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Abstract. We discuss new and improved algorithms for the bifurcation analysis of fixed points
and periodic orbits (cycles) of maps and their implementation in matcont, a matlab toolbox for
continuation and bifurcation analysis of dynamical systems.

This includes the numerical continuation of fixed points of iterates of the map with one control pa-
rameter, detecting and locating their bifurcation points (i.e., LP, PD and NS), and their continuation
in two control parameters, as well as detection and location of all codimension 2 bifurcation points on
the corresponding curves. For all bifurcations of codim 1 and 2, the critical normal form coefficients
are computed, both numerically with finite directional differences and using symbolic derivatives of
the original map. Using a parameter-dependent center manifold reduction, explicit asymptotics are
derived for bifurcation curves of double and quadruple period cycles rooted at codim 2 points of
cycles with arbitrary period. These asymptotics are implemented into the software and allow one to
switch at codim 2 points to the continuation of the double and quadruple period bifurcations.

We provide several examples, in particular a juvenile/adult Leslie–Gower competition model from
mathematical biology.
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1. Introduction. To fix the notation we consider a smooth map

(1.1) x 7→ f(x, α),

where x ∈ Rn is a state variable vector and α ∈ Rp is a parameter vector. Write the
K-th iterate of (1.1) at some parameter value as

(1.2) x 7→ f (K)(x, α), f (K) : R
n × R

p → R
n,

where

f (K)(x, α) = f(f(f(· · · f︸ ︷︷ ︸
K times

(x, α), α), α), α).

The study of (1.1) usually starts with the analysis of fixed points. Numerically
we continue fixed points of this map, i.e. solutions to the equation

(1.3) F (x, α) ≡ f(x, α) − x = 0.

with one control parameter.
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While varying one parameter, one may encounter codimension 1 bifurcations
of fixed points, i.e., critical parameter values where the stability of the fixed point
changes. The eigenvalues of the Jacobian matrix A = fx of f are called multipliers.
The fixed point is asymptotically stable if |µ| < 1 for every multiplier µ. If there
exists a multiplier µ with |µ| > 1, then the fixed point is unstable. While following a
curve of fixed points, three codimension 1 singularities can generically occur, namely
a limit point (fold, LP) with a multiplier +1, a period-doubling (flip, PD) point with
a multiplier −1 and a Neimark-Sacker (NS) point with a conjugate pair of complex
multipliers e±iθ0 , 0 < θ0 < π. Encountering such a bifurcation one may use the for-
mulas for the normal form coefficients derived via the center manifold reduction, see
e.g. [14], §5.4, to analyse the bifurcation. Generically, the curve of fixed points turns
at an LP. In a PD point, generically, a cycle of period two bifurcates from the fixed
point of f that changes stability. This bifurcation can be supercritical or subcritical,
denoting the appearance of stable or unstable cycles for parameter values larger or
smaller than the critical one, respectively. The continuation of this cycle can be re-
duced to the continuation of a fixed point of f (2)(x, α) = f(f(x, α), α), the second
iterate of the map. Typically, at an NS point a finitely-smooth closed invariant curve
of (1.1) is born, while the primary fixed point changes stability. This bifurcation can
also be thought of as an instrument to describe more complex (e.g., two-frequency
oscillations) behavior in continuous-time nonlinear dynamical systems, when the re-
sulting map comes from intersections between a periodic orbit and a certain plane,
i.e. the Poincaré map.

A branch point (BP) is a point where the Jacobian matrix [Fx(x, α), Fα(x, α)] of
(1.3) is rank deficient. This is a nongeneric situation in one-parameter problems where
the implicit function theorem cannot be applied to ensure the existence of a unique
smooth branch of solutions. However, it is encountered often in practical problems
that exhibit some form of symmetry (equivariance).

When two control parameters are allowed to vary, eleven codimension 2 bifur-
cations can be met in generic families of maps (1.1), where curves of codimension 1
bifurcations intersect or meet tangentially. We proceed through listing smooth nor-
mal forms of the codim 2 bifurcation points and discussing their relationship with the
original maps. The critical normal form coefficients for all generic codim 2 bifurcation
points have been derived earlier in [17, 18] using a combined reduction-normalization
technique. Note that the full verification of the genericity of a codim 2 bifurcation
requires not only establishing its nondegeneracy at the critical parameter values but
also a careful analysis of how the system depends on parameters. This “transversal-
ity” issue, which includes the expression of the canonical unfolding parameters of the
normal form in terms of the original map parameters, received little attention in the
up to date literature. When available, this information could be used to approximate
codim 1 bifurcation curves that emanate from the codim 2 points.

There are several standard software packages supporting bifurcation analysis of
iterated maps. Orbits of maps and one-dimensional invariant manifolds of saddle
fixed points can be computed and visualized using dynamics [22] and DsTool [2].
Location and continuation of fixed-point bifurcations is implemented in auto [8] and
the LBFP-version of locbif [20]. The latter program computes the critical normal
form coefficient at LP points and locates some codim 2 bifurcations along branches of
codim 1 fixed points and cycles. content [15] was the first software that computed
the critical normal forms coefficients for all three codim 1 bifurcations of fixed points
and cycles and allowed to continue these bifurcations in two parameters and to detect
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all eleven codim 2 singularities along them. Branch switching at PD and BP points
is also implemented in auto, locbif, and content. However, only trivial branch
switching is possible at codim 2 points and only for two (cusp and 1:1 resonance) of
eleven codim 2 bifurcations the critical normal form coefficients are computed by the
current version of content. No software supports switching at codim 2 points to the
continuation of the double- and quadruple-period bifurcation curves.

In the present paper we describe how cl matcont, that previously could support
only ODEs [6, 7], continues fixed points of an iterate of a map and handles the above
mentioned bifurcations. The paper is organized as follows. In Section 2, we first
give a list of all generic codim 1 and codim 2 bifurcation points of period-K orbits.
Then we provide a (parameter-dependent) normal form for each case in the minimal
possible phase dimension. In Section 3, we discuss the continuation of fixed points
of the iterate map (1.2), as well as the computation of a new solution curve that
emanates from a branch point. Continuation of fold, flip and Neimark-Sacker curves
of a cycle is presented in Section 4. The algorithms described there are similar to
those used in content [4]. In Section 5, we consider the branch switching at codim
2 points, where we use parameter-dependent center-manifold reduction. In Section
6 we present some algorithmic and numerical details, including the computation of
partial derivatives of (1.2) up to and including order 5, both using symbolic partial
derivatives of (1.1) and finite differences. In Section 7 we demonstrate the use of the
algorithms and implementation. Finally, in Section 8 we draw some conclusions and
mention a few problems for future work.

2. Codim 1 and 2 bifurcations of fixed points and cycles. Assume that
for some α = α0 and K ≥ 1

(2.1) g(x, α) = f (K)(x, α)

has a fixed point x = x0, that is not a fixed point of f (J)(·, α0) for 1 ≤ J < K when
K > 1. In other words, x0 is a fixed point or a cycle with minimal period K of
f(·, α0). If the Jacobian matrix A = gx(x0, α0) has no eigenvalue λ with |λ| = 1, i.e.,
for a hyperbolic fixed point, the dynamics near the origin is topologically equivalent
to that of the linear map x 7→ Ax (Grobman-Hartman Theorem). If eigenvalues with
|λ| = 1 are present, the Center Manifold Theorem guarantees the existence of local
stable, unstable and center invariant manifolds near the fixed point for parameter
values close to α0. On the stable and unstable manifolds, the local dynamics is still
determined by the linear part of the map. In contrast, the dynamics in the center
manifolds depends on both linear and nonlinear terms. Not all nonlinear terms are
equally important, since some of them can be eliminated by an appropriate smooth
and smoothly depending on parameters coordinate transformation that puts the map
restricted to the center manifold into a normal form, at least up to some order.
Nonhyperbolic fixed points bifurcate, i.e., the dynamics near such points changes
topologically under parameter variations. The birth of extra invariant objects, such
as cycles or tori, is described by a parameter-dependent normal form of the restriction
of g to a center manifold. Even though neither the center manifold nor the normal
form on it are unique, the qualitative conclusions do not depend on the choices that
are made.

Assuming sufficient smoothness of g, we write its Taylor expansion about (x0, α0)
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Table 2.1

Smooth normal forms for generic codim 1 bifurcations of fixed points on center manifolds.

