricting ourselves to admissible triangulations, a concept
that is defined as follows:

Definition 4.1. A triangulation T is called an admissible triangulation if for every edge
of a K ∈ T that contains a hanging node in its interior, the endpoints of this edge are
nonhanging vertices.

Figure 3 depicts an example of an admissible triangulation. Apparently local refinement
produces triangulations which are generally not admissible. In the following we discuss
how to repair this. To any triangle K from the initial triangulation T0 we assign the
generation gen(K) = 0. Then the generation gen(K) for K ∈ T is defined as the number
of subdivision steps needed to produce K starting from the initial triangulation T0. A
triangulation is called uniform when all triangles have the same generation. A vertex of
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Figure 3. An example of admissible triangulation.

Figure 4. Regular and non-regular vertices.

the triangulation will be called a regular vertex if all triangles that contain this vertex have
the same generation (see Fig. 4). Obviously, a regular vertex is non-hanging.

Corresponding to the triangulation T , we build also a tree T (T ) that contains as nodes
all the triangles which were created to construct T from T0. The roots of this tree are
the triangles of the initial triangulation T0. When a triangle K is subdivided, four new
triangles appear which are called children of K, and K is called their parent. Similarly, we
introduce also grandparent/grandchildren relations. In case a triangle K ∈ T (T ) has no
children in the tree T (T ), it is called a leaf of this tree. The set of all leaves of the given
tree T (T ) will be denoted by L(T (T )). Apparently, the set of leaves L(T (T )) forms the
final triangulation T . We will call T̃ a subtree of T , denoted as T̃ ⊂ T , if it contains all
roots of T and if for any K ∈ T̃ all its siblings and ancestors are also in T̃ .

Proposition 4.2. [Ste05a] For any triangulation T created by red-refinements starting
from T0, there exists a unique sequence of triangulations T0, T1 . . . , Tn with maxK∈T i gen(K) =
i, Tn = T and where Ti+1 is created from Ti by refining some K ∈ Ti with gen(K) = i. Let
T−1 = ∅ and VT−1 = ∅. The following properties are valid:
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Figure 5. An example of a non-admissible triangulation (left) and its small-
est admissible refinement (right).

• ∑n
i=0 ]Ti ≤ 4

3
]T ,

• VTi−1
⊂ VTi

and so VT = ∪n
i=0VTi

\ VTi−1
with empty mutual intersections,

• a v ∈ VTi
\ VTi−1

is not a vertex of Ti−1, and so it is a regular vertex of Ti

As we noted before, in case we refine some admissible triangulation only locally, the
admissibility of the triangulation might be destroyed. If a given triangulation is not ad-
missible (see Fig. 5), it can be completed to an admissible triangulation using the following
algorithm

Algorithm 4.3. Make Admissible

(I) T a
0 := T0

(II) Let i := 0
(III) Define T a

i+1 as the union of Ti+1 and, when i ≤ n − 2, the col-
lection of children of those K ∈ T a

i that have a vertex neighbor
in Ti with grandchildren in Ti+2

(IV) if i ≤ n− 1 then i + + and go to step (III)

Proposition 4.4. [Ste05a] The triangulation T a constructed by Algorithm (8.9) is an
admissible refinement of T . Moreover,

(4.1) ]T a . ]T
In finite element analysis we need a so called ‘shape regularity’ requirement to avoid

very small angles in the triangulation since typical FEM estimates depend on the minimal
angle of the triangulation and deteriorate when it is small.

Definition 4.5. Let (Ti)i∈N be some family of triangulations. If, for each K ∈ Ti, the ratio
of the radii of the smallest circumscribed and the largest inscribed ball of K is bounded
uniformly in K ∈ Ti and i ∈ N, then the family of triangulations (Ti)i∈N is called shape-
regular.

Obviously, the family of triangulations created by the red-refinements is shape-regular,
depending only on an initial triangulation.

5. Methods of Optimal Complexity for Solving the Stokes Problem

For (Ti)i being the family of all triangulations that can be constructed from a fixed initial
triangulation T0 of Ω by red-refinements, let (XTi

, QTi
,YTi

)i be the family of finite element
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approximation spaces defined by

(5.1) XTi
:= X ∩ [C(Ω)]2 ∩

∏
K∈Ti

[P1(K)]2,

(5.2) QTi
:= Q ∩

∏
K∈Ti

P0(K),

(5.3) YTi
:=

∏
K∈Ti

[P0(K)]2.

As is known, for a shape regular family of triangulations, we have the following inverse or
Bernstein estimate: With hi := minK∈Ti

diam(K) and s ≤ t < 1 + 1
p
,

(5.4) ‖vi‖[W t
p(Ω)]2 . hs−t

i ‖vi‖[W s
p (Ω)]2 for all vi ∈ XTi

.

Defining for any V ⊂ X and w ∈ X

(5.5) e(w,V)X := inf
w̃∈V

‖w − w̃‖X,

the error of the best approximation from the best space XTi
with underlying triangulation

consisting of n− ]T0 triangles is given by

(5.6) σX
n (w) = inf

Ti∈(Tj)j , ]Ti−]T0≤n
e(w,XTi

)X

We now define classes of vector fields for which the errors of the best approximations from
the best spaces decay with certain rates.

Definition 5.1. For any s > 0, let As(X, (XTi
)i) be the class of vector fields w ∈ X such

that for some M > 0

(5.7) σX
n (w) ≤ Mn−s n = 1, 2, . . . .

We equip As(X) with a semi-norm defined as the smallest M for which (5.7) holds:

(5.8) |w|As(X) := sup
n≥1

nsσX
n (w),

and with norm

(5.9) ‖w‖As(X) := |w|As(X) + ‖w‖X.

In a similar way we define also classesAs(Q) = As(Q, (QTi
)i) andAs(X′) = As(X′, (YTi

)i)
using approximation spaces (QTi

)i and (YTi
)i respectively. The goal of adaptive approx-

imation is to realize the rates of the best approximation from the best spaces. Below we
sketch why we expect better results with adaptive approximation than with non-adaptive
approximation based on uniform refinements.

Instead of red-refinements one could also use so-called newest vertex bisections ([BDD04]).
Here, a triangle is not refined into 4 but into 2 subtriangles by connecting its ‘newest ver-
tex’ to the midpoint of the opposite edge. This midpoint is then the newest vertex of both
subtriangles. In the initial triangulation, one of the vertices of each triangle is labeled as
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the newest vertex in some proper way. Let (T́i)i be the family of all triangulations created
by newest vertex bisections from an initial triangulation T0 and let

(5.10) XT́i
:= H1(Ω) ∩ C(Ω) ∩

∏

K∈T́i

P1(K).

For simplicity, to illustrate the ideas, here we switched from vector-fields to the case of
scalar functions and we dropped also the Dirichlet boundary conditions.

Recently, in [BDD04] it was shown that the approximation classes As(H1(Ω), (XT́i
)i) are

(nearly) characterised by membership of certain Besov spaces:

Theorem 5.2. (i) If u ∈ B2s+1
τ (Lτ (Ω)) with 0 ≤ s ≤ 1/2 and 1/τ < s + 1/2 then

(5.11) inf
T́i∈(T́i)i,]T́i≤n

inf
wT́i

∈XT́i

‖u− wT́i
‖H1(Ω) . n−s‖u‖B2s+1

τ (Lτ (Ω))

(ii) if for u ∈ H1(Ω)

(5.12) inf
T́i∈(T́i)i,]T́i≤n

inf
wT́i

∈XT́i

‖u− wT́i
‖H1(Ω) . n−s

then u ∈ B2s+1
τ (Lτ (Ω)), where 1/τ = s + 1/2.

