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Abstract. The present paper is concerned with investigating the capability of

the smoothness preserving fictitious domain method from [22] to shape optimiza-

tion problems. We consider the problem of maximizing the Dirichlet energy func-

tional in the class of all simply connected domains with fixed volume, where the

state equation involves an elliptic second order differential operator with non-

constant coefficients. Numerical experiments in two dimensions validate that we

arrive at a fast and robust algorithm for the solution of the considered class of

problems. The proposed method keeps applicable for three dimensional shape op-

timization problems.

Introduction

In several papers (see [8, 9] for example), two of the authors developed efficient algo-

rithms for the solution of several elliptic shape optimization problems. A boundary

variational approach was proposed in combination with boundary integral represen-

tations of the shape gradient and the shape Hessian. The considered class of model

problems allowed the use of boundary integral equations to compute all ingredients

of the functional, the gradient, and the Hessian, that arise from the state equation.

In combination with a fast wavelet Galerkin method to solve the boundary integral

equations, we obtained very efficient first and second order algorithms for shape

problems in two and three spatial dimensions. In particular, the use of boundary

element methods requires only a discretization of the free boundary. In our opinion

this is very advantageous since, on the one hand, modern boundary integral methods

reduce the complexity, and on the other hand, large deformations of the domains are

realizable without remeshing. Moreover, exterior boundary value problems are treat-

able, like in the computation of free surfaces of liquid bubbles or drops levitating in

an electromagnetic field, cf. [10, 11].

However, to be able to realize the optimal efficiency from these advantages, it is

of great help if the constraints and shape derivatives can be formulated in terms

of boundary integrals. Consequently, further assertions on the objective have to be

made for the powerful application of boundary element methods, see [8] for the

details.
1
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In case of compactly supported cost functionals one can overcome this restriction

by coupling finite and boundary elements (see [12]). Thus, the advantages of both

methods are retained, namely fast access to values on the compact subset by finite

elements on a fixed triangulation and the simple treatment of the free boundary

by boundary elements. Nevertheless, the restriction to state equations involving

differential operators with constant coefficients remains.

However, the above mentioned techniques are not applicable to state equations in-

volving elliptic differential operators with non-constant coefficients. Fictitious do-

main methods offer obviously a convenient tool to deal with such shape optimization

problems while the complicated remeshing, required for finite element methods, is

still avoided, see Haslinger et al. [15, 16], Kunisch/Peichl [21], Neitaanmäki/Tiba [25],

and Slawig [29, 30].

Up to now, the success of fictitious domain methods was limited since traditional

methods suffer from low orders of convergence. For instance, the fictitious domain-

Lagrange multiplier approach converges only as O(h1/2) in the energy norm when

approximating from uniform grids with mesh size h (see [18]). Even the rate of

convergence of standard (i.e. based on isotropic refinements) adaptive methods is

limited by O(N−1/2) and O(N−1/4) in two and three dimensions, respectively, when

spending N degrees of freedom, independently of the order of the approximation

spaces (see [23] for a more detailed discussion).

These difficulties arise from non-smooth extensions of the solutions outside the in-

trinsic domain. In [22, 23], one of the authors proposed a rather novel and promising

smoothness preserving fictitious domain method which realizes higher orders of con-

vergence due to smooth extensions of the solution. The present paper is devoted

to demonstrate the capability of this method when used in the context of shape

optimization problems.

We consider the problem of maximizing the Dirichlet energy functional in the class of

all connected domains of class C2, where the state solves a standard elliptic boundary

value problem of second order. To ensure uniqueness the sought domain is supposed

to have a given volume. For sake of clearness in representation, we restrict ourselves

to the two dimensional setting. However, we emphasize that the present algorithms

can be straightforwardly extended to three spatial dimensions.

The paper is organized as follows. Section 1 is dedicated to shape optimization. We

introduce our model problem of maximizing the Dirichlet energy functional under

a volume constraint. After deriving the shape derivatives, we consider a standard

augmented Lagrangian algorithm to treat the volume constraint. The minimization

problems in the inner loop are solved by a nonlinear Ritz-Galerkin method for the
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necessary condition. A vector valued boundary perturbation ansatz is employed in

order to describe the boundary and its update. On the one hand, any domain of

gender zero can be represented, on the other hand, the boundary representation

is non-unique. Since therefore the surface mesh might degenerate, we add a reg-

ularization term to the objective. In Section 2 we present the numerical scheme

to compute the state function. We introduce the smoothness preserving fictitious

domain method and discuss the evaluation of domain integrals by numerical quad-

rature. In the last section (Section 3) we present numerical results to demonstrate

the capability of our approach.