Eigenvectors Normal form Critical coefficients

LP
Aq = q

AT p = p

w 7→ β + w + aw2

+O(w3), w ∈ R
a = 1

2
〈p,B(q, q)〉

PD
Aq = −q

AT p = −p

w 7→ −(1 + β)w + bw3

+O(w4), w ∈ R

b = 1

6
〈p, C(q, q, q) + 3B(q, h200)〉

h200 = (In − A)−1B(q, q)

NS

Aq = eiθ0q

AT p = e−iθ0p

eiνθ0 6= 1
ν = 1, 2, 3, 4.

w 7→ weiθ
(
1 + β + d|w|2

)

+ O(|w|4), w ∈ C

d = 1

2
e−iθ0 〈p, C(q, q, q̄)

+ 2B(q, h1100)
+ B(q̄, h2000)〉

h1100 = (In − A)−1B(q, q̄)
h2000 = (e2iθ0 In − A)−1B(q, q)

as
(2.2)
g(x0 + x, α0 + α) = x0 +Ax+ 1

2B(x, x) + 1
6C(x, x, x)

+ 1
24D(x, x, x, x) + 1

120E(x, x, x, x, x)
+ J1α+ 1

2J2(α, α)
+ A1(x, α) + 1

2B1(x, x, α) + 1
6C1(x, x, x, α) + 1

24D1(x, x, x, x, α)
+ 1

2A2(x, α, α) + 1
4B2(x, x, α, α) + 1

12C2(x, x, x, α, α)
+ · · · ,

where all functions are multilinear forms of their arguments and the dots denote
higher order terms in x and α. In particular, A = gx(x0, α) and the components of
the multilinear functions B and C are given by

(2.3) Bi(x, y) =

n∑

j,k=1

∂2gi(x0, α0)

∂ξj∂ξk
xjyk, Ci(x, y, z) =

n∑

j,k,l=1

∂3gi(x0, α0)

∂ξj∂ξk∂ξl
xjykzl,

for i = 1, 2, . . . , n. From now on, In is the unit n × n matrix and ‖x‖ =
√
〈x, x〉,

where 〈u, v〉 = ūT v is the standard scalar product in Cn (or Rn).

Assume first that α ∈ R, i.e. the map under consideration depends on one control
parameter. Well-known facts about three generic one-parameter (codim 1) bifurca-
tions of fixed points of g and, thus, K-periodic orbits (cycles) of f , are summarized in
Table 2.1. It is assumed that the critical eigenvalues are simple and no other eigen-
value of A with |λ| = 1 exists. In all cases, β = β(α) is a new real control parameter
with critical value 0, and the eigenvectors are normalized such that 〈p, q〉 = 1.

Generically, the following events happen in the state space near a bifurcation, see,
for example [14]. When the control parameter crosses the critical value corresponding
to a fold (LP) bifurcation, two fixed points of g collide and disappear, provided a 6= 0.
This implies collision of two period-K cycles of the original map f . When the control
parameter crosses the critical value corresponding to a flip (PD) bifurcation and b 6= 0,
a cycle of period 2 for g bifurcates from the fixed point, that is a cycle of period 2K
for map f . Finally, provided c = <(d) 6= 0, a unique closed invariant curve for g
around the fixed point appears on the center manifold, when the control parameter
crosses the critical value corresponding to the Neimark-Sacker (NS) bifurcation. For
the original map, this means the appearance of K disjoint curves, cyclically shifted
by f .
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Table 2.2

Generic codim 2 bifurcations of cycles.

Name Bifurcation conditions

CP cusp λ1 = 1, a = 0
DPD degenerate flip λ1 = −1, b = 0

CH Chenciner bifurcation λ1,2 = e±iθ0 , c = 0
R1 1:1 resonance λ1 = λ2 = 1
R2 1:2 resonance λ1 = λ2 = −1

R3 1:3 resonance λ1,2 = e±iθ0 , θ0 = 2π
3

R4 1:4 resonance λ1,2 = e±iθ0 , θ0 = π
2

LPPD fold-flip λ1 = 1, λ2 = −1

LPNS fold-NS λ1 = 1, λ2,3 = e±iθ0

PDNS flip-NS λ1 = −1, λ2,3 = e±iθ0

NSNS double NS λ1,2 = e±iθ0 , λ3,4 = e±iθ1

2.1. Codimension-2 cases. Now assume that α ∈ R2, i.e. p = 2. Eleven codim
2 bifurcations of cycles that can be met in generic two-parameter families of maps are
listed in Table 2.2.

Below we give normal forms to which the restriction of a generic map g(x, α) =
f (K)(x, α) to the parameter-dependent center manifold can be transformed near the
corresponding bifurcation by smooth invertible coordinate and parameter transforma-
tions. We only incorporate the parameter-dependent part if branch switching to local
bifurcations as in section 5 is involved. The O-symbol denotes higher order terms in
phase-variables, the coefficients of which may also depend on parameters. But the
qualitative picture is determined by the lowest order terms listed below. We refer
to [14], Ch. 9, and [17, 18] for details, including explicit expressions for all critical
normal form coefficients which are not repeated in the present paper. If a complex
critical eigenvalue λ is involved, it is always assumed that λν 6= 1 for ν = 1, 2, 3, 4.

2.1.1. CP. The critical smooth normal form on the center manifold at a cusp

bifurcation is

(2.4) w 7→ w + dw3 + O(|w|4), w ∈ R,

where, generically, d 6= 0. Under this condition, a generic two-parameter unfolding
of this singularity has two fold curves in the parameter plane which form a cuspidal
wedge. For nearby parameter values, the map g has up to three fixed points that
pairwise collide along the fold curves. In the direct product of the state and the
parameter spaces, there is one smooth fold curve, so no branch switching is needed.

2.1.2. DPD. Near a degenerate flip bifurcation the restriction of the map g to
the parameter-dependent center manifold is smoothly equivalent to the normal form

(2.5) w 7→ −(1 + β1)w + β2w
3 + c2w

5 + O(|w|6), w ∈ R,

where, generically, the coefficient c2 6= 0, while (β1, β2) are smooth functions of α
which can serve as new unfolding parameters. The fixed point w = 0 of the map (2.5)
exhibits a flip bifurcation for β1 = 0. It is well-known that from the point β = 0,
corresponding to the degenerate flip bifurcation, a fold curve of double-period cycles
emanates. The asymptotic expression for this curve in (2.5) is given by

(2.6) (w, β1, β2) = (ε,−c2ε4 + O(ε5),−2c2ε
2 + O(ε3)).
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2.1.3. CH. If eiνθ0 6= 1 for ν = 1, 2, . . . , 6, the critical smooth normal form on
the center manifold at the Chenciner bifurcation can be written as

(2.7) z 7→ eiθ0z + c1z|z|2 + c2z|z|4 + O(|z|6), z ∈ C,

where <(e−iθ0c1) = 0 but, generically, <(e−iθ0c2) + 1
2=(e−iθ0c1)

2 6= 0. A generic two-
parameter unfolding of this singularity has a complicated bifurcation set due to the
“collision” and destruction of two closed invariant curves of different stability born
via the sub- and super-critical Neimark-Sacker bifurcations, respectively. There are
no cycle bifurcation curves rooted at this bifurcation.

2.1.4. R1. The restriction of the map at a 1:1 resonance to the corresponding
center manifold can be written in the form

(2.8)

(
w1

w2

)
7→
(

w1 + w2

w2 + a1w
2
1 + b1w1w2

)
+ O(‖w‖3), w ∈ R

2.

Generically, a Neimark-Sacker bifurcation curve of the fixed point meets tangentially
the fold bifurcation curve. The local branch switching problem is trivial here, since
both curves correspond to fixed points of g. The full bifurcation diagram near the
codim 2 point is complicated and involves global bifurcations, e.g. tangencies of stable
and unstable invariant manifolds of saddle fixed points of g and destruction of a closed
invariant curve born via the Neimark-Sacker bifurcation.

2.1.5. R2. Near a 1:2 resonance the restriction of the map g to the parameter-
dependent center manifold is smoothly equivalent to the normal form

(2.9)

(
w1

w2

)
7→

(
−w1 + w2

β1w1 + (−1 + β2)w2 + C1(β)w3
1 +D1(β)w2

1w2

)

+ O(‖w‖4), w ∈ R2.

that depends on two control parameters (β1, β2). If C1 < 0, then there is a Neimark-
Sacker curve of fixed points of g with double period that emanates from the flip
bifurcation curve β2 = 0 of fixed points. It has the following asymptotic expression

(2.10) (w2
1 , w2, β1, β2) =

(
− 1

C1
, 0, 1,

(
2 +

D1

C1

))
ε+ O(ε2).

There are also global bifurcations associated with the destruction of closed invariant
curves.

2.1.6. R3. At a 1:3 resonance, the restriction of the map g to the parameter-
dependent center manifold is smoothly equivalent to the normal form

(2.11) z 7→ (e2iπ/3 + β)z +B1z̄
2 + C1z|z|2 + O(|z|4), z ∈ C.

A generic unfolding of this singularity has a period-3 saddle cycle that does not
bifurcate for nearby parameter values, although it merges with the primary fixed point
as the parameters approach R3. Only global bifurcations related to the destruction of
a closed invariant curve born via the primary Neimark-Sacker bifurcation occur in a
neighborhood of this codim 2 point.