As is well-known, in two space dimensions and with piecewise linear approximation
a rate s ≤ 1/2 is attained by approximations on uniform triangulations if and only if
the approximated function belongs to H2s+1(Ω). A rate s > 1/2 only occurs when the
approximated function is exceptionally close to a finite element function, and such a rate
cannot be enforced by imposing whatever smoothness condition. Above result shows that
a rate s ≤ 1/2 is achieved by ‘the best approximation from the best spaces’ for any
function from the much larger spaces B2s+1

τ (Lτ (Ω)) for any τ > (s + 1/2)−1. Although
these results were stated for the triangulations created by newest vertex bisections, we
expect the same results to be valid for the family of triangulations constructed by red-
refinements. The difference between Sobolev spaces and Besov spaces is well illustrated
by the DeVore diagram (Fig. 6). In this diagram, the point (1/τ, r) represents the Besov
space Br

τ (Lτ (Ω)). Since Br
2(L2(Ω)) = Hr(Ω), the Sobolev space Hr(Ω) corresponds to the

point (1/2, r). From this diagram we can observe that the larger s is, the larger is the
space B2s+1

τ (Lτ (Ω)) with τ = (s + 1/2)−1 compared to H2s+1(Ω).
For the Stokes problem on an L-shaped domain, even with a smooth right-hand side,

one generally has

(5.13) u ∈ [H1+r(Ω)]2, p ∈ Hr(Ω), only if r < 0.54448373678246.

In contrast, in [Dah99] it was shown that the solutions of the Stokes problem have
arbitrarily high Besov regularity independent of the shape of the domain, depending only
on the smoothnes of the right-hand side, revealing the potential of adaptive methods.

To solve the Stokes problem numerically, we need to be able to approximate the right-
hand side within any given tolerance. We assume the availability of the following routine:
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Algorithm 5.3. RHS[T , f , ε] → [T̃ , fT̃ ]
/* Input of the routine:

• triangulation T
• f ∈ X′

• ε > 0

Output: admissible triangulation T̃ ⊃ T and an fT̃ ∈ YT̃ such that ‖f − fT̃ ‖X′ ≤ ε */

As in [Ste05a], we will call the pair (f ,RHS) to be s-optimal if there exists an absolute
constant cf > 0 such that for any ε > 0 and triangulation T , the call of the algorithm
RHS performs such that both

(5.14) ]T̃ and the number of flops required by the call are . ]T + c
1/s
f ε−1/s

Apparently, for a given s, such a pair can only exist if f ∈ A s(X′). A realisation of the
routine RHS depends on the right-hand side at our hands. As it was shown in [Ste05a],
for f ∈ [L2(Ω)]2, RHS can be based on uniform refinements.

We will say that an adaptive method is optimal if it produces a sequence of approxima-
tions with respect to triangulations with cardinalities that are at most a constant multiple
larger then the optimal ones. More precisely, we define

Definition 5.4. Suppose that the solution of the Stokes problem is such that (u, p) ∈
(As(X),As(Q)) and there exists a routine RHS such that the pair (f ,RHS) is s-optimal.
Then we shall say that an adaptive method is optimal if for any ε > 0 it produces a

triangulation Ti from the family (Tj)j with ]Ti . ε−1/s(|u|1/s
As(X) + ‖p‖1/s

As(Q) + c
1/s
f ) and

an approximation (wTi
, qTi

) ∈ (XTi
, QTi

) with ‖u − wTi
‖X + ‖p − qTi

‖Q ≤ ε taking only

. ε−1/s(|u|1/s
As(X) + ‖p‖1/s

As(Q) + c
1/s
f ) flops.

6. Derefinement/optimization of finite element approximation

In this section we deal with the task how to optimize a finite element approximation,
i.e., how to derefine those elements in the current triangulation that hardly contribute to
the quality of the approximation, but, because of their number, may spoil the complexity
of the algorithm.

6.1. Derefinement of pressure approximation. We first consider the approximations
for the pressure. Suppose we are given pT ∈ QT . We consider the tree T (T ) that cor-
responds to the triangulation T and for any K ∈ T (T ) we define an error functional as

(6.1) e(K) := inf
p̃K∈P0(K)

‖p̃K − (pT )|K‖2
L2(K).

Then, for any subtree T̃ ⊂ T (T ) we define

(6.2) E(T̃ ) :=
∑

K∈L(T̃ )

e(K) = inf
pT (T̃ )∈QT (T̃ )

‖pT − pT (T̃ )‖2
L2(Ω)
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(1/2,1) ∼ H1(Ω)

(1/τ, r) ∼ Br
τ (Lτ ), 1/τ = r/2u(1/2,r)

Figure 6. DeVore diagram. On the vertical line are the spaces Hr(Ω), and
on the skew line are the spaces Br

τ (Lτ (Ω)) with r = 2s+1 and τ = (1/2+s)−1,
i.e., r = 2/τ

which is just the error in the best approximation for pT from QT (T̃ ). When implemented

in a leaves-to-roots recursive way, all e(K) for K ∈ T (T ) can be computed in O(]T (T )) =
O(]T ) operations. Further we define a modified error functional by ẽ(K) := e(K) for all
root nodes, and whenever ẽ(K) has been defined, for each child Ki of K by

(6.3) ẽ(Ki) :=

∑4
j=1 e(Kj)

e(K) + ẽ(K)
ẽ(K).

Clearly, knowing e(K) for all K ∈ T (T ), the computation of ẽ(K) for each K ∈ T (T )
requires not more than O(1) operations. Now in order to find a (quasi-) optimal piecewise
constant finite element approximation pT̃ with respect to T̃ ⊂ T we use the following
derefinement algorithm.
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Algorithm 6.1. DEREFINE-Q [T ,pT ,ε]→ [T̃ , pT̃ ]

T̃ := T (T0)
while E(T̃ ) > ε2 do

compute ρ = maxK∈L(T̃ ) ẽ(K)

for all K ∈ L(T̃ ) with ẽ(K) = ρ add all children of K to T̃
endwhile

T̃ := T (T̃ )

Actually, in order to avoid a log-factor in the operation count due to sorting of the
ẽ(K) needed to find maxK∈L(T̃ ) ẽ(K), we shall use an approximate sorting based on binary
binning. With this small modification the following can be proven.

Theorem 6.2. The algorithm DEREFINE-Q [T ,pT ,ε]→ [T̃ , pT̃ ] produces a triangulation

T̃ , and an approximation pT̃ such that ‖pT − pT̃ ‖Q ≤ ε. There exist absolute constants

t1, T2 > 0, necessarily with t1 ≤ 1 ≤ T2, such that for any triangulation T̂ for which there
exists a pT̂ ∈ QT̂ with ‖pT − pT̂ ‖Q ≤

√
t1ε we have ]T̃ ≤ T2]T̂ .

Moreover, the call of the algorithm requires . ]T + max{0, log(ε−1‖pT ‖Q)} flops.

Proof. See [BD04] with a small modification because of binary binning from Proposition
5.3 in [Ste05a]. ♦

The following corollary motivates the use of the described above derefinement routine.
It states that by a call of this derefinement routine any approximation for the pressure
can be turned into a (quasi-) optimal one, at the expense of making the error at most a
constant factor larger.

Corollary 6.3. Let ρ > t
−1/2
1 . Then, for any ε > 0, p ∈ L2(Ω), a triangulation T , pT ∈ QT

with ‖p − pT ‖Q ≤ ε, for [T̃ , pT̃ ]:=DEREFINE-Q[T ,pT ,ρε] we have that ‖p − pT̃‖Q ≤
(1 + ρ)ε and ]T̃ ≤ T2]T̂ for any triangulation T̂ with infpT̂ ∈QT̂ ‖p− pT̂ ‖Q ≤ (

√
t1ρ− 1)ε.

Proof. With [T̃ , pT̃ ]:= DEREFINE-Q[T ,pT ,ρε], the properties of DEREFINE-Q
ensure that ‖pT̃ − pT ‖Q ≤ ρε and so

(6.4) ‖p− pT̃ ‖Q ≤ ‖p− pT ‖Q + ‖pT − pT̃ ‖Q ≤ ε + ρε ≤ (1 + ρ)ε.

