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Abstract. Following an approach of S.S-T.Yau, we investigate finite-
dimensional solvable Lie algebras associated with isolated hypersurface
singularities. More precisely, we deal with Yau algebras of isolated hy-
persurface singularities defined by polynomials with the number of mono-
mials equal to the number of variables. For certain classes of such sin-
gularities, we show that the analytic isomorphism type of singularity is
determined by its Yau algebra. Our results extend a similar statement
for simple singularities recently established by A.Elashvili and the present
author. We also touch upon a number of related results and open prob-
lems concerned with Yau algebras of fewnomials.
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Introduction

The aim of this paper is to present several results about the finite-dimensional
Lie algebras associated with germs of isolated hypersurface singularities (IHS)
defined by polynomials with the number of monomials equal to the num-
ber of variables. Recall that following S.S.-T.Yau [24], with any IHS germ
X = X(f) = {f = 0} one associates the Lie algebra of derivations L(X) =
DerC(A(X), A(X)) of the factor-algebra A(X) = On/(f, df), where On is the
algebra of convergent power series in n indeterminates, f ∈ On, and (f, df) is
the ideal in On generated by f and all of its partial derivatives ∂if = ∂f

∂xi
, i =

1, . . . , n. According to S.S.-T.Yau, L(X) is a finite-dimensional solvable Lie
algebra which is often called the Lie algebra of singularity X [24]. Following
[26] we call it the Yau algebra of X in order to distinguish from Lie algebras of
other types appearing in singularity theory [4], [3], [16].

There exist a number of interesting general problems concerned with Yau
algebras of IHS. The most natural one, called the recognition problem (cf. [24],
[6]), is to find a characterization of the class of solvable Lie algebras arising in
such way. This problem appeared quite difficult and no substantial progress
has been reached up to now in the general setting. However, it seems worthy of
mentioning that Yau algebras have been computed for several important classes
of isolated singularities including simple singularities in the sense of Arnol’d
and simple elliptic singularities [6], [22]. Eventually, this enabled A.Elashvili
and the present author to reveal several specific structural properties of Yau
algebras of simple singularities, which may hopefully serve as a pattern for
solving the recognition problem for special classes of singularities [12], [13].
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Another conceptual problem is to find out, to which extent does a Yau alge-
bra determine the analytic or topological structure of singularity. In particular,
it is natural to wonder which analytic and/or topological invariants of a given
singularity can be restored from its Yau algebra. This circle of topics can be
referred to as restoration problem. Since derivations of function algebras are
analogs of vector fields on smooth manifolds, this problem is much in the spirit
of the classical theorem of L.Pursell and M.Shanks stating that the Lie algebra
of smooth vector fields on a smooth manifold determines the diffeomorphism
type of manifold [21]. It is precisely the paradigm which we follow in the sequel
and in order to refer to this classical result in a wide sense, it is convenient to
speak of Pursell-Shanks theorem (PST) and Pursell-Shanks paradigm (PSP).

Accepting this terminology, the main topic of this paper can be described
as investigating the PS-paradigm in the context of Yau algebras. The main
results (Theorem 4.1, Theorem 5.1) yield analogs of PST for some classes of
isolated singularities containing simple singularities in the sense of Arnold and
other classes of singularities considered in [13]. Moreover, our results suggest a
plausible conjecture about the range of validity of Pursell-Shanks type theorems
in the context of Yau algebras .

In order to formulate this conjecture, it appears convenient to use a concept
of fewnomial introduced by A.Khovanski [18] in the form adjusted to our sit-
uation. Namely, we say that a polynomial P in n variables is a fewnomial if
the number of monomials appearing in P does not exceed n. It is easy to show
that, except for certain trivial cases, a fewnomial in n variables can define an
IHS only if it has exactly n monomials, in which case we speak of fewnomial
(isolated) singularity. In other words, fewnomial singularities are those which
can be defined by n-nomials in n indeterminates. Simple singularities are obvi-
ously fewnomial in this sense. Actually, they can be defined by binomials so it
appears natural to consider also the class of binomial (isolated) singularities.

Our first observation is that using the results and methods of [13] it appears
possible to prove an analog of PST for Yau algebras of binomial singularities
(Theorem 4.1 below). At the same time, from the results of [24], [6] it follows
that there exist isolated singularities defined by trinomials in two variables
which are analytically non-isomorphic but have isomorphic Yau algebras (cf.
[22]). Thus we conclude that there is no hope for analogs of PST outside the
class of fewnomial singularities. Taking into account that, in the case of two
variables, fewnomial singularities are the binomial ones, we arrive at conjecture
that PST holds exactly in the class of fewnomial singularities. In case if this
appears true, we achieve a reasonable description of PST paradigm in the
context of Yau algebras. After presenting some general evidence in favour
of this conjecture we establish it for a certain class of fewnomial singularities
containing the class of binomial singularities (Theorem 5.1), which is the second
main result of this paper.

It should be noted that systematic study of Lie algebras of isolated hyper-
surface singularities has been started by S.S.-T.Yau and his collaborators in
eighties (see, e.g., [24], [25], [6], [22]). A detailed survey of results obtained in
that period can be found in [6]. However neither in [6] nor in other related pub-
lications, Yau algebras have been considered in relation to the PS-paradigm.
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The only papers in this spirit seem to be those by A.Elashvili and the present
author [12], [13], where it was established that PST holds for simple singulari-
ties in the sense of Arnold and some other series of singularities. The present
paper extends the approach and results of [12], [13] to wider classes of singu-
larities introduced below.

The paper is organized as follows. After recalling a few basic concepts and
auxiliary general results in section 1, in section 2 we briefly discuss isolated
singularities defined by fewnomials. In particular, we introduce some classes
of fewnomials and fewnomial singularities playing central role in the sequel,
such as Pham singularities and binomial singularities. We also show that the
isolated singularities defined by binomials appear in three series P∗,∗, D∗,∗, T∗,∗
indexed by pairs of natural numbers. Specifically, the first series consists of
Pham singularities {xk1

1 +xk2
2 = 0}, the second series is defined by polynomials

xk1
1 x2+xk2

2 , and the third one by polynomials xk1
1 x2+x1x

k2
2 , where 2 ≤ k1, k2 ∈

Z. Further classes of isolated singularities defined by fewnomials are obtained
by taking direct sums of binomial singularities and Pham singularities.