Note that the period-3 cycle becomes neutral near this bifurcation. Recall that a
saddle cycle is called neutral if the corresponding fixed point has a pair of real eigen-
values with product 1. This singularity is important in analyzing global bifurcations
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of invariant manifolds of cycles. Moreover, the curve of neutral period-3 saddle cycles
may turn into a true Neimark-Sacker bifurcation at R1 or R2. Therefore, we give here
an asymptotic of this curve.

First we need a vector field for which the time-1 flow approximates the third
iterate of the map, i.e.

(2.12) g̃(η, β̃) = β̃η + η̄2 + C0η
2η̄ + O(|η|4),

where

β̃ = 3e−2iπ/3β, z =
1

|B1(β)| e
i arg(B1(β))/3η, C0 =

1

3

(
e−2iπ/3C1/|B1|2 − 1

)
.

We write C0 = a + ib and for η = ρeiφ the neutral saddle curve has the following
asymptotic expression

(2.13) (ρ, φ, β1, β2) =
(
ε, s(π/6 − aε/3),−2aε2, sε− bε2

)
+ O(ε3),

where s = ±1.

2.1.7. R4. Near a 1:4 resonance the restriction of the map g to the parameter-
dependent center manifold is smoothly equivalent to the normal form

(2.14) z 7→ (i+ β)z + C1(β)z2z̄ +D1(β)z̄3 + O(|z|4), z ∈ C.

For this bifurcation we do not only need this parameter-dependent normal form, but
also an approximation of its 4th iterate by a unit-time shift along orbits of a vector
field

(2.15) g̃(η, β̃) = β̃η +A0(β)η2η̄ + η̄3 + O(|η|4),

where η ∈ C and β̃ = β̃1 + iβ̃2, β̃i ∈ R. Here the scaling

z =
1√

|D1(β)|
ei arg(D1(β))/4η

is used and

A0(β) = −i C1(β)

|D1(β)| .

Moreover, we have

(2.16)

(
β̃1

β̃2

)
=

(
0 4
−4 0

)(
β1

β2

)
.

There are three possible branch switches for this bifurcation. Let a = <(A0(0))
and b = =(A0(0)). If ∆ ≡ a2 + b2 − 1 > 0, then there are two half-lines l1,2 of a
limit-point curve of cycles with four times the original period. If

|b| > (1 + a2)√
1 − a2

,
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then there is a curve n1 along which a cycle of four times the primary period exhibits
a Neimark-Sacker bifurcation. Using η = reiφ we have the following approximations
(2.17)

l1,2 : (r2, φ, β̃1, β̃2) =

(
ε,

1

4
arctan

(
ab±

√
∆

b2 − 1

)
+ O(ε),

−a∆ ∓ b
√

∆

a2 + b2
ε,

−b∆ ± a
√

∆

a2 + b2
ε

)
+ O(ε2)

n1 : (r2, φ, β̃1, β̃2) = (ε+ O(ε2), sign(b) arccos(a)/4 + O(ε),

−2aε+ O(ε2),−(b− sign(b)
√

1 − a2)ε+ O(ε2)).

Taking into account (2.16), we obtain expressions for β. If, in the formula for n1,
we replace sign(b) by −sign(b), then this gives the asymptotic for a neutral saddle
singularity of the period-4 cycle.

Generically, there are also global bifurcations near R4.

2.1.8. LPPD. Near a fold-flip bifurcation, the restriction of the map g to the
parameter-dependent center manifold is smoothly equivalent to the normal form
(2.18)(

w1

w2

)
7→

(
β1 + (1 + β2)w1 + a(β)w2

1 + b(β)w2
2 + c1(β)w3

1 + c2(β)w1w
2
2

−w2 + e(β)w1w2 + c3(β)w2
1w2 + c4(β)w3

2

)

+ O(‖w‖4), w ∈ R2.

A new branch predicted by (2.18) for a generic map g is a Neimark-Sacker of double
period that exists if be > 0 and has the asymptotic expression

(2.19) (x, y2, β1, β2) =

(
−c4
e
, 1,−b,−2b+ ec2 − 2(a+ e)c4

e

)
ε+ O(ε2).

As for the majority of the considered cases, there are also global bifurcations near
this codim 2 point.

2.1.9. LPNS. For a fold – Neimark-Sacker bifurcation, the critical normal form
on the center manifold is given by

(2.20)

(
w
z

)
7→
(
w + szz̄ + w2 + cx3

eiθ0z + awz + bzw2

)
+ O(‖(w, z)‖4), (w, z) ∈ R × C.

Depending on the coefficient values, several bifurcation scenarios are possible, which
all involve only global phenomena.

2.1.10. PDNS. Near a flip – Neimark-Sacker bifurcation, the restriction of the
map g to the parameter-dependent center manifold is smoothly equivalent to the
parameter-dependent normal form
(2.21)(

w
z

)
7→

(
−(1 + β1)w + c1(β)w3 + c2(β)w|z|2

eiθ(β)(1 + β2)z + c3(β)w2z + c4(β)z|z|2
)

+ O(‖(w, z)‖4),

(w, z) ∈ R × C,

where θ(0) = θ0. Besides global bifurcations, a Neimark-Sacker bifurcation curve of
double period for g is rooted at β = 0; it is always present. The asymptotic expression
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Table 3.1

Detection of codim 1 bifurcations of cycles.

Bifurcation Test function(s)

LP tn+1 = 0, det

(
FX

tT

)
6= 0

PD det(A + In) = 0
NS det(A � A − Im) = 0

BP det

(
FX

tT

)
= 0

of this curve is given by

(2.22) (w2, z, β1, β2) =
(
1, 0, c1, sign(c1)<(e−iθ0c3)

)
ε+ O(ε2).

2.1.11. NSNS. For a double Neimark-Sacker bifurcation, provided lθ0 6= jθ1 for
integer l and j with l + j ≤ 4, the critical normal form on the center manifold is

(
z1
z2

)
7→
(
eiθ0z1 + c1z1|z1|2 + c2z1|z2|2
eiθ1z2 + c3z2|z1|2 + c4z2|z2|2

)
+ O(‖z‖4), z ∈ C

2.(2.23)

Depending on the coefficient values, several bifurcation scenarios are possible in
parameter-dependent unfoldings, which all involve only global phenomena. For some
of them, one has to take into account fourth- and fifth-order terms.

3. Continuation of cycles.

3.1. Defining system and singularities. The iteration of (1.1) gives rise to a
sequence of points {x1, x2, x3, . . . , xK+1} in which xJ+1 = f(xJ , α). Each point x of
a cycle of period K then satisfies the fixed point equation for the K-th iterate

f (K)(x, α) − x = 0,

that we rewrite using (2.1) as

(3.1) g(x, α) − x = 0.

As in content, branches of period-K cycles are computed in cl matcont by a
variant of the Gauss-Newton continuation algorithm [1] applied to (3.1), see [6, 7].

To detect the bifurcations introduced in Section 2, as well as branch points of (3.1),
we use in cl matcont the standard test functions listed in Table 3.1, where t is the
tangent vector to the curve (3.1) in the X-space for X = (x, α)T , F (X) = g(x, α)−x,
A = gx is the Jacobian matrix of g = f (K), and � is the bialternate matrix product,
see e.g. [12], §4.4.4. We notice that det(A � A − Im), where m = 1

2 n(n − 1), also
vanishes at neutral saddles. We distinguish true Neimark-Sacker bifurcations from
neutral saddles when processing the NS-points.

3.2. Branch switching. In this section we consider the approximation of a new
cycle curve that emanates from a branch point BP for (3.1). The same algorithm is
used to switch at a PD-point for the period-K cycle to the period-2K cycle, since it
corresponds to a branch point for f (2K)(x, α) − x = 0. The method is similar to that
for branch points of equilibria and is presented here only for completeness; it is also
used in content.
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A solution X0 = X(s0) of

(3.2) F (X) = g(x, α) − x = 0

is called a simple singular point if FX(X0) has rank n− 1 . For system (3.2), we have
F 0

X = [gx(x0, α0)− In, gα(x0, α0)], and X0 = (x0, α0) is a simple singular point if and
only if, either

dimN(gx(x0, α0) − In) = 1, gα(x0, α0) ∈ R(gx(x0, α0) − In)

or

dimN(gx(x0, α0) − In) = 2, gα(x0, α0) /∈ R(gx(x0, α0) − In).

The first case is a codimension 2 situation, the second case has codimension 4, so for
practical purposes we consider only the first case.

Suppose we have a solution branch X(s) and let Xs0
= (x0, α0) be a simple

singular point. Then N(F 0
X) is two-dimensional and can be written as span {φ1, φ2}

where φ1, φ2 ∈ Rn are linearly independent. Also, N([F 0
X ]T ) is one-dimensional and is

spanned by a vector ψ ∈ Rn+1. Let F 0
Y Y be the bilinear form in the Taylor expansion

of F about X0. If Y (s) is any solution branch of (3.2) with Y (s0) = X0, then Ys(s0)
can be written as Ys(s0) = αφ1 + βφ2 for some α, β ∈ R. Differentiating the identity
F (Y (s)) = 0 twice and computing the scalar product with ψ at s0, we get

〈ψ, F 0
Y Y (αφ1 + βφ2)(αφ1 + βφ2)〉 = 0

or, equivalently,

(3.3) c11α
2 + 2c12αβ + c22β

2 = 0, ,

where cjk = 〈ψ, F 0
Y Y φjφk〉 for j, k = 1, 2.