Further, let T̂ be a triangulation with infpT̂ ∈QT̂ ‖p− pT̂ ‖Q ≤ (
√

t1ρ− 1)ε, then

(6.5) inf
pT̂ ∈QT̂

‖pT̂ − pT ‖Q ≤ inf
pT̂ ∈QT̂

‖pT̂ − p‖Q + ‖p− pT ‖Q ≤ (
√

t1ρ− 1)ε + ε ≤ √
t1ρε,

and so, from Corollary 6.2 we conclude that ]T̃ ≤ T2]T̂ . ♦
6.2. Derefinement of velocity approximation. Let V∗ be the set of all vertices of
all triangles that can be created by recursive uniform red-refinements of T0. V∗ can be
organized as a tree as follows. The set of the interior vertices VT0 are the roots. Assuming
that the vertices after k uniform refinement steps have been organized in a tree, each
of the newly created vertices by the next uniform refinement step is assigned to be a
child of an already existing vertex in the following way. The newly created vertex is the
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midpoint of an edge between two triangles. One of the 4 vertices of these triangles, not
being on the boundary of the domain, is assigned to be the parent of the newly created
vertex. It is not difficult to give a deterministic rule for the assignments. In [Ste05a], a
wavelet basis Ψ̃ = {ψv : v ∈ V∗} was constructed for H1

0 (Ω). Using this wavelet basis we
define the wavelet basis for X as Ψ = {ψvei : v ∈ V∗, i ∈ {1, 2}}. Each u ∈ X has a
unique representation u =

∑
v∈V∗

∑2
i=1 wv,iψvei with respect to the wavelet basis. With

‖u‖Ψ := (
∑

v∈V∗
∑2

i=1 w2
v,i)

1/2, we define λΨ, ΛΨ > 0 to be largest and smallest constants,
respectively, such that

(6.6) λΨ‖u‖2
Ψ ≤ ‖u‖2

X ≤ ΛΨ‖u‖2
Ψ (u ∈ X)

The condition number of the wavelet basis Ψ is then given by κΨ := ΛΨ

λΨ
. Further, given an

admissable triangulation T , a wavelet basis for XT is given by ΨT = {ψvei : v ∈ VT , i ∈
{1, 2}}. At this point our restriction to admissible triangulations becomes essential, since
the third property of Proposition 4.2 guarantees that for any ψvei ∈ ΨT it holds that
ψvei ∈ XT so that this collection is indeed a basis for XT .

In [Ste05a] a coarsening routine COARSE was developed to derefine a scalar continuous
piecewise linear approximation. This routine is based on the transformation to the wavelet
basis Ψ̃ and a call of a routine similar to DEREFINE-Q on the vertex tree corresponding
to the current admissible triangulation. Having the wavelet basis Ψ in our hands we
can easily generalize the coarsening routine COARSE from [Ste05a] to an algorithm for
derefinement of the vector-field approximation uT ∈ XT . Since this derefinement routine
works precisely as COARSE with the wavelet basis Ψ instead of Ψ̃ and the error functional
e(v) :=

∑
v̄ a descendent of v in the vertex tree |wv̄,1|2 + |wv̄,2|2, we present only the prototype and

properties of this algorithm.

Algorithm 6.4. DEREFINE-X[T ,uT , ε] → [T̃ ,uT̃ ]
/* Input:

• triangulation T
• uT ∈ XT
• ε > 0

Output: A triangulation T̃ , and an approximation uT̃ ∈ XT̃ such that ‖uT −uT̃ ‖Ψ ≤ ε and

such that for any triangulation T̂ for which there exists a uT̂ ∈ XT̂ with ‖uT−uT̂ ‖Ψ ≤
√

t1ε

we have ]T̃ ≤ CC]T̂ , with CC > 0 being some absolute constant.
Moreover, the call of the algorithm requires . ]T + max{0, log(ε−1‖uT ‖Ψ)} flops. */

Similar to Corollary 6.3 we have

Corollary 6.5. Let γ > t
−1/2
1 with t1 from the Theorem 6.2. Then, for any ε > 0,

u ∈ X, a triangulation T , uT ∈ XT with ‖u − uT ‖Ψ ≤ ε, for [T̃ ,uT̃ ]:=DEREFINE-

X[T ,uT ,γε] we have that ‖u− uT̃ ‖Ψ ≤ (1 + γ)ε and ]T̃ ≤ CC]T̂ for any triangulation T̂
with infuT̂ ∈XT̂ ‖u− uT̂ ‖Ψ ≤ (

√
t1γ − 1)ε

Finally in this section, we define a routine SCR[T 1, T 2] → [T ], that constructs the
smallest common refinement of the input triangulations T 1 and T 2.
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7. Adaptive Fixed Point Algorithms for Stokes Problem: Analysis and
Convergence

For convenience let us recall again the Stokes problem in operator notations.

(7.1)





Given f ∈ X′

find (u, p) ∈ X×Q such that

A u + B∗p = f

Bu = 0

Since A is an isomorphism between X and X′ we can solve the first equation in (7.1) for
u

(7.2) u = A −1(f −B∗p)

Substituting this into the second equation in (7.1) gives

(7.3) BA −1B∗p = BA −1f

The operator S := BA −1B∗ : Q → Q, is the Schur complement operator and it is
known to be symmetric positive definite with ‖S ‖Q→Q ≤ 1 [JH02]. The problem (7.3) can
be reformulated as a fixed point problem for the operator

(7.4) Nα : Q → Q, q → q − α(S q −BA −1f)

(7.5)

{
Find p ∈ Q such that

Nαp = p

From

(7.6)
‖Nαq1 −Nαq2‖Q = ‖(I − αS )(q1 − q2)‖Q

≤ ‖I − αS ‖Q→Q‖q1 − q2‖Q for all q1, q2 ∈ Q

we see that Nα defines a contractive mapping if ‖I−αS ‖Q→Q < 1. Since ‖I−αS ‖Q→Q < 1
if 0 < α < 2/‖S ‖Q→Q, the iterative process

(7.7) pj = (I − αS )pj−1 + αF , F := BA −1f

converges to the solution of (7.3), due to Banach’s theorem for contractive mappings. This
iteration can be also viewed as a generalization of the damped Richardson method to the
operator equation (7.3). The optimal choice of the parameter α is

(7.8) αopt =
2

‖S ‖Q→Q + ‖S −1‖−1
Q→Q

, giving ‖I − αoptS ‖Q→Q =
κ(S )− 1

κ(S ) + 1
,

with κ(S ) := ‖S ‖Q→Q‖S −1‖Q→Q. Rewritten in the following form, this iterative method
is known as the Uzawa algorithm.
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(7.9)
uj = A −1(f −B∗pj−1)

pj = pj−1 + αBuj

Of course (7.9) is an idealized iteration, and we will analyse an inexact version of it
where the application of the operator A −1 is approximated by a convergent adaptive finite
element algorithm that we will develop in Section 10. At the moment it is enough to
present a prototype of this routine

Algorithm 7.1. INNERELLIPTIC[T̄ , f , pT̄ ,uT̄ , ε0, ε] → [T ,uT ]
/* Input of the routine:

• input triangulation T̄
• f ∈ X′

• pT̄ ∈ QT̄ , uT̄ ∈ XT̄
• ε0, such that with

(7.10) upT̄ := A −1(f −B∗pT̄ ),

‖upT̄ − uT̄ ‖X ≤ ε0.
• ε > 0

Output: a triangulation T ⊃ T̄ , uT ∈ XT , with ‖upT̄ − uT ‖X ≤ ε. Moreover, if for
some s > 0 the pair (f ,RHS) is s-optimal, and the input satisfies ε0 . ε, then both the
cardinality of the output triangulation T and the number of flops required by the routine

are . ]T̄ + ε−1/sc
1/s
f with cf as in the definition of s-optimality.