1. Shape Optimization

1.1. The model problem. Let Ω ⊂ R
2 be a domain with boundary Γ := ∂Ω. We

consider the Dirichlet energy functional

(1.1) J(Ω) =

∫

Ω

〈A∇u,∇u〉dx =

∫

Ω

fudx,

where the state function u solves the boundary value problem

(1.2)
− div(A∇u) = f in Ω,

u = 0 on Γ = ∂Ω.

Herein, we assume that the inhomogenity f : D → R and the symmetric and positive

matrix A(x) = [aij(x)]2i,j=1 are sufficiently regular and defined in a sufficiently large

hold all D ⊂ R
2.

The goal of the present paper is to maximize the the Dirichlet energy (1.1) over the

class Υ of admissible domains. We assign Υ to be the set of all simply connected

domains of the class C2. To ensure uniqueness we shall impose an equality constraint

on the volume of the domain

(1.3) V (Ω) :=

∫

Ω

dx
!
= V0.

Consequently, we arrive at the following problem:

−J(Ω) → min
Ω∈Υ

subject to V (Ω) = V0.(P )

1.2. Shape calculus. We briefly recall well known facts about the first order shape

calculus, useful for the discussion of the necessary condition and the numerical algo-

rithms. For a general overview on shape calculus, mainly based on the perturbation

of identity (Murat and Simon) or the speed method (Sokolowski and Zolesio), we

refer the reader for example to Murat and Simon [24, 28], Pironneau [27], Sokolowski

and Zolesio [31], Delfour and Zolesio [4], and the references therein.
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Let n denote the outer unit normal to the boundary Γ and consider a C2-smooth

boundary perturbation field U : Γ → R
2. Then, the shape gradient to the functional

(1.1) reads as

(1.4) ∇J(Ω)[U] =

∫

Γ

〈U,n〉〈A∇u,∇u〉dσ,

since the local shape derivative du = du[U] satisfies

div(A∇du) = 0 in Ω,

du = −〈U,n〉
∂u

∂n
on Γ.

The gradient of the volume reads as

(1.5) ∇V (Ω)[U] =

∫

Γ

〈U,n〉dσ.

1.3. Relaxation of the constraints. The minimization problem (P ) implies to

find the solution (Ω?, λ?) ∈ Υ × R of the saddle point problem

(Ω?, λ?) = arg inf
Ω∈Υ

sup
λ∈R

Lα(Ω, λ),

where Lα(Ω, λ) denotes the augmented Lagrangian functional

(1.6) Lα(Ω, λ) = −J(Ω) + λ
(
V (Ω) − V0

)
+

α

2

(
V (Ω) − V0

)2
.

Of course, the choice α = 0 yields the pure Lagrangian while λ = 0 and α → ∞

is known as standard quadratic penalty method. However, both choices have some

drawbacks from the numerical point of view, cf. [5, 19], for example.

In order to avoid these difficulties, we choose α > 0 and consider the following

standard augmented Lagrangian algorithm:

• initialization: choose initial guesses λ(0) for λ? and Ω(0) for Ω?,

• inner iteration: solve

(1.7) Ω(n+1) := argmin Lα(Ω, λ(n))

with initial guess Ω(n),

• outer iteration: update

λ(n+1) := λ(n) − α
(
V (Ω(n+1)) − V0

)
.

It is well known that the this algorithm converges to (Ω?, λ?) provided that α is

appropriately chosen [5, 19].

Notice that the necessary condition to (1.6) is equivalent to the identity

〈A∇u,∇u〉 ≡ λ? on Γ?.
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1.4. Ritz-Galerkin approximation of the shape problem. The boundary of a

domain Ω ∈ Υ can be parameterized by a bijective positive oriented curve

(1.8) γ : [0, 1] → Γ, γ(φ) =

[
γx(φ)

γy(φ)

]
,

such that

γx, γy ∈ C2
per([0, 1]) :=

{
f ∈ C2([0, 1]) : f (i)(0) = f (i)(1), i = 0, 1, 2

}
.