Equation (3.3) is called the algebraic bifurcation equation (ABE ). The case c212 −
c11c22 < 0 is impossible, since at least one branch goes through X0. Thus, generically,
c212−c11c22 > 0, and Equation (3.3) has two real nontrivial, independent solution pairs,
(α1, β1) and (α2, β2), which are unique up to scaling. In this case we have a simple

branch point, where two distinct branches pass through X0.

The above procedure allows one to compute the normalized tangent vectors
Y1s(s0), Y2s(s0) of the two branches that pass through X0. Now if

|〈Y1s(s0), Xs(s0)〉| < |〈Y2s(s0), Xs(s0)〉|

then we conclude that Y1s(s0) is the tangent vector to the new branch; otherwise,
Y2s(s0) is the tangent vector.

4. Continuation of codimension one bifurcation curves. In cl matcont

LP, PD, and NS curves for period-K cycles are computed by the mentioned Gauss-
Newton continuation algorithm applied to minimally extended defining systems, cf.
[12]. These systems were first implemented, together with the standard extended

defining systems, in content [4]. We have adopted in cl matcont the most robust
and efficient methods tested there. Here follows a brief description of the defining
systems, since we need to refer to them in Section 6.
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The limit point curve and period-doubling curve are both defined by the following
system

(4.1)

{
g(x, α) − x = 0,
s(x, α) = 0,

where (x, α) ∈ Rn+2, g is given by (2.1), while s is obtained by solving one of the
algebraic systems

(4.2)

(
gx(x, α) ∓ In wbor

vT
bor 0

)(
v
s

)
=

(
0n

1

)
,

where wbor , vbor ∈ Rn are chosen such that the matrix in (4.2) is nonsingular. One
should take the “−” sign in (4.2) for the LP-curve and the “+” sign for the PD-curve.
The derivatives of s can be obtained easily from the derivatives of gx(x, α):

(4.3) sz = −wT (gx)zv,

where z is a state variable or an active parameter and w is obtained by solving

(4.4)

(
gT

x (x, α) ∓ In vbor

wT
bor 0

)(
w
s

)
=

(
0n

1

)
.

We note that the quantities called s in (4.2) and (4.4) are the same since they are
both equal to the bottom right element of the inverse of the square matrix in (4.2).

The Neimark-Sacker and neutral-saddle curves are defined by the following system

(4.5)





g(x, α) − x = 0
si1j1(x, α, κ) = 0
si2j2(x, α, κ) = 0,

i.e., by n + 2 equations for the (n + 3) unknowns x ∈ Rn, α ∈ R2, κ ∈ R. Here
(i1, j1, i2, j2) ∈ {1, 2} and si,j are the components of S:

S =

(
s11 s12
s21 s22

)

which is obtained by solving

(4.6)

(
(gx)2(x, α) − 2κgx + In Wbor

V T
bor O

)(
V
S

)
=

(
0n,2

I2

)
,

where Vbor ,Wbor ∈ Rn×2 are chosen (and can be adapted) so that the matrix in (4.6)
is nonsingular. Along the Neimark-Sacker curve, κ is the real part of the critical
multipliers e±iθ. The derivatives of sij can be obtained easily from the derivatives of
gx(x, α) as before.

Table 4.1 specifies test functions used in cl matcont to detect and locate rele-
vant codim 2 singularities along the codim 1 bifurcation curves. Here a and b are the
critical normal form coefficients given in Table 2.1, where q and p should be replaced
by the vectors v and w, respectively, computed in (4.2) and (4.4). The test function
c is given by c = <(d), where d is also specified in Table 2.1. Matrix A1 is defined
as A1 = A|N⊥ , where A = gx and N⊥ is the orthogonal complement in Rn of the
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Table 4.1

Detection of codim 2 bifurcations of cycles.

LP PD NS

CP a = 0
DPD b = 0
CH c = 0
R1 〈w, v〉 = 0 det(A − In) = κ − 1 = 0
R2 〈w, v〉 = 0 det(A + In) = κ + 1 = 0

R3 κ + 1

2
= 0

R4 κ = 0
LPPD det(A + In) = 0 det(A − In) = 0
LPNS det(A � A − Im) = 0 det(A − In) = 0, κ − 1 6= 0
PDNS det(A � A − Im) = 0 det(A + In) = 0, κ + 1 6= 0
NSNS det(A1 � A1 − Im1

) = 0

two-dimensional eigenspace associated with the pair of multipliers with unit product
of AT ; m1 = 1

2 (n− 2)(n− 3).

It is possible and sometimes necessary to adapt the defining system while contin-
uing a bifurcation curve, i.e., to update the auxiliary variables used in the defining
system of the computed branch. The bordering vectors vbor and wbor may require
updating since they must ensure that the matrices in (4.2), (4.4) are nonsingular.
Updating is done in cl matcont by replacing vbor and wbor with the normalized
vectors v, w computed in (4.2), (4.4), respectively. Updating of V and W in (4.6)
is done similarly, while (i1, j1, i2, j2) are updated in such a way that the linearized
system of (4.5) is as well-conditioned as possible.

5. Branch switching at codim 2 points. As it was indicated in Section 2.1,
in codim 2 points branches of various codim 1 bifurcation curves are rooted. The
problem of branch switching is thus to specify one starting point near the curve from
which the continuation code converges to a point on the curve.

Here we address the problem of branch switching at codim 2 bifurcation points
of maps, when the emanating curve corresponds to a local bifurcation. These cases
involve degenerate flip, 1:2 resonance, 1:4 resonance, fold-flip and flip-Neimark-Sacker
bifurcations only. The asymptotic expressions for the new curves for the parameter-
dependent normal form are given in Section 2.1. Combining this information with
a parameter-dependent center-manifold reduction, we will obtain appropriate initial
continuation data for the original map.

In several cases there are also global bifurcations involved. We will not try to
switch to those branches, since the continuation of these global bifurcations is not
supported by the current version of cl matcont.

Here we will focus only on the parameter-dependent computations and assume
full knowledge of the critical center-manifold and the critical normal form coefficients,
see [14],[17]. All cases may look alike, but all have their own subtle features. The
solvability conditions imposed coincide with the transversality of the original family
to the bifurcation manifold.

5.1. Parameter-Dependent Center-Manifold Reduction. In all our cases,
the map g(x, α) : Rn ×R2 → Rn, where g is defined by (2.1), satisfies g(x0, α0) = x0,
and its Jacobian matrix A = gx(x0, α0) has at most 3 multipliers on the unit circle.
Furthermore we know a parameter-dependent smooth normal form G(w, β) for the
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corresponding bifurcation, see section 2.1. Then we assume a relation

(5.1) α− α0 = V (β) = v10β1 + v01β2 +
1

2
v20β

2
1 + v11β1β2 +

1

2
v02β

2
2 + O(‖β‖3)

between the original and the unfolding parameters. Note that V incorporates linear
scalings. The analysis will show that v20 and v11 need not be computed in the cases
under consideration. Occasionally, we interpret β2 = β̄1 as one complex parameter;
in such cases: v01 = v̄10 ∈ C

2.

To find a parameter-dependent center-manifold as the graph of x = x0 +H(w, β)
we make a Taylor expansion of the homological equation

(5.2) g(x0 +H(w, β), α0 + V (β)) = H(G(w, β), β)

in w and β at (w, β) = (0, 0). All coefficients must vanish and this leads to a solution
for H and V . A similar technique was introduced in [3], §11, to switch at codim 2
bifurcations of equilibria in ODEs.

We expand g as in (2.2) and write

(5.3) H(w, β) =
∑

|µ|+|ν|≥1

hµ,νw
µβν ,

where µ, ν are multi-indices.

It will be convenient to introduce some notation. Let p denote an eigenvector of
AT corresponding to the eigenvalue −1 of A. We will then write Γ : Rn+2 → Rn for
Γ(q, v) = 〈p,A1(q, v) +B(q, (In −A)−1J1v)〉 and γi = Γ(q, ei) for the evaluation of Γ
on the standard basis vectors in R2. If γi 6= 0 for i = 1, 2 then s1 = 1

(γ2

1
+γ2

2
)
(γ1, γ2)

T

and s2 = (−γ2, γ1)
T compose a new orthogonal basis in R2.

5.2. Degenerate Flip. We start with the linear part of V (β). The homological
equation (5.2) provides the following systems to be solved

(A− In)[h010, h001] = −J1[v10, v01],

where [a, b] is a n × 2-matrix with columns a, b ∈ Rn. This can be solved formally
with [h010, h001] = (In −A)−1J1[v10, v01] and next, we obtain

(A+ In)[h110, h101] = −[q, 0] −A1(q, [v10, v01]) −B(q, [h010, h001])

= −[q, 0] −A1(q, [v10, v01]) −B(q, (In −A)−1J1[v10, v01]).