In the third section we develop auxiliary computational tools and give a
detailed description of Yau algebras for the three infinite series of isolated sin-
gularities indicated above. We also present here the results about Yau alge-
bras of Pham singularities obtained in [13]. The explicit results collected in
this section are crucial for our discussion.

In the fourth section we prove that, except for just one pair, binomial iso-
lated singularities are analytically classified by their Yau algebras (Theorem
4.1). This follows from the computations performed in section 2 by a sort of
structural analysis of arising Lie algebras.

In the fifth section we present a similar result for certain fewnomials in
arbitrary number of variables (Theorem 5.1). In conclusion we briefly discuss
several problems and conjectures suggested by our approach.

The author acknowledges numerous fruitful discussions about solvable Lie
algebras and their invariants with A.Elashvili and M.Jibladze. Various as-
pects of the topic were also discussed with A.Aleksandrov, Le Dung Trang and
D.Siersma. Special thanks go to A.Elashvili and M.Jibladze for assistance in
analyzing the structure of several concrete Yau algebras , which helped to work
out some essential points.

This paper was finished and prepared for publication during the author’s
visit to the Department of Mathematics of Utrecht University in the frame-
work of a joint research project with Prof. D.Siersma. The author acknowl-
edges financial support from NWO and warm hospitality of the whole staff of
Department.

1. Generalities on singularities and Lie algebras

We present here necessary definitions and auxiliary results concerning hy-
persurface germs with isolated singularities and derivations of Lie algebras.
To give a consistent description of the background and setting we begin with
recalling necessary concepts and constructions from singularity theory.

Let Cn be the algebra of complex polynomials in n variables. Denote by
On the algebra of germs of holomorphic functions in n variables at the origin
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which is naturally identified with the algebra of convergent power series in n
indeterminates with complex coefficients. For a polynomial f ∈ Cn, denote by
X the germ at the origin of Cn of hypersurface X = {f = 0} ⊂ Cn.

We say that X is a germ of isolated hypersurface singularity if the origin
is an isolated zero of the gradient of f . The local (function) algebra of X is
defined as the (commutative associative) algebra F (X) ∼= On/(f), where (f) is
the principal ideal generated by the germ of f at the origin. Further, denote by
(f, df) the ideal in On generated by f and all of its partial derivatives. Recall
that, for an isolated singularity X = X(f) = {f = 0} as above, from the
Hilbert’s Nullstellensatz immediately follows that the factor-algebra A(X) ∼=
On/(f, df) is finite dimensional. This factor-algebra is called the moduli algebra
of X. An important result of J.Mather and S.S.-T.Yau states that the analytic
isomorphism type of an isolated hypersurface singularity is determined by the
isomorphism class of its moduli algebra [19].

Remark 1.1. As is well known, the moduli algebra A(X) can serve as a base
space of versal deformation of singularity X [4]. Its (complex) dimension τ(X)
is often called the Tyurina number of X [4].

In many problems it is necessary to have an explicit basis of A(X). It
is well known and easy to prove that there always exist bases consisting of
monomials. Such bases are called monomial bases and will be often used in
the sequel. We are basically interested in the so-called simple singularities [4]
which consist of two series Ak : {xk+1 = 0} ⊂ C, Dk : {x2y + yk−1 = 0} ⊂ C2

and three exceptional singularities E6, E7, E8 defined in C2 by polynomials
x3 + y4, x3 + xy3, x3 + y5, respectively. Monomial bases in moduli algebras of
simple singularities are given in [4]. In order to be able to compare singularities
defined by polynomials of different number of variables, several equivalence
relations are used in singularity theory.

Two IHS are called (analytically) equivalent if they are isomorphic as germs
of algebraic varieties [4]. It is often convenient to use another equivalence
relation between IHS. If f ∈ Cn defines an IHS X = X(f) then it is obvious
that g = f + x2

n+1 also defines an IHS in Cn+1 which is called stabilization of
X. Two singularities are called stably equivalent if they can be obtained as
iterated stabilizations of the same IHS. It is easy to see that the moduli algebra
is not changed under taking suspensions so stably equivalent singularities have
isomorphic moduli algebras [4].

As was already mentioned, for our purposes it is sufficient to deal with
homogeneous and quasihomogenous polynomials. Recall that a polynomial
f ∈ Cn is called quasihomogeneous (qh) if there exist positive rational numbers
w1, . . . , wn (called weights of indeterminates xj) and d such that, for each
monomial

∏
x

kj

j appearing in f with nonzero coefficient, one has
∑

wjkj = d.
The number d is called the quasihomogeneous degree (w-degree) of f with
respect to weights wj and denoted w deg f . Obviously, without loss of generality
one can assume that w deg f = 1 and we will often do so in the sequel. The
collection (w; d) = (w1, . . . , wn; d) is called the quasihomogeneity type (qh-
type) of f . As is well known, for such an f , one has df =

∑
wjxj∂jf (Euler

formula). Hence in this case f ∈ (df). Moreover, the w-degree defines natural



YAU ALGEBRAS OF FEWNOMIAL SINGULARITIES 5

gradings on F (X) and A(X) called qh-gradings. Thus one can introduce the
Poincaré polynomials with respect to these gradings and in many cases they
can be explicitly computed in terms of qh-type (see, e.g., [15], [4]).

If singularity X is defined by quasihomogeneous polynomial f , then the Tyu-
rina number τ(X) coincides with the Milnor number µ(X) which is defined as
dimCM(X), where M(X) = On/(df) is the so-called Milnor algebra of X [19].
The equality τ(X) = µ(X) for quasihomogeneous polynomial f immediately
follows from the aforementioned fact that f belongs to the ideal (df) generated
by its derivatives [4]. Thus in the quasihomogeneous case A(X) ∼= M(X). As
is well known, µ(X) a topological invariant of germ X which plays important
role in many problems of singularity theory [4]. In quasihomogeneous case the
Milnor number can be computed by a simple formula which will be repeatedly
used in the sequel.

Proposition 1.1. For an isolated hypersurface singularity X defined by a
quasihomogeneous polynomial of (w; d) type, one has

τ(X) = µ(X) =
n∏

i=1

d− wi

wi
. (1.1)

Remark 1.2. We wish to emphasize that throughout the whole paper we only
deal with singularities defined by quasihomogeneous polynomials. Thus in our
setting there is no difference between the moduli algebra and Milnor algebra,
and the Milnor number µ(X) can be computed by the formula (1.1). Also,
we often write A(f) and M(f) instead of A(X) and M(X) where this cannot
cause misunderstanding.