*/

Using INNERELLIPTIC we are ready to define our adaptive routine AFEMSTOKES-
SOLVER (Algorithm 7.3).

Theorem 7.2. The algorithm AFEMSTOKESSOLVER[f , ε] → [T ,uT , pT ] terminates
with

(7.11) ‖p− pT ‖Q ≤ ε, ‖u− uT ‖X ≤ λ
−1/2
Ψ (η−1 + 1)ε

Moreover, assuming ε0 . ‖p‖Q, if u ∈ As(X), p ∈ As(Q) and the pair (f ,RHS) is s
-optimal, then both

(7.12) the number of flops and ]T . ε−1/s(‖u‖1/s
As(X) + ‖p‖1/s

As(Q) + c
1/s
f ),

i.e., the algorithm has optimal computational complexity.
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Algorithm 7.3. Adaptive Stokes Solver
AFEMSTOKESSOLVER[f , ε] → [T ,uT , pT ]
/*
Input parameters of the algorithm are: f ∈ X′, ε > 0
Output: a triangulation T , uT ∈ XT , pT ∈ QT such that
‖u− uT ‖X + ‖p− pT ‖Q ≤ ε
*/

Select an initial triangulation T 0
0 , approximations uT 0

0
∈ XT0 ,

pT 0
0
∈ QT0 , and constants 0 < γ < 1, δ < 1/2, ρ > t

−1/2
1 , with t1

from Theorem 6.2, η ∈ (max{γ, β}, 1), where β := ‖I − αS ‖Q→Q,
and α such that δ(ρ + 1) < 1, 0 < α < 2/‖S ‖Q→Q, and ε0 such that
‖u− uT 0

0
‖X + ‖p− pT 0

0
‖Q ≤ ε0.

M := min{j ∈ N : ηj(αj + 1) ≤ δ}
N := min{i ∈ N : δ((ρ + 1)δ)i−1ε0 ≤ ε}
for i = 0 . . . N do

if i 6= 0 then

[T p, pT p ] :=DEREFINE-Q[T M
i−1, pT M

i−1
, ρδεi−1]

[T u,uT u ] :=DEREFINE-X[T M
i−1,uT M

i−1
, ρλ

−1/2
Ψ ( 1

η
+ 1)δεi−1]

[T 0
i ] :=SCR[T p, T u], uT 0

i
:= uT u , pT 0

i
:= pT p

εi := (ρ + 1)δεi−1

endif

ε̄0
0 := (κ

1/2
Ψ (η−1 + 1) + 1)εi

for j = 1, . . . , M do

[T j
i ,uT j

i
]:= INNERELLIPTIC[T j−1

i , f , pT j−1
i

,uT j−1
i

, ε̄j−1
0 , γjεi]

pT j
i

:= pT j−1
i

+ αBuT j
i

ε̄j
0 := (ηj(αj + 1) + ηj−1(α(j − 1) + 1) + γj)εi

endfor

endfor

T := T M
N , pT := pT M

N
, uT := uT M

N

Proof. By construction, we have ‖p − pT 0
0
‖Q ≤ ε0. Considering the inner loop of the

algorithm, it is easy to see that

(7.13) p− pT j
i

= (I − αS )(p− pT j−1
i

) + αB(uT j
i
− u

pT j−1
i )

where u
pT j−1

i corresponds to pT j−1
i

as in (7.10). Since, see [JH02],

(7.14) ‖Bu‖Q ≤ ‖u‖X,
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with η := max{β, γ} we have

(7.15)

‖p− pT j
i
‖Q ≤ ‖I − αS ‖Q→Q‖p− pT j−1

i
‖Q + α‖uT j

i
− u

pT j−1
i ‖X

≤ βj‖p− pT 0
i
‖Q + αεi

j−1∑

l=0

βlγj−l

≤ ηj{‖p− pT 0
i
‖Q + αεij}

≤ ηj(αj + 1)εi

where we used as induction hypothesis that ‖p − pT 0
i
‖Q ≤ εi. Now with M as in the

algorithm, we conclude that

(7.16) ‖p− pT M
i
‖Q ≤ δεi.

A call of the DEREFINE-Q in the next iteration of the outer loop results in

(7.17) ‖p− pT 0
i+1
‖Q ≤ (ρ + 1)δεi = εi+1.

We can show now that a similar error reduction also holds for the velocities. Indeed,

(7.18)

‖u− u
pT j−1

i ‖X = sup
v∈X

(A −1B∗(pT j−1
i

− p),v)X

‖v‖X

= sup
v∈X

(pT j−1
i

− p, Bv)

‖v‖X
≤ ‖pT j−1

i
− p‖Q.

Further,

(7.19)

‖u− uT j
i
‖X ≤ ‖u− u

pT j−1
i ‖X + ‖upT j−1

i − uT j
i
‖X

≤ ‖p− pT j−1
i
‖Q + γjεi,

≤ (ηj−1(α(j − 1) + 1) + γj)εi.

In particular, using definition of M and η, we have

(7.20) ‖u− uT M
i
‖X ≤ (η−1 + 1)δεi.

So before the call of the DEREFINE-X in the next iteration of the outer loop it holds

(7.21) ‖u− uT M
i
‖Ψ ≤ λ

−1/2
Ψ ‖u− uT M

i
‖X ≤ λ

−1/2
Ψ (η−1 + 1)δεi.

Then the call of this routine gives

(7.22)
‖u− uT 0

i+1
‖X ≤ Λ

1/2
Ψ ‖u− uT 0

i+1
‖Ψ

≤ κ
1/2
Ψ (η−1 + 1)δεi(1 + ρ) = κ

1/2
Ψ (η−1 + 1)εi+1
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By (7.16),(7.22) and the definition of N , the proof of the first part of the theorem is
completed.

Let us analyse the computational complexity of the algorithm. Since we start with the
triangulation T 0

0 , where ]T 0
0 . 1 and by assumption ε0 . ‖p‖Q ≤ ‖p‖As(Q) we have

(7.23) ]T 0
0 . ε

−1/s
0 (‖p‖1/s

As(Q) + ‖u‖1/s
As(X)).

For i > 0, before the call of DEREFINE-Q it holds ‖p− pT M
i−1
‖Q ≤ δεi−1. After the call

of this routine, its properties guarantee that for any triangulation Ť such that

(7.24) inf
pŤ ∈QŤ

‖p− pŤ ‖Q ≤ (
√

t1ρ− 1)δεi−1

we have

(7.25) ]T p . T2]Ť .

Since p ∈ As(Q), we conclude that

(7.26) ]T p ≤ T2(]T0 + ((
√

t1ρ− 1)δεi−1)
−1/s‖p‖1/s

As(Q) . ε
−1/s
i ‖p‖1/s

As(Q)

Similar, since u ∈ As(X), after the call of DEREFINE-X we have

(7.27) ]T u . ε
−1/s
i ‖u‖1/s

As(X)

Apparently, the smallest common refinement T 0
i constructed by the routine SCR satisfies

(7.28) ]T 0
i . ε

−1/s
i (‖p‖1/s

As(Q) + ‖u‖1/s
As(X)).

In the internal for-loop, before the call of INNERELLIPTIC[T j−1
i , f , pT j−1

i
,uT j−1

i
, ε̄j−1

0 , γjεi],

using (7.18) and (7.19) or, when j = 1, (7.22), and that 1 ≤ j ≤ M . 1, we obtain

(7.29) ‖upT j−1
i − uT j−1

i
‖X ≤ ‖upT j−1

i − u‖X + ‖u− uT j−1
i
‖X ≤ ε̄j−1

0 . γjεi.