First we remark that the systems are singular and the RHS must be orthogonal to
the adjoint eigenvector p. Second, we see that the operator Γ(q, v) appears naturally.
The above systems can now be rewritten as

[γ1, γ2][v10, v01] = [−1, 0].

The general solution is given by

v10 = −s1 + δ1s2, v01 = δ2s2, δ1, δ2 ∈ R.
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The constants δ1, δ2 can only be fixed at a higher order, so we proceed with

(5.4)

(A− In)h210 = +2h200

− [B1(q, q, v10) +B(h200, h010) +A1(h200, v10)
+ 2B(q, h110) + C(q, q, h010)] ,

(A− In)h201 = − [B1(q, q, v01) +B(h200, h001) +A1(h200, v01)
+ 2B(q, h101) + C(q, q, h001)] ,

(A+ In)h310 = −3h300 − [D(q, q, q, h010) + 3C(q, q, h110) + C1(q, q, q, v10)
+3B(h110, h200) +B(h300, h010) + 3B1(h200, q, v10)
+A1(h300, v10) + 3C(h200, q, h010) + 3B(h210, q)] ,

(A+ In)h301 = 6q − [D(q, q, q, h001) + 3C(q, q, h101) + C1(q, q, q, v01)
+3B(h101, h200) +B(h300, h001) + 3B1(h200, q, v01)
+A1(h300, v01) + 3C(h200, q, h001) + 3B(h201, q)] .

Since v10, v01 appear linearly in these equations (via the multilinear functions), we
have a linear system to be solved for δ1, δ2.

Now the linear part of V (β) is obtained, but from the asymptotic expression (2.6)
for the curve we notice that the approximation requires v02 as well. We have

(A− In)h002 = −J1v02 − z1,
(A+ In)h102 = −B(q, h002) −A1(q, v02) − z2,

where

z1 = B(h001, h001) + J2(v01, v01) + 2A1(h001, v01),

z2 = C(q, h001, h001) + 2B(h101, h001) + 2A1(h101, v01)

+ 2B1(q, h001, v01) +A2(q, v01, v01).

As before, the first equation can be solved formally and we substitute the result into
the second. So formally we have h002 = (In − A)−1(z1 + J1v02) and the solvability
condition for the second equation yields

(γ1 γ2)v02 = −〈p, z2 +B(q, (In −A)−1z1)〉.

Thus we find v02 = −〈p, z2 + B(q, (In − A)−1z1〉s1 + δ3s2. The constant δ3 can be
found solving the systems at orders w2,3β2

2 of the homological equation, which are
(5.5)

(A− In)h202 = −{B1(q, q, v02) +A1(h200, v02) + 2B(h102, q)
+ C(q, q, h002) +B(h200, h002)}
− [D(q, q, h001, h001) + 4C(q, h101, h001) + C(h001, h001, h200)
+2B(h201, h001) + 2B(h101, h101) + 2C1(q, q, h001, v01)
+2B1(h200, h001, v01)
+4B1(q, h101, v01) + 2A1(h201, v01) +B2(q, q, v01, v01)
+ A2(h200, v01, v01)] ,
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and
(5.6)
(A+ In)h302 = −{D(q, q, q, h002) + 3C(q, q, h102) + 3C(h200, h002, q)

+3B(h202, q) + 3B(h200, h102) +B(h300, h002)
C1(q, q, q, v02) + 3B1(h200, q, v02) +A1(h300, v02)} + 12h101

− [E(q, q, q, h001, h001) + 6D(q, q, h101, h001)
+3D(h001, h001, h200, q)
+C(h001, h001, h300) + 6C(h101, h101, q) + 6C(h001, h101, h200)
+6C(h001, h201, q) + 6B(h201, h101) + 2B(h301, h001)
+2D1(q, q, q, h001, v01) + 6C1(q, q, h101, v01)
+6C1(q, h001, h200, v01) + 6B1(h201, q, v01) + 2B1(h300, h001, v01)
+6B1(h200, h101, v01) + 2A1(h301, v01) + C2(q, q, q, v01, v01)
+3B2(h200, q, v01, v01) +A2(h300, v01, v01)] .

Notice that the expressions between {. . . } in equations (5.5) and (5.6) have the same
structure as in (5.4). Thus we do not require any extra solvability conditions. The
part between [. . . ] involves known quantities and is easily evaluated. To find δ3 also
the terms involving h002 and h102 between {. . . } depending on z1 and z2 have to be
computed.

5.3. 1:2 Resonance. As before, the first four linear systems are

(A− In)[h0010, h0001] = −J1[v10, v01],

(A+ In)[h1010, h1001] = [q1, 0] −A1(q0, [v10, v01]) −B(q0, [h0010, h0001]).

As for the degenerate flip, we use the formal solution

[h0010, h0001] = (In −A)−1J1[v10, v01].

The solution for v10 and v01 is now

v10 = s1 + δ1s2, v01 = δ2s2, δ1, δ2 ∈ R.

The two remaining systems at linear order in phase variables are

(A+ In)[h0110, h0101] = [h1010, q1 +h1001]−A1(q1, [v10, v01])−B(q1, [h0010, h0001]).

Now we insert the si and write

Q1 =〈p1, A1(q0, s1) +B(q0, (A− In)−1J1s1)〉, Q2 = Γ(q1, s1)

Q3 =〈p1, A1(q0, s2) +B(q0, (A− In)−1J1s2)〉, Q4 = Γ(q1, s2).

A little algebra shows that

δ1 = −
(
Q1 +Q2

Q3 +Q4

)
, δ2 =

1

Q3 +Q4
.

One can check that the transversality of the original family of maps to the bifurcation
manifold coincides with the condition γ1γ2(Q3 +Q4) 6= 0.
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5.4. 1:3 Resonance. We follow a slightly different procedure here. We want to
find V (β) = vβ + v̄β̄, where β = β1 + iβ2. Then we treat β and β̄ as independent
variables which makes it slightly easier to find the solutions. As the final V (β) should
be real, it follows that v = v10 = v̄01.

Let λ = e2iπ/3 and introduce Aq = λq, AT p = λ̄p, 〈p, q〉 = 1. As before, the first
linear systems resulting from (5.2) are given by

(A− In)[h0010, h0001] = −J1[v10, v01],

(A− λIn)[h1010, h1001] = [q, 0] −A1(q, [v10, v01]) −B(q, [h0010, h0001]),

and two complex conjugated systems for h0101 and h0110. With the same approach
we will now find complex γi and rewriting the system for v = v10 = v̄01 we have
(γ1, γ2)v = 1, (γ1, γ2)v̄ = 0, with v = (γ̄2,−γ̄1)/(γ1γ̄2 − γ2γ̄1) as solution. Finally
x = zq + z̄q̄ relates the coordinates of the normal form and the original map.

5.5. 1:4 Resonance. Replacing λ = i we can repeat the procedure for the case
of 1:3 resonance.

5.6. Fold-Flip. Let Aq1,2 = ±q1,2, A
T p1,2 = ±p1,2, 〈p1, q1〉 = 〈p2, q2〉 = 1. The

necessary systems to solve from the homological equation (5.2) are

(A− In)[h0010, h0001] = [q1, 0] − J1[v10, v01],(5.7)

(A− In)[h1010, h1001] = [h2000, q1] −A1(q1, [v10, v01])(5.8)

−B(q1, [h0010, h0001]),

(A+ In)[h0110, h0101] = [h1100, 0] −A1(q2, [v10, v01])(5.9)

−B(q2, [h0010, h0001]).

First remark that all matrices in the left-hand sides are singular. If we take (γ1, γ2) =
pT
1 J1 and form the orthogonal vectors s1 and s2 as before then v10 = s1 + δ1s2 and
v01 = δ2s2 solve system (5.7). Bordering the singular matrix (A − In) one can solve
for h0010 and h0001. Any multiple of q1 can be added to h0010 and h0001, so we use
h0010 = (A − In)INV (q1 − J1v10) + δ3q1 and h0010 = −(A − In)INV (J1v01) + δ4q1.
We will use this freedom to solve equations (5.8) and (5.9) simultaneously for all δ’s.
Note that h2000 and h1100 are also found using bordered systems chosen, but such
that 〈p1, h2000〉 = 〈p2, h1100〉 = 0.

Then we obtain the following 4−dimensional system
(5.10)

(
L 02×2

02×2 L

)



δ1
δ3
δ2
δ4


 =




−〈p1, A1(q1, s1) +B(q1, (A− In)INV (q1 − J1s1))〉
−〈p2, A1(q2, s1) +B(q2, (A− In)INV (q1 − J1s1))〉

1
0


 ,

where L is defined by

(5.11) L =

(
〈p1, A1(q1, s2) +B(q1, (In −A)INV J1s2)〉 〈p1, B(q1, q1)〉
〈p2, A1(q2, s2) +B(q2, (In −A)INV J1s2)〉 〈p2, B(q1, q2)〉

)
.