Recall that a derivation of commutative associative algebra A is defined as
a linear endomorphism D of A satisfying the Leibniz rule: D(ab) = D(a)b +
aD(b). Thus for such an algebra A one can consider the Lie algebra of its
derivations Der A with the bracket defined by the commutator of linear endo-
morphisms. In particular, for a singularity X as above, one can consider the
Lie algebras DF (X) = Der F (X) and DA(X) = Der A(X). Since by the afore-
mentioned result of L.Pursell and M.Shanks the algebra C∞(M) of smooth
functions on a smooth manifold M is completely determined by the Lie alge-
bra of its derivations, one can wonder if the same holds for algebras F (X) and
A(X). Notice that if this is the case, then by the mentioned result of J.Mather
and S.S.-T.Yau the corresponding Lie algebra determines the analytic isomor-
phism type of the singularity considered. As was shown by H.Hauser and
G.Müller, for an isolated hypersurface singularity X, the Lie algebra DF (X)
indeed determines the analytic type of X [16]. In other words, PST holds for
Lie algebras of the form DF (X).

Elegant as it is, this result is not quite effective because DF (X) is an infinite-
dimensional Lie algebra which is difficult to investigate and work with. At the
same time DA(X) is typically a finite-dimensional Lie algebra and its structural
constants may be found in an algorithmic way. Moreover, S.S.-T.Yau showed
that, for any isolated hypersurface singularity X, DA(X) is a solvable Lie
algebra [25]. Thus one may hope to identify such Lie algebras in concrete cases
using a plethora of known results on classification of solvable and nilpotent Lie
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algebras. Moreover, some natural numerical invariants of such Lie algebras can
be effectively computed and it is natural to try to relate them to the numerical
invariants of the singularity considered.

These are the two main directions of research which we pursue in this paper.
Notice at once that there are no a priori reasons why an analog of the result
of H.Hauser and G.Müller may hold for DA(X) because this is a much smaller
algebra than DF (X). Actually, as was shown in [12], for simple singularities
A6 and D5 one has DA(X) ∼= DA(Y ) but A6 is not of course analytically
isomorphic to D5. So it came as a sort of surprise for us when it turned out that
DA(X) is a complete invariant for all simple singularities with Milnor number
bigger than 6 [12]. Actually, this fact served as an impetus for further research
in this direction. In the present paper we concentrate on investigation of Lie
algebras of the form DA(X) for isolated singularities defined by binomials. For
clarity and convenience, it seems appropriate to explicitly present the main
concept and related terminology in a separate definition.

Definition 1.1. Let X = {f = 0} be a germ of isolated hypersurface singular-
ity at the origin of Cn defined by complex polynomial f ∈ Cn. The Lie algebra
DerA(X) of derivations of the moduli algebra A(X) = On/(f, df) is called the
Yau algebra of X and denoted L(X). Its dimension is called the Yau number
of X and denoted λ(X).

Two technical remarks are now in order. Firstly, elements of L(X) can be
represented as holomorphic vector fields V =

∑
hi∂i, hi ∈ On considered with

the standard action on On : V g =
∑

hi∂ig. Such a vector field V defines an
element of L(X) if and only if it leaves the ideal (f, df) invariant, i.e., for each
g ∈ (f, df), one has V g ∈ (f, df). It is obvious that in such case the standard
action V can be pulled down to A(X) and defines a derivation V̂ of A(X) since
the Leibniz rule is trivially fulfilled for V̂ . We often omit the ”hat” and denote
the corresponding element of L(X) simply by V .

Secondly, the coefficients hi in vector field presentation of an element V ∈
L(X) can be reduced modulo the ideal (f, df) which implies that one can always
construct a basis Vj =

∑n
i=1 hi

j∂i, j = 1, . . . , λ(X), in L(X) such that all coef-
ficients hi

j are monomials. However an important caveat is appropriate here:
there need not always exist a basis consisting of elements of the form ”mono-
mial × ∂i” so, in general, one needs to take linear combinations of elementary
vector fields ∂i with monomial coefficients.

In order to describe the structural properties of Lie algebras of hypersurface
singularities in an appropriate way, we will make use of various notions and
results from the theory of Lie algebras. All algebraic definitions and results
used in the sequel can be found, e.g., in [8]. For convenience of the reader some
of the most frequently used concepts and results are collected in the rest of this
section.

Recall that a Cartan subalgebra C in Lie algebra L is defined as a maximal
commutative subalgebra consisting of semi-simple elements. If L is the Lie
algebra of an algebraic Lie group then all Cartan subalgebras are pairwise
conjugated, hence of the same dimension r which is called the rank rkL of Lie
algebra L [8]. The index indL defined as the minimal codimension of orbits in
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its coadjoint representation ad∗ : L → End(L∗), where L∗ is the space dual to L
[9]. It is well known that dimL+indL is always even and the maximal dimension
of commutative subalgebras in a Lie algebra does not exceed 1

2 (dimL + indL).
We will basically deal with solvable and nilpotent Lie algebras so for com-

pleteness we recall the corresponding definitions. Given a Lie algebra L, intro-
duce two series of ideals: L(∗) = {L(i)}, L(∗) = {L(i)}, L(0) = L(0) = L,L(1) =
L(1) = [L,L], L(i) = [L,L(i−1)], L(i) = [L(i−1), L(i−1)], i = 2, 3, . . .. Lie algebra
is called nilpotent if the series L(∗) (the lower central series of L) contains only
a finite number of non-zero ideals. Lie algebra is called solvable if the series
L(∗) contains a finite number of non-zero ideals. According to Engel’s theorem,
Lie algebra is nilpotent if and only if all operators ad a : L → L are nilpotent
for a ∈ L [8]. Another general result states that a solvable algebraic Lie algebra
can be decomposed into semi-direct sum of a Cartan subalgebra and maximal
nilpotent ideal N(L) (the latter is called the nilpotent radical of L).

The following concepts and results enable one to compute the Yau algebras
of many concrete singularities we are going to consider. Let A, B be associative
algebras over a field F of characteristic zero which in the sequel will be either
R or C. Recall that the multiplication algebra M(A) of A is defined as the
subalgebra of endomorphisms of A generated by the identity element and left
and right multiplications by elements of A. The centroid C(A) is the set of
endomorphisms of A which commute with all elements of M(A). Clearly, C(A)
is a unital subalgebra of EndA. The following statement is a particular case of
a general result from [7].