In view of the properties of INNERELLIPTIC, after the call of this routine it holds

(7.30) ]T j
i . (ηjεi)

−1/sc
1/s
f + ]T j−1

i

Since
∑M

j=1(η
jεi)

−1/s . (ηMεi)
−1/s we conclude

(7.31)
]T M

i . (ηMεi)
−1/sc

1/s
f + ]T 0

i

. ε
−1/s
i (‖u‖1/s

As(X) + ‖p‖1/s
As(Q) + c

1/s
f )

where in the last inequality we have used (7.28) or, when i = 0, (7.23).
For i > 0 the call of DEREFINE-Q[T M

i−1, pT M
i−1

, ρδεi−1] requires

(7.32) number of flops . ]T M
i + max{0, log((ρδεi)

−1‖pT M
i
‖Q}
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Due to log((ρδεi)
−1‖pT M

i
‖Q) ≤ (ρδεi)

−1/s‖pT M
i
‖1/s

Q . ε
−1/s
i+1 ‖p‖1/s

As(Q), and the fact that simi-

lar results are valid for the call of DEREFINE-X, we find that the calls of these routines
including SCR require

(7.33) a number of flops . ε
−1/s
i (‖u‖1/s

As(X) + ‖p‖1/s
As(Q) + c

1/s
f )

Since the jth call of INNERELLIPTIC requires a number of flops . (ηjεi)
−1/sc

1/s
f +

]T j
i , we find that the whole internal for-loop needs

(7.34) a number of flops . ε
−1/s
i (‖u‖1/s

As(X) + ‖p‖1/s
As(Q) + c

1/s
f ).

Finally, recalling that

(7.35) N = min{j ∈ N : (1 + κ
1/2
Ψ (η−1 + 1))εj+1 ≤ ε}

we have εi & ε, and for the whole algoritm [T ,uT , pT ]:=AFEMSTOKESSOLVER[f , ε]
it holds that both

(7.36) the number of flops and]T . ε−1/s(‖u‖1/s
As(X) + ‖p‖1/s

As(Q) + c
1/s
f )

completing the proof. ♦

8. Convergent Adaptive Finite Element Algorithm for Inner Elliptic
Problem

In this section we develop the INNERELLIPTIC routine that approximates the inverse
of A in (7.9), or equivalently, that constructs the approximation to the solution of (8.1)





Given a triangulation T̄ , pT̄ ∈ QT̄ , f ∈ X′

find u ∈ X such that

a(upT̄ ,v) = f(v)− b(v, pT̄ ) for all v ∈ X.

With T ⊃ T̄ , defining AT : XT → (XT )′ ⊃ X′ by (AT uT )(vT ) = a(uT ,vT ) for uT ,vT ∈
XT , A −1

T (f − B∗pT̄ ) is the Galerkin approximation of upT̄ . One easily verifies that for
f ∈ X′, ‖A −1

T f‖X ≤ ‖f‖X′ .
In [Ste05a], an adaptive algorithm of optimal complexity has been developed for a scalar

elliptic problem. Here we generalize this algorithm for the system of elliptic equations (8.1),
also adapting it to the special term B∗pT̄ ∈ X′ in the right-hand side. Another important
issue we have to pay attention to here is the fact that our inner solver will be called every
Uzawa iteration with a different initial triangulation T̄ and a different right-hand side.

We start the design of an adaptive algorithm for the above described problem with the
development of an a posteriori error estimator. Let T ⊃ T̄ and wT ∈ XT . In the following
it is only needed that pT̄ ∈ QT , for that reason we will write pT , upT instead of pT̄ , upT̄ ,
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respectively. For f ∈ [L2(Ω)]2, using integration by parts, we find

(8.1)

a(upT −wT ,v) = f(v)− b(v, pT )− a(wT ,v)

=
∑
K∈T

∫

K

{f + ∆wT }v −
∫

K

∇pT · v +

∫

∂K

pT v · ν −
∑

`∈∂K

∫

`

2∑
i=1

∂(wT )i

∂ν`

vi

=
∑
K∈T

∫

K

RK · v −
∑

`∈ET

∫

`

R` · v

where RK is an element residual

(8.2) RK := (f + ∆wT −∇pT )|K

and R` denotes an edge residual

(8.3) R` := [

(
∂(wT )1

∂ν`
∂(wT )2

∂ν`

)
− pT ν`],

with ν` being an unit vector orthogonal to `. We set up the a posteriori error estimator

(8.4) E(T , f ,wT , pT ) := (
∑
K∈T

diam(K)2‖RK‖2
[L2(K)]2 +

∑

`∈ET
diam(`)‖R`‖2

[L2(`)]2)
1/2.

Before stating the theorem about our error estimator, we need to recall one more result,
that will be invoked in the proof. For K ∈ T and ` ∈ ET we introduce the notations

(8.5) ΩK := {K ′ ∈ Tj, K ∩K ′ 6= ∅}, Ω` := {K ′ ∈ Tj, ` ⊂ K ′}
In [Ste05a] a piecewise linear (quasi)-interpolant was constructed on admissible triangu-
lations for H1

0 (Ω) functions. We state the properties of its obvious generalization to X
vector-fields in the following lemma.

Lemma 8.1. Let T be an admissible triangulation of Ω. Then there exists a linear mapping
IT : X → XT such that

(8.6) ‖v − IT v‖[Hs(K)]2 . diam(K)1−s‖v‖[H1(ΩK)]2 (v ∈ X, s = 0, 1, K ∈ T )

(8.7) ‖v − IT v‖[L2(`)]2 . diam(`)1/2‖v‖[H1(Ω`)]2 (v ∈ X, ` ∈ ET ).

Theorem 8.2. Let T be an admissible triangulation and T̃ be a refinement of T . Assume
that f ∈ YT , and let upT = A −1(f − B∗pT ) and let upT

T = A −1
T (f − B∗pT ), upT

T̃ =

A −1

T̃ (f−B∗pT ) be its Galerkin approximations on the triangulations T and T̃ respectively.

i) If VT̃ contains a point inside K ∈ T , then

(8.8) ‖upT
T̃ − upT

T ‖2
[H1(K)]2 & diam(K)2‖RK‖2

[L2(K)]2
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ii) With K1, K2 ∈ T , such that ` := K1∩K2 ∈ ET , if VT̃ contains a point in the interior
of both K1 and K2, then

(8.9) ‖upT
T̃ − upT

T ‖2
[H1(K1∪K2)]2 & diam(`)‖R`‖2

[L2(`)]2

iii) Let for some F ⊂ T and G ⊂ ET , the refinement T̃ satisfies the condition i) or ii)
for all K ∈ F and ` ∈ G, respectively, then

(8.10) ‖upT
T̃ − upT

T ‖2
X ≥ C2

L{
∑
K∈F

diam(K)2‖RK‖2
[L2(K)]2 +

∑

`∈G

diam(K)2‖R`‖2
[L2(`)]2}

for some absolute constant CL > 0.
iv)

(8.11) CLE(T , f ,upT
T , pT ) ≤ ‖upT − upT

T ‖X
v) there exists an absolute constant CU such that even for any f ∈ [L2(Ω)]2,

(8.12) ‖upT − upT
T ‖X ≤ CUE(T , f ,upT

T , pT ).

K1

K2

`

T T̃Proof. We shall use here Verfürth’s technique developed for the analysis of a posteriori
error estimators. Actually, one who is familiar with this technique will recognize that it
has been used in [BMN02] to prove similar results for conforming triangulations.

(i) To prove the local lower bounds i)-ii), we notice that, due to the conditions on T̃ , for
all K ∈ T , ` ∈ ET there exist functions ψK , ψ`, which are continuous piecewise linear with
respect to T̃ , with the properties

(8.13) supp(ψK) ⊂ K, supp(ψ`) ⊂ Ω`,

∫

K

ψK h meas(K),

∫

`

ψ` h meas(`),

(8.14) 0 ≤ ψK ≤ 1, x ∈ K, 0 ≤ ψ` ≤ 1, x ∈ `,

(8.15)
‖ψK‖L2(K) . meas(K)1/2,

‖ψ`‖L2(Ω`) . diam(`).