Setting

(1.9)
ϕΓ
−N := sin(2πNφ), ϕΓ

1−N := sin
(
2π(N − 1)φ

)
, . . . , ϕΓ

−1 := sin(2πφ),

ϕΓ
0 := 1, ϕΓ

1 := cos(2πφ), . . . , ϕΓ
N := cos(2πNφ),

we define the space

(1.10) V Γ
N = span{ϕΓ

−N , ϕΓ
1−N , . . . , ϕΓ

N} ⊂ C2
per([0, 1])

of all trigonometric polynomials of degree ≤ 2N . To discretize the shape optimiza-

tion problem we make the ansatz

(1.11) γN =
N∑

k=−N

[
ak

bk

]
ϕΓ

k ∈ V Γ
N × V Γ

N

with coefficient vectors [ak, bk]
T ∈ R

2. Identifying the approximate domain ΩN with

this boundary curve, problem (1.7) becomes finite dimensional

Ω?
N := argminLα(ΩN , λ(n)).

This discrete problem leads to a nonlinear Ritz-Galerkin scheme for the necessary

condition:

seek γ
?
N ∈ V Γ

N × V Γ
N such that ∇Lα(Ω?

N , λ?)[vN ] = 0 for all vN ∈ V Γ
N × V Γ

N .

For the numerical solution of this nonlinear variational equation we apply the quasi-

Newton method updated by the inverse BFGS-rule without damping. A second order

approximation is proposed for performing the line search update if a descent fails.

For all the details we refer to [5, 13, 14, 19] and the references therein.

Remark 1.1. In the three dimensional case one considers the unit sphere S
2 as

parameter space and the ansatz spaces V Γ
N consisting of spherical harmonics of order

≤ N . Then, γN : S
2 → Γ is defined according to

γN =
∑

k

akϕ
Γ
k ∈ V Γ

N × V Γ
N × V Γ

N

with coefficients ak ∈ R
3. This ansatz has been used in e.g. [20].
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1.5. Regularization. The ansatz (1.11) does not impose any restriction to the

topology of the domain except for its gender. However, even though both components

of γ are elements of C2
per([0, 1]), we cannot guarantee that Ω ∈ C2. Furthermore,

the parametric representation (1.8) of the domain Ω is not unique. In fact, if Ξ :

[0, 1] → [0, 1] denotes any smooth 1-periodic bijective mapping, then the boundary

curve γ ◦ Ξ describes another parameterization of Ω.

To avoid degenerated boundary representations we shall include a regularization

term. It is quite obvious that, for numerical computations, a “nice” parameterization

distributes equidistant grid points of [0, 1] equidistantly on Γ. This means that the

mesh functional

(1.12) M(Ω) =

∫ 1

0

(〈γ ′, γ ′〉 − |Γ|2)2dφ,

becomes small since it vanishes only if Ω is parameterized with respect to the arc

length. This motivates to solve for small β > 0 the regularized shape problem

J(Ω) + βM(Ω) → min
Ω∈Υ

subject to V (Ω) = V0(P ′)

instead of the original problem (P ). We mention that the best numerical results are

achieved when β → 0 during the optimization procedure.

Remark 1.2. The three dimensional analogue of the mesh functional (1.12) is

M(Ω) =

∫

S2

∥∥∥∥∥

[
〈γx, γx〉 〈γx, γy〉

〈γy, γx〉 〈γy, γy〉

]
−

|Γ|2

|S|2
I

∥∥∥∥∥

2

F

dσ,

where ‖ · ‖F denotes the Frobenius norm. The mesh functional is identical to zero iff

the first fundamental tensor of differential geometry is on the whole parameter space

identical to |Γ|2/|S|2-times the identity matrix.

2. Numerical Method to compute the State

2.1. The SPFD method. To compute the state given by (1.2) we use a close

variant of the smoothness preserving fictitious domain (SPFD) method, introduced

in [22]. The SPFD method is a fairly new domain embedding technique that has yet

to be fully understood from a theoretical point of view. It has, however, performed

well in experimental settings before, and as will be seen in the numerical results, it

can fulfill its promise in more applied settings.