Proposition 1.2. (cf. [7]) Let S = A ⊗F B be a tensor product of finite-
dimensional associative algebras with units. Then

DerS ∼= (Der A)⊗ C(B) + C(A)⊗ (Der B). (1.2)

We will only use this result for commutative associative algebras with unit, in
which case the centroid coincides with the algebra itself. Thus for commutative
associative algebras A,B one has:

Der(A⊗B) ∼= (Der A)⊗B + A⊗ (Der B). (1.3)

The latter formula will be repeatedly used in the sequel.
Finally, we wish to notice that, for a quasihomogeneous IHS, one can obtain

a natural grading on L(X) by putting the weight of ∂j equal to −wj [15].
Thus the weight of a vector field of the form xm

k ∂j is equal to mwk−wj , which
obviously defines a grading on L(X) compatible with the standard one on A(X)
in the sense that the action of L(X) becomes the action of graded Lie algebra.

2. Isolated singularities defined by fewnomials

Analyzing the results obtained in [6], [22], [13], the author came to a conjec-
tural description of the class of IHS which gives a natural range of validity of
Pursell-Shanks type theorems fro Yau algebras. In order to give a concise for-
mulation of the corresponding results it is convenient to use the setting of the
so-called fewnomials introduced in [18]. Let us first establish precise terminol-
ogy which will be different from the setting of [18] where the term ”fewnomial”
has been introduced.
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Let P be a polynomial in n variables. We’ll say that P is a fewnomial if the
number of monomials entering in P does not exceed n. Obviously, the number
of monomials in P may depend on the system of coordinates. In order to obtain
a rigorous concept we’ll only admit linear changes of coordinates and say that
P (or rather its germ at the origin) is a k-nomial if k is the smallest natural
number such that P becomes a k-nomial after (possibly) a linear change of
coordinates. For linguistic flexibility it is convenient to say in such case that
the nomiality nomP of P is equal to k. Nomiality may be considered as a
sort of elementary complexity measure of polynomials which appears relevant
in some problems of enumerative algebraic geometry [18].

An isolated hypersurface singularity X is called k-nomial if there exists an
IHS Y analytically isomorphic to X which can be defined by a k-nomial and k
is the smallest such number. It turns out than, except for some noninteresting
cases, a singularity defined by a fewnomial P can be isolated only if nom P = n,
i.e., if P is a n-nomial in n variables. We formulate this result separately for
further reference.

Proposition 2.1. A k-nomial P in n variables which does not contain mono-
mials of order less than three, cannot have an isolated critical point at the origin
if k < n.

Proof. Fix a number 1 ≤≤ n and consider monomials of the form xk
i xj , k ≥

2, entering in P . If there are no such monomials at all, then the whole axis Oxi

consists of critical points of P . Thus, for each i, there exists a monomial of such
type entering in P . For each i, fix a monomial of such form with the minimal
j = j(i). Since there are no monomials of degree two, two monomials of such
type chosen for two different numbers i 6= j cannot coincide. This obviously
implies that the number of monomials in P cannot be less than the number of
coordinates n, which gives the result.

Remark 2.1. Using terminology of [4], the requirement that there are no qua-
dratic terms can be expressed by saying that P is of (maximal) corank n at
the origin. The reason why we have to exclude quadratic terms, is that other-
wise the formulation given above would not be correct. Indeed, a stabilization
of A1 singularity can be defined by a polynomial in 2k variables of the form
x1x2 + ....+x2k−1x2k which contains only k monomials. Notice also that Pham
polynomials give evident examples of n-nomials with isolated singularity at the
origin of Cn.

Remark 2.2. Elementary as it appears, Proposition 2.1 up to our knowledge
have never appeared in the literature. If fewnomial P is quasihomogeneous
and defines an isolated singularity, then, for n ≤ 6, one can obtain much more
precise information about possible collections of monomials entering in P (see,
e.g., [4], [1]). Those results imply, in particular, that all such collections contain
not less than n monomials. However, not every fewnomial is quasihomogeneous
so our Proposition 2.1 is not a formal consequence of the mentioned results from
[4], [1].

The above observations suggest a simple description of the range of validity
of Pursell-Shanks type theorems in the context of Yau algebras. To do this
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in a concise and convenient form we introduce some ad hoc terminology. We
say that an IHS in Cn is fewnomial if it can be defined by an n-nomial in n
variables and we say that it is a qh-fewnomial singularity if it can be defined by
a quasihomogeneous fewnomial. Since in [6] one can find examples of trinomials
in two variables which cannot be classified by their Yau algebras and similar
examples can be constructed in all dimensions using stabilization, we conclude
that there is no hope for a Pursell-Shanks type theorem outside the class of
fewnomial singularities.

Notice that Pham singularities and D∗∗ series are fewnomial (actually, even
qh-fewnomial) and in [13] it was shown that an analog of PST holds for those
singularities. Thus we are led to a conjecture that a Pursell-Shanks type the-
orem may hold for the class of fewnomial singularities or at least for the class
of qh-fewnomial singularities.

In the sequel we’ll prove that this conjecture is true for certain classes of
qh-fewnomial singularities. Notice that a direct sum of isolated qh-fewnomial
singularities is also a qh-fewnomial singularity. Moreover, according to Propo-
sition 1.2 Yau algebras of direct sums can be easily computed. For this reason
our strategy will be to establish PST for certain series of fewnomial singularities
and then extend it to direct sums of singularities from those series.

Our nearest aim is to show that PST holds for isolated singularities of bi-
nomials in two variables so we now turn to considering binomial singularities
of corank 2. It is well known that such singularities appear in three series
P∗,∗, D∗,∗, T∗,∗ described in Section 1 (cf. [4]).

Proposition 2.2. Each binomial isolated singularity is analytically equivalent
to one from the three series P∗,∗, D∗,∗, T∗,∗.

The proof is based on the description of normal forms of binomials in two
variables presented in [4] (Section 13, p.179). Notice first that by our previous
proposition such a singularity is necessarily defined by a binomial in two vari-
ables. According to loc. cit., up to changes of coordinates, binomials in two
variables can be written in normal forms belonging to one of the three series:
xa +yb, xay+yb, xay+xyb, a, b ∈ Z+, a, b ≥ 2, which implies the desired result.
It follows that all of them are quasihomogeneous.

Summing up, all binomial isolated singularities are defined by binomials in
two variables and they are automatically quasihomogeneous. There are three
series of such binomials indicated above. Simple singularities in the sense of
Arnold obviously belong to the class of binomial singularities. Pham singular-
ities are qh-fewnomial.