We have

(8.16)

a(upT
T̃ − upT

T ,v) = f(v) + b(pT ,v)− a(upT
T ,v)

=
∑
K∈T

∫

K

RK · v −
∑

`∈ET

∫

`

R` · v (v ∈ XT̃ ).
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Now by, for K as in (i), choosing v := RKψK , that, thanks to RK being a constant
vector-field and the properties (8.13)-(8.15) of ψK is in XT̃ , and using Bernstein inequality
(5.4), we have

(8.17)

‖RK‖2
L2(K)2 h

∫

K

RK · v = a(upT
T̃ − upT

T ,v)

. ‖upT
T̃ − upT

T ‖H1(K)2diam(K)−1‖v‖L2(K)2

. diam(K)−1‖RK‖L2(K)2‖upT
T̃ − upT

T ‖H1(K)2 .

(ii) In a similar way, let for ` as in (ii),v := R`ψ`, then after some manipulations using
(i), we find

(8.18)

∫

`

R` · v = a(upT
T̃ − upT

T ,v) +
∑

K∈Ω`

∫

K

RK · v

.
∑

K∈Ω`

{‖upT
T̃ − upT

T ‖H1(K)2diam(K)−1‖v‖L2(K)2 + ‖RK‖L2(K)2‖v‖L2(K)2

.
∑

K∈Ω`

{‖upT
T̃ − upT

T ‖H1(K)2diam(K)−1‖v‖L2(K)2

.
∑

K∈Ω`

‖upT
T̃ − upT

T ‖H1(K)2diam(`)−1/2‖R`‖L2(`)2

Noting that
∫

`
R` · v h ‖R`‖L2(`)2 the statement follows.

iii) Follows from i) and ii).
iv) Let T̃ be a refinement of T such that it satisfies conditions i),ii) for all K ∈ T and

for all ` ∈ ET , respectively. The statement follows from iii) and Pythagoras

(8.19) ‖upT − upT
T ‖2

X = ‖upT − upT
T̃ ‖2

X + ‖upT
T̃ − upT

T ‖2
X

v) Using the Galerkin orthogonality

(8.20) a(upT − upT
T ,vT ) = 0, for all vT ∈ XT ,

equation (8.1), Cauchy-Schwarz inequality and Lemma 8.1 we find

(8.21)

a(upT − upT
T ,v) = a(upT − upT

T ,v − IT v) =

=
∑
K∈T

∫

K

RK · (v − IT v)−
∑

`∈ET

∫

`

R` · (v − IT v)

≤
∑
K∈T

‖RK‖[L2(K)]2‖v − IT v‖[L2(K)]2 +
∑

`∈ET
‖R`‖[L2(`)]2‖v − IT v‖[L2(`)]2

.
∑
K∈T

‖RK‖[L2(K)]2diam(K)‖v‖[H1(ΩK)]2 +
∑

`∈ET
‖R`‖[L2(`)]2diam1/2(`)‖v‖[H1(Ω`)]2

≤ {
∑
K∈T

diam(K)2‖RK‖2
[L2(K)]2 +

∑

`∈ET
diam(`)‖R`‖2

[L2(`)]2}1/2‖v‖X
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Finally, invoking

(8.22) ‖upT − upT
T ‖X = sup

v∈X

a(upT − upT
T ,v)

‖v‖X ,

the upper bound follows. ♦
Based on our observations from the previous theorem, we define a routine that constructs

a local refinement of a given triangulation, such that, as we will see later, an error reduction
in our discrete approximation is ensured. In order to be able to apply Theorem 8.2, for the
moment we will assume that f ∈ YT for any triangulation we encounter, i.e., that f ∈ YT0 .
Later, given f ∈ X′, on any triangulation T we will replace f by an approximation fT̃ ∈ YT̃
produced by the RHS routine. Here either T̃ = T or T̃ is a proper refinement of T needed
to get ‖f − fT̃ ‖X′ sufficiently small.

Algorithm 8.3. REFINE[T ,fT ,pT ,wT ,θ]→ T̃
/* Input of the routine:

• admissible triangulation T
• fT ∈ YT , pT ∈ QT
• wT ∈ XT
• θ ∈ (0, 1)

Select in O(T ) operations F ⊂ T and G ⊂ ET , such that

(8.23) {
∑
K∈F

diam(K)2‖RK‖2
[L2(K)]2 +

∑

`∈G

diam(K)2‖R`‖2
[L2(`)]2 ≥ θ2E(T , fT ,wT , pT )2

Construct a refinement T̃ of T , such that for all K ∈ F and ` ∈ G the conditions i)-ii)
from Theorem 8.2 are satisfied. */

Theorem 8.4. (Basic principle of adaptive error reduction) Let T be an admissible tri-
angulation, assume that f ∈ YT , and let pT ∈ QT , upT

T := A −1
T (f − B∗pT ). Taking

T̃ =REFINE[T , f , pT ,upT
T , θ] then for upT

T̃ := A −1

T̃ (f −B∗pT ) the following error reduc-
tion holds

(8.24) ‖upT − upT
T̃ ‖X ≤ (1− (

CLθ

CU

)2)1/2‖upT − upT
T ‖X

Proof. Using Galerkin orthogonality, properties of REFINE and that of the a posteriori
error estimator, we easily find

(8.25)

‖upT − upT
T̃ ‖2

X = ‖upT − upT
T ‖2

X − ‖upT
T̃ − upT

T ‖2
X

≤ ‖upT − upT
T ‖2

X − C2
Lθ2E2(T , fT ,upT

T , pT )

≤ (1− (
CLθ

CU

)2)1/2‖upT − upT
T ‖2

X

♦
Aiming at optimal computational complexity, we will solve the Galerkin problems ap-

proximately using the following routine
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Algorithm 8.5. GALSOLVE[T ,fT ,pT ,u
(0)
T , ε]→ uε

T
/* Input of the routine:

• an admissible triangulation T
• fT ∈ X′T (⊃ X′), pT ∈ QT
• u

(0)
T ∈ XT

• ε > 0

output: uε
T ∈ XT such that

(8.26) ‖upT
T − uε

T ‖X ≤ ε

where upT
T = A −1

T (fT −B∗pT ).

The call of the algorithm takes . max{1, log(ε−1‖upT
T − u

(0)
T ‖X)}]T flops. */

An implementation of GALSOLVE that realizes the requirements is, for example, given
by the application of Conjugate Gradients to the matrix-vector representation of AT upT

T =
fT −B∗pT with respect to the wavelet basis ΨT , that is well-conditioned uniformly in ]T .

In the previous Theorem 8.4, the error reduction was based on the availability of the
exact Galerkin solution upT

T := A −1
T (f − B∗pT ) and the assumption that f ∈ YT . Of

course, in practice we will approximate upT
T by some uT ∈ XT using GALSOLVE, and the

evaluation of the a posteriori error estimator and so the mesh refinement will be performed
using this inexact Galerkin solution uT . Furthermore, instead of making the unrealistic
assumption that our right-hand side f ∈ YT , we will replace f by an fT̃ ∈ YT̃ with T̃ = T
or possibly T̃ a refinement of T . In the following, we will study how this influences the
convergence of the adaptive approximations. We will start with investigating the stability
of the error estimator.

Lemma 8.6. For any admissible triangulation T , pT ∈ QT , f ∈ [L2(Ω)]2, uT , ũT ∈ XT ,
it holds

(8.27) |E(T , f ,uT , pT )− E(T , f , ũT , pT )| ≤ CS‖uT − ũT ‖X,

with an absolute constant CS > 0.