To solve a boundary value problem with any fictitious domain method, one embeds

the intrinsic domain into a larger fictitious domain, for example, a periodic cube

T = (R\Z)2. The next step is to construct from the original problem some auxiliary
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problem on the fictitious domain such that the solutions of this auxiliary and the

original problem coincide on the intrinsic domain.

We assume that the right hand side f is in L2(T). For sake of simplicity we shall

assume from now on that the hold all satisfies D = T. Then, since the boundary is

C2, the solution of the state equation will be in H2(Ω). Consider for a moment the

more general, non-homogeneous boundary condition u = g on Γ, with g ∈ H3/2(Γ),

and consider the least-squares functional on H2(T),

(2.1) Φ(u+) = ‖C(Au+ − f)‖2
L2(T) + ‖Bu+ − g‖2

H3/2(Γ),

where A : H2(T) → L2(T) is the differential operator, B : H2(T) → H3/2(Γ) is the

trace operator, and C : L2(T) → L2(T) is such that Cv is the extension by zero of

the restriction to Ω of v ∈ L2(T).

It is reasonably easy to check that Φ has a minimum, which is not unique but can

be chosen to depend continuously on the data b := [f, g]T ∈ H := L2(T) × H3/2(Γ).

Thus, the operator M : H2(T) → H associated with Φ, given by the operator matrix

M =

[
CA

B

]
,

is bounded, and, while it has a large kernel, it still has a bounded pseudoinverse.

Furthermore, every minimizer of Φ is an extension of the solution to the original

problem (see [22]). Thus, to compute the state, we shall solve the least-squares

problem

(2.2) find u+ ∈ H2(T) such that ‖Mu+ − b‖H → min,

and take u = u+
|Ω.

2.2. Discretization and solution of the discrete problems. To approximate

solutions of (2.2), we will use dyadic grids of mesh size hj := 2−j, with j ≥ 0 an

integer. We write

T =
⋃

k=(kx,ky)∈Zj

Qjk,

where Zj := (Z/2j
Z)2, and Qjk := 2−j[kx, kx + 1) × [ky, ky + 1).

When trying to discretize the operator M on the given mesh, one quickly realizes

that the operator C can yield a potentially fatal problem for the numerical im-

plementation, as it implies the computation of quadrature problems on nontrivial

domains, a task that usually is expensive. To overcome this problem, we approxi-

mate C by the operator Cj, defined as follows. Given v ∈ L2(T), Cjv is defined as
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the extension by zero of the restriction of v to Ωj, where

Ωj :=
⋃

k∈Zj

{Qjk : Qjk ∩ Ω 6= ∅}.

In practice, this choice also enhances the stability of the method.

Notice that this approximation is not as crude as it looks. It has been shown in [22]

that if C(Au+ − f) = 0, and Au+ − f ∈ Hs(T) for s > 0 such that s− 1/2 is not an

integer, then

‖Cj(Au+ − f)‖L2(T) . hs
j‖Au+ − f‖Hs(T).

Since one can always find such an extension u+ whenever u ∈ Hs+2(Ω), this proves

that the minimum of the modified least-squares functional

(2.3) Φj(u
+) = ‖Cj(Au+ − f)‖2

L2(T) + ‖Bu+ − g‖2
H3/2(Γ)

converges rapidly towards the minimum of Φ.

Next, let us choose suitable approximation spaces. In H2(T) we will approximate

from the spaces

V T

j = span{ϕT

j,k : k ∈ Zj}

of periodic cardinal B-splines ϕT

j,k of order m > 2 on the given grid. These are

Cm−2-functions that are multi-polynomials of degree m − 1 on each cube Qjk. In

L2(T) we will approximate using the spaces

V 0
j = span{ϕ0

j,k,l : k ∈ Zj, l ∈ I},

where I := {l = (lx, ly) : 0 ≤ lx, ly < n}, consisting of dicontinuous piecewise multi-

polynomials of order n. The orthonormal basis functions ϕ0
j,k,l are supported on Qjk,

defined as tensor products of Legendre polynomials up to degree n − 1. Note that

CjV
0
j ⊂ V 0

j greatly simplifies the calculation of entries in the system matrix. Finally,

to approximate in H3/2(Γ), we use (after identifying Γ with [0, 1] by means of the

parameterization (1.11)) the space V Γ
j := V Γ

N , where V Γ
N is as defined in (1.10) with

N = 2j.