3. Yau algebras of binomial singularities

The results presented in this paper rely on a few basic computations which
are described in this section. They will enable us, in particular, to compute
Yau algebras for binomial isolated singularities . We begin with introducing a
certain formalism suggested in [13] which facilitates further considerations. We
describe this formalism in bigger generality than necessary for this paper having
in mind that it may appear useful for further investigation of Yau algebras .
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Let n be a natural number and κ = (k1+1, . . . , kn +1) a non-negative multi-
index with ki ≥ 2, 1 ≤ i ≤ n. Denote by V = Vκ the vector space spanned by
a basis indexed by collections (a1, . . . , an; i), where 1 ≤ i ≤ n, 0 ≤ aj ≤ kj − 1
for j 6= i, 1 ≤ j ≤ n, and 1 ≤ ai ≤ ki − 1. It is easy to see that the dimension
of this space is equal to nσn(k1, . . . , kn) − σn−1(k1, . . . , kn), where σj denotes
the j-th symmetric function of n variables. Indeed, this immediately follows
from the identity

n∑

i=1

(xi − 1)
∏

j 6=i

xj = nσn(x1, . . . , xn)− σn−1(x1, . . . , xn).

Identifying each basis vector with its index, introduce a bilinear operation
on V by

[(a1, . . . , an; i), (b1, . . . , bn; j)] =

−aj(a1 + b1, . . . , aj−1 + bj−1, aj + bj − 1, aj+1 + bj+1, . . . , an + bn; i)+

bi(a1 + b1, . . . , ai−1 + bi−1, ai + bi − 1, ai+1 + bi+1, . . . , an + bn; j). (∗)
We show now that this operation actually defines a Lie algebra structure on

V . The skew-symmetry is obvious so only Jacobi identity should be verified.
To this end we relate V with the Lie algebra of Pham singularity defined by
polynomial Pκ =

∑
x

kj+1
j . Since this is a direct sum of simple singularities

Akj , the moduli algebra A(Pκ) is isomorphic to the tensor product of moduli
algebras of Akj singularities which are well known [4].

Using Proposition 1.2, the tensor structure of the moduli algebra for Pκ,
and the above description of L(Ak) we can now identify the Yau algebra of
Pκ with the vector space V introduced above. Using the vector field notation
for elements of L(Pκ) it is easy to check that an explicit isomorphism between
L(Pκ) and V = Vκ is established by the correspondence:

∏
xak

k ∂j 7→ (a1, . . . , an; j).

Comparing the commutators in L(Pκ) and in V we see that they coincide,
which immediately implies that the bilinear operation introduced above satisfies
Jacobi identity and defines thus a Lie algebra structure on Vκ. As a by-product
we obtain a formula for the Yau number of Pham singularity.

Proposition 3.1.

λ(Pκ) = nσn(k1, . . . , kn)− σn−1(k1, . . . , kn). (3.1)

Notice that we have also obtained an explicit basis of L(Pκ) as a complex
vector space. Such bases will be also indicated for the two other series of bino-
mial singularities. They appear extremely useful for comparing Yau algebras.

Consider now the Yau algebra of Dk1,k2 -singularity defined by the polyno-
mial f = xk1

1 x2 + xk2
2 . As is well known (see, e.g., [4]), its moduli algebra A is

of dimension k2(k1 − 1) + 1 and has monomial basis of the form

{Xa1
1 Xk2

2 , 0 ≤ a1 ≤ k1 − 2; 0 ≤ a2 ≤ k2 − 1;Xk1−1
1 }. (∗)

Here and in the sequel the class of a function g in the moduli algebra A(f) is
denoted by the corresponding capital letter G.
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Then it is easy to verify the following identities in the moduli algebra:

Xk1−1
1 X2 = 0, (3.2)

Xk1
1 + k2X

k2−1
2 = 0. (3.3)

From the formulae (3.2, 3.3) we get:

Xk1+i
1 = −k2X

i
1X

k2−1
2 , 0 ≤ i ≤ k1 − 2, (3.4)

Xm
1 = 0, m ≥ 2k1 − 1, (3.5)

Xm
2 = 0, m ≥ k2. (3.6)

As usual, in order to define a derivation d of A it suffices to indicate its
values on the generators X1, X2 which can be written in the basis (*). Thus
using the Einstein notation we can write

dXj = dj
i1,i2

Xi1
1 Xi2

2 + dj
k1−1,0X

k1−1
1 , j = 1, 2.

Using the relations (3.2 - 3.6) one now easily finds conditions defining a
derivation of A.

Lemma 3.1. In order that a linear transformation d defines a derivation of
A(f) it is necessary and sufficient that

d1
0,0 = d1

0,1 = . . . = d1
0,k2−3 = 0;

d2
0,0 = d2

1,0 = . . . = d2
k1−2,0 = 0;

k1d
1
1,0 = (k2 − 1)d2

0,1, k1d
1
2,0 = (k2 − 1)d2

1,1, . . . , k1d
1
k1−1,0 = (k2 − 1)d2

k1−2,1,

(k1 − 1)d1
0,k2−2 = k2d

2
k1−1,0.

Using this lemma we easily obtain the following description of the Yau al-
gebra in question.

Proposition 3.2. The dimension of Yau algebra L(Dk1,k2) is equal to

λ(Dk1,k2) = 2k1k2 − 2k1 − 3k2 + 5. (3.7)

The derivations represented by the following vector fields form a basis in L(Dk1,k2):

(k2−1)x1∂1+k1x2∂2, (k2−1)x2
1∂1+k1x1x2∂2, . . . , (k2−1)xk1−1

1 ∂1+k1x
k1−2
1 x2∂2,

k2x
k2−2
2 ∂1 + (k1 − 1)xk1−1

1 ∂2;

xa1
1 xa2

2 ∂1, x
k2−1
2 ∂1, 1 ≤ a1 ≤ k1− 2, 1 ≤ a2 ≤ k2− 1, xb1

1 xb2
2 ∂2, 0 ≤ b1 ≤ k1− 2,

2 ≤ b2 ≤ k2 − 1.