Proof. Using the triangle inequality twice, first for vectors and then for functions, we
find

(8.28)

|E(T , f ,uT , pT )− E(T , f , ũT , pT )|
= |(

∑
K∈T

diam(K)2‖RK(f , pT )‖2
[L2(K)]2 +

∑

`∈ET
diam(`)‖R`(uT , pT )‖2

[L2(`)]2)
1/2

− (
∑
K∈T

diam(K)2‖RK(f , pT )‖2
[L2(K)]2 +

∑

`∈ET
diam(`)‖R`(ũT , pT )‖2

[L2(`)]2)
1/2|

≤ (
∑

`∈ET
diam(`)(‖R`(uT , pT )‖[L2(`)]2 − ‖R`(ũT , pT )‖[L2(`)]2)

2)1/2

≤ (
∑

`∈ET
diam(`)‖R`(uT − ũT , 0)‖2

[L2(`)]2)
1/2 ≤ CS‖uT − ũT ‖X,
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where in the last line we have used that, for any edge ` of a triangle K ∈ T , and any
wT ∈ [P (K)]2 it holds

(8.29) ‖R`(wT , 0)‖[L2(`)]2 . diam(`)−1/2‖wT ‖[H1(K)]2 .

♦
Theorem 8.7. Let T be an admissible triangulation, f ∈ X′, pT ∈ QT , upT = A −1(f −
B∗pT ), fT ∈ YT , upT

T = A −1
T (fT−B∗pT ), uT ∈ XT , and let T̃ = REFINE[T ,fT ,pT ,uT ,θ],

fT̃ ∈ X′, upT
T̃ = A −1

T̃ (fT̃ −B∗pT ). Then it holds

(8.30)

‖upT−upT
T̃ ‖X ≤ (1−1

2
(
CLθ

CU

)2)1/2‖upT−upT
T ‖X+2CSCL‖upT

T −uT ‖X+3‖f−fT ‖X′+‖f−fT̃ ‖X′

Before we come to the proof, note that on T , T̃ we use the approximate right-hand sides
fT , fT̃ respectively, and in the refinement routine REFINE we use an approximation uT
instead of upT

T = A −1
T (fT − B∗pT ), where we think of an approximation we got by the

application of GALSOLVE.
Proof.

(8.31)
‖A −1(f −B∗pT )−A −1

T̃ (fT̃ −B∗pT )‖X
≤‖A −1(f −B∗pT )−A −1(fT −B∗pT )‖X + ‖A −1(fT −B∗pT )−A −1

T̃ (fT̃ −B∗pT )‖X
≤‖f − fT ‖X′ + ‖A −1(fT −B∗pT )−A −1

T̃ (fT −B∗pT )‖X+

‖A −1

T̃ (fT −B∗pT )−A −1

T̃ (fT̃ −B∗pT )‖X
≤2‖f − fT ‖X′ + ‖f − fT̃ ‖X′ + ‖A −1(fT −B∗pT )−A −1

T̃ (fT −B∗pT )‖X
Now, to get an estimate for ‖A −1(fT −B∗pT ) − A −1

T̃ (fT −B∗pT )‖X, we will apply a
similar analysis as in the proof of the Theorem 8.4. Using the properties of REFINE,
Lemma 8.6 and Theorem 8.2 (iii, v) we find

(8.32)

‖A −1

T̃ (fT −B∗pT )− upT
T ‖X

≥CL(
∑
K∈T

diam(K)2‖RK(fT , pT )‖2
[L2(K)]2 +

∑

`∈ET
diam(`)2‖R`(u

pT
T , pT )‖2

[L2(`)]2)
1/2

≥CL(
∑
K∈T

diam(K)2‖RK(fT , pT )‖2
[L2(K)]2 +

∑

`∈ET
diam(`)2‖R`(uT , pT )‖2

[L2(`)]2)
1/2

−CS‖uT − upT
T ‖X)

≥CL(θE(T , fT ,uT , pT )− CS‖uT − upT
T ‖X)

≥CL(θE(T , fT ,upT
T , pT )− 2CS‖uT − upT

T ‖X)

≥CL(
θ

CU

‖A −1
T (fT −B∗pT )− upT

T ‖X − 2CS‖uT − upT
T ‖X)
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Thanks to the Galerkin orthogonality and the previous estimate we have

(8.33)

‖A −1(fT −B∗pT )−A −1

T̃ (fT −B∗pT )‖2
X

=‖A −1(fT −B∗pT )− upT
T ‖2

X − ‖A −1

T̃ (fT −B∗pT )− upT
T ‖2

X

≤‖A −1(fT −B∗pT )− upT
T ‖2

X

−C2
L(

θ

CU

‖A −1(fT −B∗pT )− upT
T ‖X − 2CS‖uT − upT

T ‖X)2

≤‖A −1(fT −B∗pT )− upT
T ‖2

X

−C2
L(

1

2
(

θ

CU

)2‖A −1(fT −B∗pT )− upT
T ‖2

X − 4C2
S‖uT − upT

T ‖2
X)

=(1− 1

2
(
θCL

CU

)2)‖A −1(fT −B∗pT )− upT
T ‖2

X + 4C2
SC2

L‖uT − upT
T ‖2

X

≤((1− 1

2
(
θCL

CU

)2)1/2‖A −1(fT −B∗pT )− upT
T ‖X + 2CSCL‖uT − upT

T ‖X)2

≤((1− 1

2
(
θCL

CU

)2)1/2(‖u− upT
T ‖X + ‖f − fT ‖X′)

+2CSCL‖uT − upT
T ‖X)2,

where in (8.33) we have used that for any scalars a, b, (a− b)2 ≥ 1
2
a2− b2. Combination of

last result with the first bound obtained in this proof completes the task. ♦
In Theorem 8.7 we estimated ‖upT − upT

T̃ ‖X, where upT
T̃ = A −1

T̃ (fT̃ − B∗pT ), i.e., the

exact Galerkin approximation. In the following Corollary we bound ‖upT − uT̃ ‖X, where
we think of uT̃ ∈ XT̃ being a sufficiently close approximation for upT

T̃ , obtained by the
GALSOLVE routine. As we will see, we get error reduction with a factor µ < 1 in case
we control the errors in the approximate Galerkin solutions and the approximate right-hand
sides in a proper way.

Corollary 8.8. (General adaptive error reduction estimate) For any µ ∈ ((1−1
2
(CLθ

CU
)2)1/2, 1)

there exists a sufficiently small constant δ > 0 such that if for f ∈ X′, an admissible trian-
gulation T , pT ∈ QT , fT ∈ YT , uT ∈ XT , T̃ = REFINE[T ,fT ,uT ,θ], fT̃ ∈ X′, uT̃ ∈ XT̃
and ε > 0, with upT = A −1(f −B∗pT ), upT

T = A −1
T (fT −B∗pT ), upT

T̃ = A −1

T̃ (fT̃ −B∗pT ),

we have that ‖upT − uT ‖X ≤ ε and

(8.34) ‖upT
T − uT ‖X + ‖f − fT ‖X′ + ‖upT

T̃ − uT̃ ‖X + ‖f − fT̃ ‖X′ ≤ 2(1 + µ)δε,

then

(8.35) ‖upT − uT̃ ‖X ≤ µε
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Proof. Using the triangle inequality, the conditions of the corollary and Theorem 8.7,
we easily find

(8.36)

‖upT − uT̃ ‖X ≤ ‖upT − upT
T̃ ‖X + ‖upT

T̃ − uT̃ ‖X
≤(1− 1

2
(
CLθ

CU

)2)1/2‖upT − upT
T ‖X + 2CSCL‖upT

T − uT ‖X
+3‖f − fT ‖X′ + ‖f − fT̃ ‖X′ + ‖upT

T̃ − uT̃ ‖X
≤µ‖upT − uT ‖X + ((1− 1

2
(
CLθ

CU

)2)1/2 − µ)‖upT − uT ‖X
+ max{2CSCL, 3}(‖upT

T − uT ‖X + ‖f − fT ‖X′ + ‖f − fT̃ ‖X′ + ‖upT
T̃ − uT̃ ‖X)

≤µε,

where we have chosen δ to satisfy

(8.37) δ ≤ µ− (1− 1
2
(CLθ

CU
)2)1/2

2(1 + µ) max{2CSCL, 3} . ♦

We are now ready to present the adaptive solver of the inner elliptic problem.