Next, we should introduce the discrete system matrices and load vectors. We have

to compute

[Aj](k,l),k′ = −

∫

Ωj

div(A∇ϕT

j,k′)ϕ0
j,k,ldx, [fj](k,l) =

∫

Ωj

fϕ0
j,k,ldx,

[Bj]k,k′ =

∫ 1

0

(ϕT

j,k′ ◦ γ)ϕΓ
kdφ, [gj]k =

∫ 1

0

(g ◦ γ)ϕΓ
kdφ.

where γ denotes a suitable parameterization to Γ according to (1.8).

In order to tackle the different norms we need some suitable preconditioners. To

compute the H3/2(Γ)-norm of a function gj ∈ V Γ
j we simply have to scale the
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coefficients of sin(kφ), and of cos(kφ), by k3/2. Thus, we shall introduce the diagonal

matrix

[Dj]k,l = |k|3/2δk,l.

For preconditioning of the operator M we could use (as is done in [22]) a suit-

able wavelet transform, see e.g. [3]. Instead, we use the Bramble-Pasciak-Xu (BPX)

multilevel preconditioner [2] associated with the discretization of I − div(A∇). We

indicate its application by the matrix Tj.

We are now in the position to present the discrete least-squares problem: solve

(2.4)

∥∥∥∥∥

[
Aj

DjBj

]
Tjvj −

[
fj

Djgj

]∥∥∥∥∥ → min

and take u+
j = Tjvj.

We use the iterative least-squares solver LSQR [26] to solve the discrete least-squares

problem (2.4) iteratively within a nested iteration. Moreover, it is not necessary to

assemble the matrix Bj since matrix-vector products Bjx and BT
j x can be efficiently

evaluated by using the (inverse) fast Fourier transform.

2.3. Error estimates. The energy space of the least-squares formulation (2.1) is

the Sobolev space H2(T). Therefore, since we use ansatz functions that are exact

of order m, the best possible convergence rate is limited by h2m−4
j , achieved in the

H4−m(T)-norm if u+ ∈ Hm(T).

Theorem 2.1. Assume that there exists an n ∈ [0, m − 2] such that

(2.5) ‖u − uj‖H2−n(Ω) . h2n
j ‖u‖H2+n(Ω)

provided that u ∈ H2+n(Ω). Then, if Γ is sufficiently smooth, the approximate shape

functional and gradient

J̃(Ω) =

∫

Ω

fujdx, ∇̃J(Ω)[U] =

∫

Γ

〈U,n〉〈A∇uj,∇uj〉dσ,

satisfy the error estimates

|J(Ω) − J̃(Ω)| = O(h2n
j ), |∇J(Ω)[U] − ∇̃J(Ω)[U]| = O(h

min{2n,n+1}
j ).

Proof. The approximation error of the shape functional is estimated according to

|J(Ω) − J̃(Ω)| =

∣∣∣∣
∫

Ω

fudx−

∫

Ω

fujdx

∣∣∣∣

. ‖f‖Hn−2(Ω)‖u − uj‖H2−n(Ω)

. h2n
j ‖f‖Hn−2(Ω)‖u‖Hn−2(Ω).
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In case of the shape gradient we derive the assertion by

|∇J(Ω)[U] − ∇̃J(Ω)[U]| =

∣∣∣∣
∫

Γ

〈U,n〉
{
〈A∇u,∇u〉 − 〈A∇uj,∇uj〉

}
dσ

∣∣∣∣

≤

∣∣∣∣
∫

Γ

〈U,n〉〈A∇(u − uj),∇(u − uj)〉dσ

∣∣∣∣ + 2

∣∣∣∣
∫

Γ

〈A∇u〈U,n〉,∇(u− uj)〉dσ

∣∣∣∣

. ‖〈U,n〉‖L∞(Γ)‖u − uj‖
2
H1(Γ) + 2‖∇u〈U,n〉‖H1/2(Γ)‖u − uj‖H1/2(Γ).