Finally, we compute the Yau number and construct an explicit basis in Yau
algebra of a Tk1,k2-singularity defined by the polynomial xk1

1 x2 + x1x
k2
2 . The

computations in this case are quite similar to ones for D∗,∗ series but more
lengthy and tedious, so we omit the details and present only the final result.
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Proposition 3.3. The dimension of Yau algebra L(Tk1,k2) is equal to

λ(Tk1,k2) = 2k1k2 − 2(k1 + k2) + 6. (3.8)

The derivations represented by the following vector fields form a basis in L(Tk1,k2):

xi1
1 xi2

2 ∂1, 2 ≤ i1 ≤ k1 − 1, 1 ≤ i2 ≤ k2 − 2; xi1
1 xk2−1

2 ∂1, 1 ≤ i1 ≤ k1 − 1;

xj1
1 xj2

2 ∂2, 1 ≤ j1 ≤ k1 − 2; 1 ≤ j2 ≤ k2 − 1;xk1−1
1 xj2

2 ∂2, 1 ≤ j2 ≤ k2 − 1;

(k2 − 1)x1x
i
2∂1 + (k1 − 1)xi+1

2 ∂2, 0 ≤ i ≤ k2 − 2;

(k2 − 1)xj+1
1 ∂1 + (k1 − 1)xj

1x2∂2, 0 ≤ j ≤ k1 − 2;

k2x1x
k2−2
2 ∂1 + k1x

k1−1
1 ∂2,

k2x
k2−2
2 ∂1 + k1x

k1−2
1 ∂2;

k2x
k2−1
2 ∂1 + k1x

k1−2
1 ∂2.

The Cartan sublagebra in this case is generated by derivation (k2−1)x1∂1 +
(k1−1)x2∂2 and the elements of the above basis are its eigenvectors. It is then
straightforward to calculate the corresponding eigenvalues.

Having obtained these explicit results, we can already make a number of
useful observations about Yau algebras of fewnomials. In particular, we be-
come able to clarify some interesting issues concerned with Yau algebras of
quasihomogeneous singularities. Proposition 1.1 shows that the dimension of
moduli algebra of such a singularity X is determined by its quasihomogeneity
type. It is thus natural to wonder if the same holds for the dimension of L(X).
It is now easy to give a simple example showing that this is not always true.

To this end consider the two singularities defined by polynomials Pa1,b1 =
xa1

1 +xb1
2 and Da2,b2 = xa2

1 x2 +xb2
2 . As indicated in [4], their quasihomogeneity

types are ( 1
a1

, 1
b1

) and b2−1
a2b2

, 1
b2

, respectively. Taking any natural b, q and putting
b2 = b1 = b, a1 = qb, a2 = q(b − 1) we obtain hat the two above polynomials
have the same quasihomegeneity type ( 1

qb ,
1
b ).

From the formulae for the dimension of L(X) presented above we get that
dimL(Pa1,b1) = 2qb2−3b(q+1)+4 and dimL(Da2,b2) = 2qb2−2q(2b−1)−3b+5.
The difference between the two dimensions is equal to q(b−2)−1 so we see that
they only coincide for q = 1, b = 3. Thus we see that the quasihomogeneity
type does not determine the dimension of Yau algebra even for fewnomials.

This conclusion suggests a number of natural questions. First of all, one may
wonder if there is a typical value of dimL(X) for fewnomial singularities with
a fixed Newton diagram which means that all fewnomials which have a given
Newton diagram and satisfy certain non-degeneracy condition with respect to
the diagram should have the same value of λ(X). If so, one could hope to
express this typical value in terms of the prescribed Newton diagram. This
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seems especially plausible for qh-fewnomial singularities since their Newton
diagrams are well studied.

It is also interesting to find the maximal and minimal values of dimL(X) for
fewnomials with a fixed quasihomogeneity type and characterize singularities
for which the extremal values are attained. For some qh-fewnomial types, we
have verified that the Pham singularity has the maximal value of dimL(X)
within its quasihomogeneity type. However this is definitely not always so. For
example, the two singularities X1 = X(x4

1 + x2
2) (suspension of A3 singularity)

and X2 = X(x2x2 + x4
2) (D2 singularity) singularities are both quasihomoge-

neous of type (1/4, 1/2; 1). In both cases λ(Xi) can be computed by formulae
(3.1), (3.7) and we get that dimL(A3) = 2 < dimL(D2) = 3. Thus λ(A3) is
not maximal in the qh-type (1/4, 1/2; 1). Actually in this case λ(A3) realizes
the minimal value while λ(D2) gives the maximal value.

All these problems of course make sense for arbitrary quasihomogeneous
singularities but seem quite difficult in general setting (cf. examples and com-
ments given in [13]). At the same time they look much more accessible for the
class of qh-fewnomial IHS so it seems natural to attack them first for this class
of singularities.

4. Pursell-Shanks theorem for binomial singularities

We pass now to a precise formulation and outline of the proof of the first
main result which yields an analog of PST for binomial singularities.

Theorem 4.1. Binomial isolated singularities with the Milnor number bigger
than 6 are classified by their Yau algebras.

Before presenting an outline of the proof let us describe its scheme. In
short, we show first that Yau algebras classify singularities within each of those
series and then compare the series pair-wise, i.e., we have to prove that, except
just one pair, no singularity from one series is analytically isomorphic to a
singularity in another series. Correspondingly, proof naturally consists of six
(= 3 + 3) independent steps and its detailed exposition is sufficiently lengthy.
For this reason, we’ll only present in some detail comparison of P∗,∗ and D∗,∗
series. This pair is chosen because here arises the only exceptional case, namely:
L(A6) ∼= L(D5) while A6 and D5 are of course nonisomorphic.

Thus we describe in some detail the following three steps. First, we show
that the isomorphism type of L(Pκ) determines values of parameters k1, k2

up to the order. Next, we verify the same for D∗∗ series, which shows that
singularities within each of these two series are classified by their Yau algebras.
Finally, we show that, for µ > 6, no Pham singularity can be isomorphic to
a Dk1,k2 singularity, which yields the result for the first two series. The three
remaining steps are completely similar to the steps described below so we omit
them.

Proof of theorem 4.1. (1) We begin with considering the Pham series. As
was shown above, if X = X(Pk) is defined by a polynomial in n variables then
rkL(X) = n. This implies that two such Lie algebras can be only isomorphic if
they are defined by polynomials of the same number of variables. For our pur-
poses it is sufficient to consider two Pham singularities of the type (2; k1, k2κ)
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and without losing generality we may assume that k1 ≥ k2. We will show that
k1 is an invariant of L(X). Notice that k1 has the biggest modulus (absolute
value) among the eigenvalues of all basic operators Ei = xi∂i. Notice that the
spectra of all those operators are real and nonnegative and the smallest eigen-
value of all Ei is equal to one. These data can be used to obtain a numerical
invariant of algebra L(X) as follows.