Notice that 2a(0) = 〈p1, B(q1, q1)〉 and that q1 can be chosen such that e(0) =
〈p2, B(q1, q2)〉 = 1. The condition γ1γ2 det(L) 6= 0 is equivalent with the transversality
to the bifurcation manifold of the family g(x, α).
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5.7. Flip-Neimark-Sacker. Introduce Aq1 = q1, A
T p1 = p1, 〈p1, q1〉 = 1, and

Aq2 = eiθ0q2, A
T p2 = e−iθ0p2, 〈p2, q2〉 = 1. The linear systems obtained from the

homological equation (5.2) are

(A− In)[h00010, h00001] = −J1[v10, v01],

(A+ In)[h10010, h10001] = [−q1, 0] −A1(q1, [v10, v01]) −B(q1, [h00010, h00001]),

(A− eiθ0In)[h01010, h01001] = [0, q2e
iθ0 ] −A1(q2, [v10, v01]) −B(q2, [h00010, h00001]).

The same approach as for the degenerate flip and 1:2-resonance cases is to substitute
the formal solution of the first equation into the second and we write

v10 = −s1 + δ1s2, v01 = δ2s2,

where the constants δi are to be found from the last equation. We compute

Qi = 〈p2, A1(q2, si) +B(q2, (In −A)−1J1si)〉

for i = 1, 2. To obtain the derivative of the modulus and not the argument of the
complex multiplier, we proceed similar to [24], Appendix, but adapt to the case of
maps. Then we find the following real solution for δi

(5.12) δ1 =
<(e−iθ0Q1)

<(e−iθ0Q2)
, δ2 = − 1

<(e−iθ0Q2)
.

6. Algorithmic and numerical details. In this section we consider the com-
putation of the derivatives and tensor-vector products, which are not only necessary
for the continuation, but also for the computation of the critical normal form coeffi-
cients at codim 1 and 2 bifurcation points.

6.1. Recursive formulas for derivatives of iterates of maps.

6.1.1. Derivatives with respect to phase variables. The iteration of (1.1)
gives rise to a sequence of points

{x1, x2, x3, . . . , xK+1},

where xJ+1 = f (J)(x1, α) for J = 1, 2, . . . ,K. Suppose that symbolic derivatives of f
up to order 5 can be computed at each point. We write

A(xJ )i,j =
∂fi

∂xj
(xJ ), B(xJ )i,j,k =

∂2fi

∂xj∂xk
(xJ ), C(xJ )i,j,k,l =

∂3fi

∂xj∂xk∂xl
(xJ ),

and similarly for D(xJ ) and E(xJ ).
We want to find recursive formulas for the derivatives of the composition (1.2), i.e.

the coefficients of the multilinear functions in (2.2) that we now denote by A(J), B(J),
and C(J) to indicate the iterate explicitly:

(A(J))i,j =
∂(f (J)(x1))i

∂xj
, (B(J))i,j,k =

∂2(f (J)(x1))i

∂xj∂xk
, (C(J))i,j,k,l =

∂3(f (J)(x1))i

∂xj∂xk∂xl
,

and D(J) and E(J) are analogously defined. What follows is a straightforward appli-
cation of the Chain Rule.
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For J = 1 we have A(1) = A(x1), B(1) = B(x1) and C(1) = C(x1) and these are
known. Now, as

(6.1) A
(J)
i,j =

∑

k

∂fi

∂xk
(f (J−1)(x1))

∂(f (J−1)(x1))k

∂xj
=
∑

l

A(xJ )i,kA
(J−1)
k,j ,

we see that

(6.2) (F (x, α))x = A(xK)A(xK−1) · · ·A(x1) − In,

where F (x, α) = f (K)(x, α) − x.
For the second order derivatives we first write B(J) once in coordinates

B
(J)
i,j,k =

∂

∂xj

∂

∂xk
fi(f

(J−1)(x))

=
∑

l,m

∂2fi

∂xl∂xm
(xJ )

∂(f (J−1))m

∂xj

∂(f (J−1))l

∂xk
+
∑

l

∂fi

∂xl
(xJ )

∂2(f (J−1))l

∂xj∂xk
.

For any two vectors q1 and q2, we can multiply the previous expression by (q1)j(q2)k

and sum over (k, l) to obtain

(6.3) B(J)(q1, q2) = B(xJ )(A(J−1)q1, A
(J−1)q2) +A(xJ )B(J−1)(q1, q2).

AsA(xJ ) andB(xJ ) are known, (6.3) allows to compute the multilinear formB(K)(q1, q2)
recursively.

Let qi, i = 1, 2, 3, 4, 5, be given vectors. Multilinear forms with higher order
derivatives can be computed with

(6.4)
C(J)(q1, q2, q3) = C(xJ )(A(J−1)q1, A

(J−1)q2, A
(J−1)q3)+

B(xJ )(B(J−1)(q1, q2), A
(J−1)q3)

∗+

A(xJ )(C(J−1)(q1, q2, q3)),

where ∗ means that all combinatorially different terms have to be included, i.e.,

B(xJ )(B(J−1)(q1, q2), A
(J−1)q3)

∗ = B(xJ )(B(J−1)(q1, q2), A
(J−1)q3) +

B(xJ )(B(J−1)(q1, q3), A
(J−1)q2) +

B(xJ )(B(J−1)(q2, q3), A
(J−1)q1).

For D(J) we get

(6.5)

D(J)(q1, q2, q3, q4) = D(xJ )(A(J−1)q1, A
(J−1)q2, A

(J−1)q3, A
(J−1)q4)+

C(xJ )(B(J−1)(q1, q2), A
(J−1)q3, A

(J−1)q4)
∗+

B(xJ )(B(J−1)(q1, q2), B
(J−1)(q3, q4))

∗+
B(xJ )(C(J−1)(q1, q2, q3)), A

(J−1)q4)
∗+

A(xJ )D(J−1)(q1, q2, q3, q4).

Finally, for E(J) holds
(6.6)
E(J)(q1, q2, q3, q4, q5) = E(xJ )(A(J−1)q1, A

(J−1)q2, A
(J−1)q3, A

(J−1)q4, A
(J−1)q5)+

D(xJ )(B(J−1)(q1, q2), A
(J−1)q3, A

(J−1)q4, A
(J−1)q5)

∗+
C(xJ )(B(J−1)(q1, q2), B

(J−1)(q3, q4), A
(J−1)q5)

∗+

C(xJ )(C(J−1)(q1, q2, q3), A
(J−1)q4, A

(J−1)q5)
∗+

B(xJ )(C(J−1)(q1, q2, q3), B
(J−1)(q4, q5))

∗+

B(xJ )(D(J−1)(q1, q2, q3, q4))(A
(J−1)q5)

∗+

A(xJ )(E(J−1)(q1, q2, q3, q4, q5)).
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The multilinear forms A(K)(q1), B
(K)(q1, q2), C

(K)(q1, q2, q3), D
(K)(q1, q2, q3, q4)

and E(K)(q1, q2, q3, q4, q5) are then used in the computations of the normal form co-
efficients for codim 1 and codim 2 bifurcations of period-K cycles and also in the
branch switching.

6.1.2. Derivatives with respect to parameters. If enough symbolic deriva-
tives of f are available, then matcont computes the expressions involving J1 and
A1 in (2.2) symbolically. The idea is as follows. Taking the derivative of (2.1) with
respect to αk, gives

(6.7)
∂(f (J)(x1, α))

∂αk
=

∂f

∂αk
(xJ , α) +

∂f

∂x
(xJ , α)

∂(f (J−1)(x1, α))

∂αk
,

which is recursively computable. Also mixed derivatives, which are necessary for
continuation and branch switching, can be found recursively:

(6.8)
∂2(f (J)(x1, α))

∂αk∂x
=

∂2f

∂αk∂x
(xJ , α) +

∂2f

∂x2
(xJ , α)

∂(f (J−1)(x1, α))

∂αk
.

In fact, the recursion is not applied to (6.8) itself, but to its product with a fixed
vector.

This is sufficient for all continuations of fixed points and their codimension 1
bifurcations. It is also sufficient for all cases of branch switching from codimension 2
points, except for the case of degenerate flip. For this case, we fall back to a finite
difference approximation. Since it is only used in the prediction step for which high
accuracy is not needed, this seems acceptable.

6.2. Recursive formulas for derivatives of the defining systems for con-

tinuation. For the continuation of fixed points and cycles we need the derivatives of
(2.1) which can be computed from (6.2) and (6.7).

Now, we consider the derivatives of s (as defined in (4.1)) with respect to z, a
state variable or parameter. The flip and Neimark-Sacker cases can be handled in a
similar way. Let M be the matrix in (4.2). By taking derivatives of (4.2) with respect
to z we obtain

(6.9) M

[
vz

sz

]
+

[
A

(K)
z 0
0 0

] [
v
s

]
= 0.