Using (2.5) together with the inverse inequality yields for the first term

‖〈U,n〉‖L∞(Γ)‖u − uj‖
2
H1(Γ) . h2n

j ‖〈U,n〉‖L∞(Γ)‖u‖
2
H2+n(Γ).

Invoking additionally the trace theorem the second term can be likewise estimated

by

‖∇u〈U,n〉‖H1/2(Γ)‖u − uj‖H1/2(Γ) . ‖∇u〈U,n〉‖H1/2(Γ)‖u − uj‖H1(Ω)

. h
min{2n,n+1}
j ‖〈U,n〉‖C1(Γ)‖u‖

2
H2+n(Ω).

�

2.4. Computing domain integrals. At least in order to evaluate the Dirichlet

energy (1.1) we have to approximate domain integrals

(2.6) I(Ω) :=

∫

Ω

f(x)dx

for f ∈ C(Ω). This will be done as follows.

We compute the points of intersection of the boundary curve Γ and the underlying

grid
⋃

k∈Z
∂Qj,k. Then, we replace the boundary curve Γ by the piecewise linear curve

Γ̃ which connects these points by straight lines. The enclosed polygonal domain will

be denoted by Ω̃.

We will next construct a suitable triangulation of Ω̃. We subdivide all elements

Qj,k that intersect the boundary Γ̃ into suitable triangles to triangulate Qj,k ∩ Ω̃.

In the remaining part of Ω̃ we subdivide the elements Qj,k into two triangles. Fi-

nally, we apply appropriate quadrature formulae for triangles. Figure 1 exemplifies

a triangulation produced by our algorithm.

Theorem 2.2. Assume that Ω ∈ C2 and f ∈ C2(D). Then, the above quadrature

algorithm computes the integral I(Ω) from (2.6) with accuracy O(h2
j) provided that

the element quadrature formulae are exact for linear polynomials.

Proof. The triangulation consists of O(h−2
j ) elements of volume O(h2

j). Consequently,

since the element quadrature formulae are exact of order two, we get an error of quad-

rature O(h4
j) per element. Thus, denoting the result of the composite quadrature
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Figure 1. Triangulation of the domain.

formula by Q(Ω̃), we conclude

(2.7) |I(Ω̃) − Q(Ω̃)| = O(h2
j).

We shall next estimate the error induced by the domain approximation. Since Γ̃ is

a piecewise linear approximation of step width ∼ hj to the boundary curve Γ, the

area V (Qj,k∩Ω) of each square Qj,k for which Qj,k∩ Γ̃ 6= ∅ is approximated of order

|V (Qj,k ∩ Ω̃) − V (Qj,k ∩ Ω)| = O(h3
j).

Taking into account that there are at most O(h−1
j ) squares that intersect the bound-

ary curve, we conclude

(2.8) |I(Ω) − I(Ω̃)| = O(h2
j).

Combining both estimates yields the assertion due to

|I(Ω) − Q(Ω)| ≤ |I(Ω) − I(Ω̃)| + |I(Ω̃) − Q(Ω̃)|.

�

Remark 2.3. In three dimensions one introduces a triangulation of the free surface

and henceforth a tretrahedral mesh of the domain. As one readily verifies the same

error estimate holds while the complexity of the algorithm is O(h−3
j ) instead O(h−2

j ).
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Figure 2. Errors of quadrature.

3. Numerical Experiments

3.1. Domain quadrature. We shall first demonstrate the domain quadrature al-

gorithm, introduced in Subsection 2.4. The error estimate derived in Theorem 2.2

is sharp as the following example shows.

For different discretization levels j we approximate the volume of the domain that

underlies the Figure 1. By virtue of the Gauss theorem, we can compare these values

with the result of the following boundary integral

V (Ω) =
1

2

∫

Ω

div x dx =
1

2

∫

Γ

〈x,n〉dσ,

computed with high accuracy. Notice that, even though f ≡ 1 in (2.6), this example

validates the essential part of the error since it is related to the approximation error

of the domain of integration (2.8). Whereas, the quadrature error on the perturbed

domain depends only on the chosen quadrature rules and the smoothness of the

integrand.