Introduce a norm on A(X). This induces the operator norm on L(X) and
we may consider the unit sphere S ⊂ L(X). For each derivation T ∈ L(X) de-
note by Λ(T ) (respectively, λ(T )) the maximal (respectively, minimal nonzero)
modulus of eigenvalues of T . Consider now the maximum M of the ratio
r(T ) = Λ(T )/λ(T ) for all T ∈ S (this maximum is attained since S is com-
pact). Obviously, M being defined as a ratio does not depend on the choice of
norm on A(X). Thus it is an invariant of Lie algebra L(Pk). Moreover, since
all minimal moduli of eigenvalues of basic operators Ei are equal it follows that
λ(T ) is constant on S. Thus the maximum of the ratio r(T ) is achieved on
the operator which an eigenvalue with the maximal modulus over S. From the
structure of spectra of the basic operators Ei described above and well known
interlacing property of eigenvalues of linear combinations of operators [5] it is
clear that this maximum is equal to k1−1. Thus k1−1 is an invariant of L(X).
Since in our case λ(X) = k1 + k2 + 1 it becomes clear that the pair (k1, k2) is
determined up to the order by the isomorphism class of L(Pk1,k2). Thus the
first step is completed.

(2) In order to deal with D∗∗ series let us introduce a numerical invariant of
Lie algebras of the form L(Dk1,k2). As was mentioned, on L(Dk1,k2) there exists
a Z-grading defined by the vector field E = (k2−1)x1∂1 +k1x2∂2 (Euler field).
Instead of E we could take any other semi-simple element of L(Dk1,k2). Since
the set of semi-simple elements in L(Dk1,k2) is one-dimensional, any two such
gradings coincide up to a (complex) multiple. Notice that E is regular, in the
sense that its orbit in the adjoint representation has the maximal dimension.
The invariant we are after is now defined as follows.

Take a homogeneous element a ∈ L(Dk1,k2) of positive degree. Then the
operator ad a is nilpotent. Let n(a) denote its nilpotency index with respect to
this grading. It is clear that n(a) does not change if the grading is multiplied
by a complex number. Define n(L) as the maximal number among n(a) over
the set of all (non-zero) homogeneous nilpotent elements. Then it is obvious
that n(L) is an invariant of graded Lie algebras. We will compute this invariant
for L(Dk1,k2) and show that it distinguishes such algebras.

For computing n(L(Dk1,k2)) it is useful to notice that there is a natural Lie-
Rinehart structure on the pair A(Dk1,k2), L(Dk1,k2) and use some well-known
properties of such structures [8]. Consider the elements S = (k2 − 1)x2

1∂1 +
k1x1x2∂2 and T = x2

2∂2. By direct computation it is not difficult to show that
n(S) = k2 − 2 and n(T ) = 2k1 − 5. Moreover, from the description of the
homogeneous components for Euler grading given in Section 2 it follows that
no other element can have nilpotency index bigger than N = max(n(S), n(T )).
Thus n(Dk1,k2) = k2−2 if k2 ≥ 2k1−5 and n(Dk1,k2) = 2k1−5 if 2k1−5 > a2−2.

Suppose now that L(Dk1,k2) ∼= L(Dm1,m2) for some pairs (k1, k2), (m1,m2) ∈
Z2

+. In order to show that (k1, k2) = (m1,m2) we proceed as follows. First
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of all, in such a case we have dimL(Dk1,k2) = dimL(Dm1,m2) and using the
explicit formula for the Yau number of Dk1,k2 singularity we get equation

2k1k2 − 2k1 − 3k2 = 2m1m2 − 2m1 − 3m2. (4.1)

Moreover, we have n(Dk1,k2) = n(Dm1,m2). Taking into account the above
formulas for n(Dk1,k2) it is obvious that there are four logically possible re-
lations between the parameters k1, k2,m1,m2: 1) k2 = m2; 2) k1 = m1; 3)
k2 − 2 = 2m1 − 5; 4) m2 − 2 = 2k1 − 5. In the first two cases, substituting
the relations in (4.1) we immediately get that the second parameters also co-
incide. The last two cases are symmetric so it is sufficient to prove the result
when 2k1 − 5 > k2 − 2 and m2 − 2 ≥ 2m1 − 5. Thus in this case we have
m2−2 = 2k1−5, hence 2k1 = m2 +3. Transforming the left hand side of (4.1)
and substituting m2 + 3 instead of 2k1 we get:

2k1(k2 − 1)− 3k2 = (m2 + 3)(k2 − 1)− 3k2 = m2k2 −m2 − 3.

This obviously gives the equation

m2k2 −m2 − 3 = 2m1(m2 − 1)− 3m2.

Taking the number 3 to the right hand side and factoring the latter we get:

m2(k2 − 1) = (m2 − 1)(2m1 − 3).

Let us now rewrite the last relation in the form:

k2 − 1 =
m2 − 1

m2
(2m1 − 3).

Since in the left hand side we have an integer and m2 − 1 is relatively prime
with m2, it follows that 2m1 − 3 is divisible by m2. However by assumption
m2 ≥ 2m1 − 3 so we conclude that 2m1 − 3 = m2, hence k2 = m2. The rest
of the proof goes in a completely similar way. It follows that singularities of
D∗∗ series are classified by their Yau algebras, which completes the proofof the
second step.

(3) Suppose now that L(Pk1,k−2) ∼= L(Dm1,m2)) for certain values of pa-
rameters ki,mj . Then their ranks should be equal. Remembering that for
a Pham singularity of the type n;κ the rank of Lie algebra equals n and for
D∗∗ series this rank always equals one, we get that n necessarily equals one.
Thus we should only compare D∗,∗ singularities with Ak singularities. Actu-
ally, the necessary comparison has already been done in [13] and we reproduce
the argument here for completeness and convenience of the reader.

Since the Cartan subalgebras are one-dimensional in both cases, it is easy
to arrive at the desired conclusion by comparing the spectra of semi-simple
operators ad h. Notice that the arithmetic structure of these spectra does
not depend on the choice of such an element. Recall that for Ak series the
spectrum consists of a single arithmetic progression. From the description of
the homogeneous components of L(Dm1,m2) given in Section 2 it is clear that
the spectrum of adh reduces to a single arithmetic progression only if m1 = 2.
In other words, it is sufficient to compare simple singularities for Ak and Dm

series. As was shown in [12], PST holds for simple singularities except just one
pair, A6 and D5, which completes the proof of the third step. Thus theorem
4.1 is completely proven for the two series P∗,∗ and D∗, ∗. As was mentioned,
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the comparison of those two series with the third one is essentially analogous
so we omit the rest of the proof.