Using (4.4) we obtain

(6.10) sz = −wT (A(K))zv.

If z represents one of the state variables, then sxi
= −〈w,B(K)(ei, v)〉 as computed

in section 6.1. When z is a parameter αk we can write

(6.11) sαk
=

K∑

J=1

CJ ,

where

(6.12) CJ = −wT fx(xK) · · · (fx(xJ ))αk
fx(xJ−1) · · · fx(x1)v

where J = 1, . . . ,K. In this expression

(6.13) (fx(xJ ))αk
= [fx(f (J)(x1, α))]αk

= fxα(xJ , α) +B(xJ )TJ
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where TJ is a vector, that can be recursively defined by

(6.14) TJ = fαk
(xJ−1, α) +A(xJ−1)TJ−1, T1 = 0.

Summarizing, for the computation of sα we need to compute fx, fαk
, fxx, fxαk

in all
iteration points x1, . . . , xK , and given these compute TJ for J = 1, . . .K. Then

(6.15) CJ = −wTA(xK) · · · (fxαk
(xJ ) +B(xJ )TJ)A(xJ−1) · · · A(x1)v

and sαk
is computed via (6.11).

6.3. Numerical computation of the directional derivatives. If symbolic
derivatives of the original map are not available, then finite differences have to be
used. However not the full tensors are needed, but the multilinear forms evaluated on
vectors which can be computed with directional derivatives and central finite differ-
ences. This is an option of last resort and which is not reliable for very high iterates.
For a general discussion of directional derivatives we refer to [14]. Here we only ex-
plain how we choose an increment h in the computation of the directional derivatives
Aq,B(q, q), C(q, q, q), D(q, q, q, q) and E(q, q, q, q, q) for a given function f : Rn → Rn.
In fact, we want to choose h to minimize the combination of truncation and roundoff
errors in the computation of the multilinear functions A, B, C, D and E. The analysis
for A, B, and C is similar to that in [13], Appendix D.

We start with the Taylor expansion of f(x± hq) w.r.t. h

(6.16) f(x± hq) = f(x) ± hfxq +
h2

2
fxxqq ±

h3

6
fxxxqqq + O(h4).

A little algebra yields

(6.17) fxq =
f(x+ hq) − f(x− hq)

2h
− h2

6
fxxxqqq + O(h4).

An unavoidable consequence of using numerical differentiation formulas like (6.17)
is roundoff error. Taking into account this error and ignoring the O(h4) term, the
approximation formula (6.17) can be written as

(6.18) fxq =

(
f(x+ hq) − f(x− hq)

2h

)

fl

+ et(h) + er(h),

where fl is the floating point approximation, er(h) the roundoff error and et(h) is the
truncation error. The total error R(h) is bounded by

(6.19) ‖R(h)‖ ≤ ‖et(h)‖ + ‖er(h)‖.

The roundoff error comes from the subtraction f(x + hq) − f(x − hq). If C0 is the
norm of f and εm is machine precision, then ‖er(h)‖ ≤ C1C0εm/2h, where C1 is
a modest constant. For the truncation error we assume that ‖fxxxqqq‖ is of the
order of f , so ‖et(h)‖ ≤ h2C0C2/6. If also C2 is a modest constant, then the choice

hmin ≈ ε
1/3
m minimizes ‖R(h)‖. Using double-precision we have εm ≈ 10−15 and thus

h ≡ h1 = 10−5, which is the default value in cl matcont.
Performing a similar procedure for derivatives of order k yields hk ≈ (εm)1/(k+2) =

(h1)
3/(k+2) as an optimal stepsize. In cl matcont, the Increment (= h1) can be

adjusted by the user. The increments of the higher-order derivatives are then adapted
according to the above formulas.
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7. Examples. Here we give two examples illustrating the developed techniques
and their implementation in cl matcont.

7.1. Generalized Hénon map. Consider the map

(7.1) F :

(
x1

x2

)
7→
(

x2

α− βx1 − x2
2 + rx1x2

)
,

where r is in principle not too large. This map appears in numerous theoretical studies
of degenerate homoclinic bifurcations. For bifurcation analysis of this map with r = 0
we refer to [9] and to [10] in general. It is known that this planar map exhibits the
first four treated codim 2 bifurcations. Let us start with the 1:2 resonance and the
fold-flip. For these cases we can apply the algorithms analytically, i.e., with r as a
parameter. We note that q = (1,−1)T in both cases is an eigenvector of the Jacobian
matrix corresponding to eigenvalue −1.

For the 1:2 resonance we have (x1, x2) = (0, 0) and (α0, β0) =
(

4(3−r)
(2−r)2 ,

2+r
2−r

)
. The

critical center manifold reduction yields, see [10],

(7.2) C1 = −1 + r

2
, D1 =

1

4
(6 + 5r + r2).

Applying the algorithm from Section 5.3, we find

(7.3) v10 =

(
−2
2−r

−1

)
, v01 =

(
−4(3−r)
(2−r)2

− −2
2−r

)
, p̃ =

(
1

− 2+r+r2

2(1+r)

)
ε,

So that our prediction for the NS bifurcation curve of the period-2 cycle is

(x, y) =

(
2

2 − r
,

2

2 − r

)
+

√
2ε

1 + r
q,

(α, β) =

(
4(3 − r)

(2 − r)2
,
2 + r

2 − r

)
+

(
2(4 + 3r2 − r3)

(1 + r)(2 − r)2
,

2r2

(1 + r)(2 − r)

)
ε.

The fold-flip bifurcation occurs for (x1, x2) = (0, 0) at (α0, β0) = (0,−1). The
critical center manifold reduction yields

(7.4) a =
1

2
(1 − r), b =

1

2
(1 + r), c2 = −1

4
(1 − r), c4 =

1

4
(1 + r)2.

Then applying the algorithm from Section 5.6, we find

(7.5) v10 =

( −2
r2

2−r

)
, v01 =

(
0
−2
2−r

)
, p̃ =

(
−1

(1−r)r2

2(1+r)

)
ε.

Therefor our prediction for the NS bifurcation curve of the period-2 cycle emanating
here is

(x, y) = (0, 0) +

√
2ε

1 + r
q, (α, β) = (0,−1) +

(
2,

−2r2

(1 + r)(2 − r)

)
ε.
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Let us compare the predictions with the exact expressions for these curves. Con-
sider the following set

α = (1 + β)(β − 1 − r + r2)/r2,(7.6)

x1 =
r(β + 1) +

√
(r − 2)(β + 1)(2 + r − β(2 − r))

2r
,(7.7)

x2 =
r(β + 1) −

√
(r − 2)(β + 1)(2 + r − β(2 − r))

2r
,(7.8)

when

1

4
(3 − r)(β + 1)2 ≤ α ≤ 5 + 4r + r2 + 2β(3 + r) + β2(5 + 2r − r2)

2(2 + 2r + r2)
.

It consists of two different pieces, where a Neimark-Sacker bifurcation of a cycle of
period 2 occurs. If we take 0 ≤ ε� 1 and consider the linear approximations of (7.6)

near β = −1− r2

2−r ε̃ and β =
(

2+r
2−r

)
+ r2

2−r ε̃ we find for the 1:2 resonance

(α, β) =

(
4(3 − r)

(2 − r)2
,
2 + r

2 − r

)
+

(
4 + 3r2 − r3

(2 − r)2
,
r2

2 − r

)
ε̃+ O(ε̃2).

(x, y) =

(
2

2 − r
,

2

2 − r

)
+
√
ε̃q + O(ε̃)

and for the fold-flip bifurcation

(α, β) = (0,−1) +

(
1 + r,

−r2
2 − r

)
ε̃+ O(ε̃2).

(x, y) = (0, 0) −
√
ε̃q + O(ε̃)

So up to positive factor our results coincide up to first order in ε.

For the other two cases a numerical approach is more illuminating. There is a
period-doubling curve of period 4 cycles along which there are two degenerate flips
near (α, β) = (3,−1). For r = 0 we found a fold curve and a period-doubling curve
of cycles of period 4. Then we produced the approximations to the fold curves of
the 8-th iterates in the degenerate flip points and from these easily continued the fold
curves of cycles of period 8. In Figure 7.1(a) we show the continuation results and also
the approximation curves. For the 1:4 resonance we used r = −0.1. For this specific
value of r, the 1 : 4-resonance involves the mentioned local branches. In Figure 7.1(b)
we show the continuation results and also the approximate curves.

7.2. Leslie–Gower competition model. The origin of this example is in [16,
19, 11]. It has been found in biological experiments that two species of flour beetles can
coexist under strong competition for the same food. This was rather unexpected at
the time and several models were built to explain this phenomenon. One of the ideas
proposed in [11] and [23] was to use an age-structured population model. For general
background we refer to [5]; the model that we actually use is a four-dimensional map
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Fig. 7.1. The straight lines are computed with cl matcont, the dashed lines are the predictions

from the switching algorithms.