We plotted the errors of quadrature in semi-logarithmical scale in Figure 2. One

observes in fact the predicted quadratic order of convergence in hj, as indicated by

dahed lines.
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3.2. Solving the state equation. We next investigate the asymptotic behaviour of

our fictitious domain solver. We use lowest order ansatz functions, that are quadratic

smoothest splines (m = 3), and discontinuous piecewise bilinear test functions (n =

2).

To measure the rates of convergence of the smoothness preserving fictitious domain

method we will focus on a boundary value problem where the solution is known

analytically. To that end, we consider the following boundary value problem

− div(A∇u) = cos(x)
(
4 + sin2(y)

)
− 6y

(
2 + sin(x)

)
in Ω,

u = cos(x) + y3 on Γ,

where

A(x, y) =

[
4 − sin2(y) −1

−1 2 + sin(x)

]
.

We choose the same domain Ω as underlying in Figure 1. One readily verifies that

the solution is given by the function u = cos(x) + y3.

j ‖u − uj‖L2(Ω) ‖∇(u − uj)‖L2(Ω) cpu-time

4 3.1e-5 1.5e-3 0.3 sec.

5 4.6e-6 (6.7) 3.9e-4 (3.9) 1 sec.

6 8.5e-7 (5.4) 9.8e-5 (4.0) 6 sec.

7 1.1e-7 (7.8) 2.4e-5 (4.0) 30 sec.

8 1.6e-8 (6.6) 6.1e-6 (4.0) 128 sec.

9 3.8e-9 (4.4) 1.5e-6 (4.0) 10 min.

10 8.5e-10 (4.5) 3.8e-7 (4.0) 44 min
Table 1. Errors of approximation and over-all computing times.

We compute the numerical solution uj for different discretization levels j by the

smoothness preserving fictitious domain method proposed in the previous section.

Since m = 3 we expect in H1(Ω) an at most quadratic rate of convergence. In Table 1

we tabulate the absolute errors with respect to the L2-norm and H1-seminorm on

Ω, respectively. The bracketed values indicate the ratio of the previous error and

the present error. It is about 4 which implies quadratic orders of convergence. We

illustrated the different error curves also in Figure 3. As indicated by the dashed

lines one observes in fact quadratic rates of convergence for both norms. According

to Theorem 2.1 we can therefore deduce that both, the shape functional and the

shape gradient, will be approximated with quadratic orders of convergence.

The last column of Table 1 refers to the over-all computing times to produce the

approximate solution uj. The present implementation is still on experimental level,
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Figure 3. Rates of convergence.

being a mixture of MATLAB and C-Codes. Nevertheless, the method is feasible and

highly accurate.

3.3. Application to shape optimization problems. We shall finally solve a

shape optimization problem. We choose the diffusion matrix

A(x, y) =

[
4 + 2.75 sin(10x) −1

−1 2 + sin(3x)

]

and the inhomogenity

f(x, y) = 2(1 − 3x2)(1 − 3y2)

as the data of the state equation (1.2) Moreover, we consider the volume constraint

V (Ω)
!
= V0 := 0.2.

The numerical setting is as follows. To approximate the boundary curve we choose

N = 16 which yields 66 shape design parameters (cf. Subsection 1.4). Moreover,

we perform 5 inner and 20 outer iterations of the augmented Lagrangian algorithm

(cf. Subsection 1.3), where α := 100 does a good job (see (1.6)). The regularization

parameter is chosen as β(n) = 2−n/100 where n denotes the number of the outer

iteration. The discretization level of the fictitious domain method is set to j := 7.

The domain computed by our algorithm is shown in Figure 3.3. The algorithm

consumes about 1 hour cpu-time to derive this solution. To be on safe ground we
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Figure 4. The maximizing domain.

validated the result by comparing it with the solution of a shape optimization al-

gorithm based on starlike domains and finite elements (on starlike domains one can

define the triangulation via parametrization). The maximizing domains produced

by the different algorithms coincide.

4. Concluding remarks

In the present paper we applied the novel smoothness preserving fictitious domain

method from [22, 23] to a shape optimization problem. We derived discretization

techniques which are applicable to two and three dimensional problems. Numerical

results demonstrated that the new fictitious domain method is a quite promising

meshless pde-solver as required for the development of fast and robust algorithms

in shape optimization.
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