Algorithm 8.9. Adaptive Inner Solver
INNERELLIPTIC[T̄ , f , pT̄ ,uT̄ , ε0, ε] → [T ,uT ]
/*
Input parameters of the algorithm are: f ∈ X′, an admissible triangu-
lation T̄ , pT̄ ∈ QT̄ , uT̄ ∈ XT̄ , and ε0 ≥ ‖upT̄ − uT ‖X. The parameter
δ < 1/3 is chosen such that it corresponds to a µ < 1 as in Corollary
8.8.
*/

T := T̄ , uT := uT̄
ε1 := ε0

1−3δ

[T , fT ]:=RHS[T , f , δε1]
uT :=GALSOLVE[T , fT , pT̄ ,uT , δε1]
N̄ := min{j ∈ N : µjε1 ≤ ε }
for k = 1, . . . , N̄ do

T :=REFINE[T , fT , pT̄ ,uT , θ]
[T , fT ]:=RHS[T , f , δµkε1]
uT :=GALSOLVE[T , fT , pT̄ ,uT , δµkε1]

endfor

Theorem 8.10. (i) Algorithm INNERELLIPTIC[T̄ , f , pT̄ ,uT̄ , ε0, ε] → [T ,uT ] termi-
nates with

(8.38) ‖upT̄ − uT ‖X ≤ ε

(ii) If for some s > 0 the pair (f ,RHS) is s-optimal, and the algorithm is called with ε0 . ε
then both the cardinality of the output triangulation and the number of flops required by the
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algorithm satisfy

(8.39) ]T , number of flops . ]T̄ + ε−1/sc
1/s
f

Proof. i) We are going to show that just before the kth call of REFINE

(8.40) ‖A −1
T (fT −B∗pT̄ )− uT ‖X ≤ ε1µ

k−1

meaning that after the kth inner loop ‖A −1
T (fT−B∗pT̄ )−uT ‖X ≤ ε1µ

k, which, by definition
of N̄ , proves the first part of the theorem.

For k = 1, after the first call [T , fT ] :=RHS[T , f , δε1] it holds

(8.41) ‖f − fT ‖X′ ≤ δε1.

For the input uT we have ‖upT̄ −uT ‖X ≤ (1−3δ)ε1. Using the triangle inequality and the
fact that A −1

T (fT −B∗pT̄ ) is the best approximation of A −1(fT −B∗pT̄ ) from XT with
respect to ‖ · ‖X, we find

(8.42)

‖upT̄ −A −1
T (fT −B∗pT̄ )‖X ≤ ‖upT̄ −A −1(fT −B∗pT̄ )‖X

+‖A −1(fT −B∗pT̄ )−A −1
T (fT −B∗pT̄ )‖X

≤‖upT̄ −A −1(fT −B∗pT̄ )‖X + ‖A −1(fT −B∗pT̄ )− uT ‖X
≤2‖upT̄ −A −1(fT −B∗pT̄ )‖X + ‖upT̄ − uT ‖X
≤2‖f − fT ‖X + ‖upT̄ − uT ‖X ≤ 2δε1 + (1− 3δ)ε1 ≤ (1− δ)ε1

After the call uT :=GALSOLVE[T , fT , pT̄ ,uT , δε1] we have

(8.43) ‖A −1
T (fT −B∗pT̄ )− uT ‖X ≤ δε1.

Together with the previous estimate it gives

(8.44) ‖upT̄ − uT ‖X ≤ ‖upT̄ −A −1
T (fT −B∗pT̄ )‖X + ‖A −1

T (fT −B∗pT̄ )− uT ‖X ≤ ε1,

i.e., (8.40) is valid for k = 1.
Let us now assume that (8.40) is valid for some k. By the last calls of RHS and

GALSOLVE for the current T , uT and fT we have

(8.45) ‖f − fT̃ ‖X′ ≤ δε1µ
k−1, ‖A −1

T̃ (fT̃ −B∗pT̄ )− uT̃ ‖X ≤ δε1µ
k−1.

The subsequent calls T̃ :=REFINE[T , fT , pT̄ ,uT , θ], [T̃ , fT̃ ] :=RHS[T̃ , f , δµkε1], and

uT̃ :=GALSOLVE[T̃ , fT̃ , pT̄ ,uT , δµkε1] result in

(8.46) ‖f − fT̃ ‖X′ ≤ δε1µ
k, ‖A −1

T̃ (fT̃ −B∗pT̄ )− uT̃ ‖X ≤ δε1µ
k.

Therefore we obtain
(8.47)
‖f−fT ‖X′+‖A −1

T (fT−B∗pT̄ )−uT ‖X+‖f−fT̃ ‖X′+‖A −1

T̃ (fT̃−B∗pT̄ )−uT̃ ‖X ≤ 2(1+µ)δε1µ
k.

Using the induction hypothesis, Corollary 8.8 shows that

(8.48) ‖upT̄ − uT̃ ‖ ≤ ε1µ
k,

with which (8.40) is proven.
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ii) Let us now analyse the computational complexity of the algorithm. For k = 1, . . . , N̄ ,
just before the call GALSOLVE[T , fT ,uT , δµkε1] it holds that ‖upT̄ − uT ‖X ≤ µk−1ε1

and ‖f − fT ‖X′ ≤ δµkε1. Since, thanks to (8.42),
(8.49)
‖upT̄ −A −1

T (fT −B∗pT̄ )‖X ≤ 2‖upT̄ −A −1(fT −B∗pT̄ )‖X+‖upT̄ −uT ‖X ≤ (2δµk+µk−1)ε1,

we have that ‖upT̄ − uT ‖X ≤ 2(δµk + µk−1)ε1. Observing that 2(δµk+µk−1)ε1

δµkε1
is a constant,

the cost of this call is . ]T . Before the first call GALSOLVE[T , fT ,uT , δε1] we have
‖upT̄ −uT ‖X ≤ ε0 = (1− 3δ)ε1 and ‖f − fT ‖X′ ≤ δε1. The same arguments show that also
the cost of this call is . ]T .

Recalling the properties of the routine REFINE, RHS, we can list the costs of each
call.

(8.50) T̃ := REFINE[T , fT ,uT ], ]T̃ , flops . ]T

(8.51) [T̃ , fT ] := RHS[T , f , δµkε1], ]T̃ , flops . ]T + (δµkε1)
−1/sc

1/s
f

Finally, since the for -loop runs for N̄ iterations, being an absolute constant only de-
pendent on ε0/ε, we conclude that after the call INNERELLIPTIC[T̄ , f , pT̄ ,uT̄ , ε0, ε] →
[T ,uT ], the cardinality of the output triangulation and the number of flops required by
the algorithm satisfy

(8.52) ]T , number of flops . ]T̄ + ε−1/sc
1/s
f ♦

Conclusions. In this paper we have designed an adaptive FEM algorithm for solving
the Stokes problem. We were able to prove that this algorithm produces a sequence of
adaptive approximations that converges with the optimal rate using the fact that the
algorithm contains mesh derefinement routine.

Recently, in the work of Stevenson ([Ste05b]), an adaptive FEM method was constructed
for solving elliptic problems that has optimal computational complexity not relying on a
recurrent derefinement of the triangulations. Currently, it is open question whether this is
possible for mixed problems.

In any case, in our view, availability of an efficient mesh optimization/derefinement
routine is very useful for the adaptive solutions of nonstationary problems that often exhibit
moving shock waves.
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