MLG (7.9) with 14 parameters described in [23]:

(7.9) MLG :




j
a
y
z


 7→




j′

a′

y′

z′


 =




b1a

(1 + cjjj + cjaa+ cjyy + cjzz)
(1 − µj)j + (1 − µa)a

b2z

(1 + cyjj + cyaa+ cyyy + cyzz)
(1 − µy)y + (1 − µz)z




This is the Leslie–Gower competition model for the interaction between the juveniles
(j) and adults (a) of one species of the flour beetle Tribolium and the juveniles (y)
and adults (z) of another species for the same food. Each species has its own juvenile
recruitment rate b1 > 0, b2 > 0, juvenile death rate µj and µy, and adult death rate
µa and µz . For biological reasons we have

(7.10) 0 < µj , µa, µy, µz < 1.

The other coefficients cjj , cja, cjy , cjz and cyj , cya, cyy, cyz describe the competition.
They are all strictly positive. By assumption, the competition does not affect the
adults of either species. As in [23], we will study the influence of the coefficients cyj

and cjy on the behavior of MLG in a case where all other parameters are fixed. In
other words, we study the role of the competition between juveniles alone.

The origin (0, 0, 0, 0) is a fixed point of (7.9) but is of little interest. The model
also has ‘horizontal’ fixed points, i.e., fixed points of the form (j∗, a∗, 0, 0) given by

(7.11) j∗ =
b1(1 − µj) − µa

µacjj + cja(1 − µj)
, a∗ =

1 − µj

µa
j∗ =

b1(1 − µj)
2 − µa(1 − µj)

µa(µacjj + cja(1 − µj))
,

where j∗, a∗ > 0 (i.e., biologically meaningful) when

b1(1 − µj) > µa.

Similarly, there are unique ‘vertical’ fixed points of the form (0, 0, y∗, z∗) given by

(7.12) y∗ =
b2(1 − µy) − µz

µzcyy + cyz(1 − µy)
, z∗ =

1 − µy

µz
y∗ =

b2(1 − µy)2 − µz(1 − µy)

µz(µzcyy + cyz(1 − µy))
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Table 7.1

Parameter values for the Leslie–Gower model.

b1 = 20 cjj = 0.36 b2 = 18 cja = 0.55 cjz = 0.23 µj = 0.23
µa = 0.72 cya = 0.08 cyy = 0.18 cyz = 0.26 µy = 0.29 µz = 0.98

These are biologically meaningful if y∗, z∗ > 0, i.e., when

b2(1 − µy) > µz .

Furthermore there exists a unique coexistence fixed point (j∗, a∗, y∗, z∗) with

j∗ =
γ(b2β − 1) − (b1α− 1)η

δγ − εη
,

a∗ = α

(
γ(b2β − 1) − (b1α− 1)η

δγ − εη

)
,

y∗ =
−ε(b2β − 1) + (b1α− 1)δ

δγ − εη
,

z∗ = β

(−ε(b2β − 1) + (b1α− 1)δ

δγ − εη

)
,

provided

(7.13) H ≡ δγ − εη 6= 0,

where

α =
1 − µj

µa
, β =

1 − µy

µz
, ε = cjj + cjaα

and

γ = cjy + cjzβ, δ = cyj + cyaα, η = cyy + cyzβ.

The equation H = 0 defines a hyperbola in (cyj , cjy) space.
We will study the overall dynamics of the model for the parameter values specified

in Table 7.1. The parameters cjy and cyj will vary.
First we consider the horizontal and the vertical fixed points and their stability.

For all values of cjy and cyj , the fixed point obtained from (7.11)

FH = (21.50285631, 22.99611022, 0, 0)

remains unchanged since cjy and cyj do not appear in (7.11). For the given model
parameters, the horizontal fixed point is stable if cyj > cyj0, where cyj0 = 0.474477674.
It is biologically plausible that the horizontal fixed point is stable only if the juveniles
of the first species suppress the juveniles of the second species to a sufficient degree.
The vertical fixed point (7.12) is stable if cjy > cjy0, where cjy0 = 0.4571312026.

Now we consider the coexistence fixed point (j∗, a∗, y∗, z∗), starting the continu-
ation from

FC = (16.42912, 17.570032, 28.871217, 20.916902),

where cyj = cjy = 0. This fixed point bifurcates into vertical and horizontal fixed
points respectively, when one of cjy and cyj is varied and the other variable is fixed at 0.
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In the model this means that one species drives another to extinction. Continuation
of the coexistence fixed point, where cjy is the free parameter leads to BP and PD

bifurcations at cjy = cyj0 and cjy = 0.170849, respectively. The coexistence fixed
points bifurcate into vertical fixed points at the BP. The coexistence fixed point is
stable before the BP and unstable afterwards, this reconfirms the above analytical
results. If we continue the coexistence fixed points with the free parameter cyj , it
bifurcates into the horizontal fixed point at another BP. The coexistence fixed point
is stable before this BP and unstable afterwards.

The solutions to the equation H = 0, where H is given by (7.13), are the param-
eter values for which the existence and uniqueness of the coexistence fixed point are
not guaranteed. In the present context, where only cyj and cjy vary, this leads to the
condition

(7.14) cyjcjy + acyj + bcjy − c = 0,

where a = 0.1666326531, b = 0.0855555552, and c = 0.3350275226, which indeed
defines a hyperbola in (cyj , cjy) space. It is not hard to prove that the point (cyj0, cjy0)
lies on the hyperbola.

Now we return to the stability of the coexistence fixed points. The coexistence
fixed point is unstable outside the rectangle

S1 = {(cyj , cjy) : 0 ≤ cyj ≤ cyj0, 0 ≤ cjy ≤ cjy0} .

Figure 7.2 shows the hyperbola H = 0 and the rectangle S1.
Inside S1 the stability properties of the coexistence fixed point are more compli-

cated. By numerical continuation we find that there is an interior region in which
the coexistence fixed points are unstable. This region is bounded by the PD curve,
where the stability changes. The projection of the PD curve on the (cyj , cjy)-plane
goes twice through the point (cyj0, cjy0). Indeed, the PD curve has two fold-flip
points, where (cyj , cjy) = (cyj0, cjy0). Moreover, there are two degenerate period-
doubling points DPD on the PD curve: (cyj , cjy) = (0.210138, 0.383143) and (cyj , cjy) =
(454279, 0.297779). The branches of fold curves of the second iterate can be computed
by switching at the DPD points. These curves emanate tangentially to the PD curve.

The region where there are stable fixed points of the second iterate is bounded
by the two fold curves of the second iterate and the lower left part of the PD curve.
From the applications point of view, this is the most interesting region because it
shows that indeed the two species can coexist even when the competition is strong.
We note that if both cyj and cjy are larger than 0.5 then the horizontal fixed points,
the vertical fixed points and the fixed points of the second iterate are all stable. The
PD curve and the fold curves of the second iterate are given in Figure 7.2.

It can be shown analytically that there is a straight line of coexistence fixed
points for the fixed parameter values (cyj , cjy) = (cyj0, cjy0) which bifurcates to the
horizontal and vertical fixed points where cjy = cjy0 and cyj = cyj0 respectively. This
straight line can be found numerically by switching to the fold curve in the fold-flip
(LPPD) points of the flip curve since technically it is a curve of (degenerate) fold points
of the original Leslie–Gower map. It contains a horizontal fixed point, a vertical fixed
point and two coexistence fixed points of flip type.

8. Conclusions. We have described the implementation of continuation and
normal form analysis of fixed points and cycles in matcont. We use minimally
extended systems, which proved to be one of the best methods.
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Fig. 7.2. The flip curve PD1, the fold curve of the second iterate LP 2, hyperbola H = 0 and

the rectangle S1 in (cyj , cjy)-plane.

Codim 1 bifurcation analysis is standard by now, while the analysis of codim 2
bifurcations, both quantitative and qualitative, on which this paper focuses, is new.
Our implementation uses all aspects of the center-manifold reduction. First, the
critical normal form coefficients are calculated automatically, which determines the
type of the unfolding. Second, when nondegeneracy and transversality are checked,
predictions about new codim 1 branches are made.

We mention a few problems for future work. We use the iterated maps in case of
cycles. When we are dealing with stiff systems and small basins of attraction, a BVP-
approach using extended systems for the fixed point, i.e., f(x1)−x2 = 0, . . . , f(xn)−
x1 = 0, might be more efficient. Another idea is to use automatic differentiation
as an alternative to symbolic derivatives. One reason is that symbolic derivatives
may not always be available. The second is that preliminary evidence suggests that
the computation of normal form coefficients for high iterates is faster when automatic
differentiation is used. Then we did not discuss global bifurcations. As a first step, it is
well worth the effort to incorporate in our package some of the recent algorithms, [25]
to compute (un)stable manifolds. If a transverse intersection appears to be present,
then using the defining systems as in [26], approximations of homoclinic orbits may
be computed.
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