This result gives the desired analog of PST for binomial singularities. Since
there exist trinomials in two variables which cannot be classified by their Yau
algebras [22] we conclude that, for polynomials in two variables, PST holds
exactly in the class of binomial singularities. It is now natural and tempting
to find out if n-nomials in n variables are classified by their Yau algebras and
we make another step in this direction in the next section.

5. Pursell-Shanks theorem for fewnomial singularities

Using the foregoing results and considerations we can obtain now an analog
of PST for certain isolated singularities defined by fewnomials in arbitrary num-
ber of variables. Recall that the direct sum of singularities X1 = X(f1) ⊂ Cm

and X2 = X(f2) ⊂ Cn is defined as the singularity X = X(f1(x) + f2(y)) ⊂
Cm+n, x ∈ Cm, y ∈ Cn. In particular, a suspension of an IHS is the same as its
direct sum with A1 singularity.

Obviously, the classes of fewnomial singularities and qh-fewnomial singu-
larities are closed with respect to taking direct sums. Moreover, for direct
sums it is easy to compute and compare the Yau algebras using Proposition
1.2. Let us say that an IHS is a decomposable fewnomial singularity if it is a
direct sum of (an arbitrary amount of) binomial and Pham singularities. Since
each Pham singularity is a direct sum of several binomial singularities and an
Ak singularity, the same class arises if one considers direct sums of binomial
and Ak singularities. Notice also that such singularities are necessarily quasi-
homogeneous. It turns out that PST holds for Yau algebras of decomposable
fewnomial singularities. The ”raison d’être” of this result can be described as
follows.

Recall that, as was proven in [13], PST holds for Yau algebras of Pham
singularities. The proof presented in [13] uses only two properties of Pham
singularities, namely, that: (1) they are directs sums of Ak singularities, and
(2) PST holds for Ak singularities. The crucial fact on which relies the proof
presented in [13], is that the Yau numbers and spectra of Cartan algebras of
summand singularities can be restored from the Yau algebra of their direct
sum. Combining this fact with PST for simple singularities we obtained in
[13] an analog of PST for those ”semi-simple” singularities. Now that we have
proven PST for binomial singularities, the same argument becomes applicable
to direct sums of binomial singularities and Ak singularities, i.e., to the class
of decomposable fewnomial singularities.

The argument runs in two steps. Firstly, the information on spectra of Car-
tan subalgebras in Yau algebras of binomial singularities presented in Section
3 is used to prove that the spectra of summands X(f1) and X(f2) can be re-
stored, up to the order, from the Yau algebra of direct sum X(f1) ⊕ X(f2).
Secondly, using the proof of PST for binomial singularities presented above,
we show that the isomorphism class of a direct sum under consideration deter-
mines the isomorphism classes of summands up to the order. Since we already
have PST for summands, this implies that the isomorphism type of a direct
sum of such type is determined by its Yau algebra.
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Theorem 5.1. Decomposable fewnomial singularities with the Milnor number
bigger than 6 are classified by their Yau algebras.

From the point of view of proving our ”PST for fewnomials” conjecture on
the range of validity of PST for Yau algebras , this result is not a big progress
because the class of decomposable fewnomial singularities is quite special. We
present it only to provide an application of our Theorem 4.1 and fix the state-of-
the-art in this topic. Its proof outlined above is also quite specific so we omit the
details. Actually, the same argument involving Cartan spectra enables one to
prove this conjecture for a wider class of generic qh-fewnomial singularities for
which Cartan spectra can be expressed in terms of quasihomogeneous weights
and degree. This and other extensions of the results of the last two sections
will be considered elsewhere.

6. Concluding remarks

In conclusion we briefly mention some open problems and perspectives con-
nected with our results. As was already mentioned, there is a bunch of natural
problems concerned with Yau algebras of qh-fewnomial singularities. As was
shown in Section 2, the qh-type of singularity does not determine the dimension
of L(X) even for qh-fewnomial singularities. In fact, the infinite series of such
examples presented in Section 2 shows that the variation of values of dimL(X)
within a given qh-type can become arbitrarily big.

Thus it is interesting to estimate the modulus of variation of λ(X) in terms
of qh-weights. Clearly, this is closely related to the problem of finding the exact
upper and lower bounds for the Yau number within a given qh-fewnomial type.
A still more general problem is to describe the whole spectrum of possible
values of λ(X) within a given qh-fewnomial type. Some of the above problems
are closely related to the results of [23], [2] and [15] but we were not able to
derive their solutions from the existing results. For simple qh-fewnomial types,
these problems can be successfully attacked using the results presented above.

Moreover, there exists a good evidence that some developments in the above
topics are possible if one restricts attention to fewnomials with a fixed Newton
diagram. Then one may hope to express various invariants of the Yau algebra
of a typical function with a given Newton diagram P in terms of the geometry
of P . Results of such type concerned with computing Milnor numbers are well
known in singularity theory [4], [20]. Since the topological type of a generic
(non-degenerate) singularity with a given Newton diagram is completely deter-
mined by the geometry of diagram (cf., e.g., [20]), it is highly plausible that
the Yau number of such a singularity can be computed in terms of the given
diagram. Specifically, this conjecture is supported by the expressions for the
Yau numbers given in Propositions 3.1, 3.7, 3.8 since they look very much
like the mixed areas of certain polygons associated with the Newton diagram.
Thus an intriguing open problem is to express the Yau numbers of fewnomial
singularities in terms of mixed volumes.

Summing up, the topics discussed in the present paper give rise to a variety
of natural problems and the author intends to continue research along these
lines.



18 G.KHIMSHIASHVILI

References

[1] A.Alexandrov, Cohomology of a quasihomogeneous complete intersection, (Russian) Izv.
Akad. Nauk SSSR, Ser. matem. 49, 1985, 467-510.

[2] A.Alexandrov, Duality, derivations and deformations of zero-dimensional singularities,
In: Zero-Dimensional Schemes. Ed. F.Orecchia, L.Chiantini, 11-31, W. de Gruyter, 1994.

[3] A.Alexandrov, B.Martin, Derivations and deformations of Artinian algebras, Beiträge
zur Algebra und Geometrie 33, 1992, 115-130.

[4] V.Arnold, A.Varchenko, S.Gusein-Zade, Singularities of differentiable mappings. 2nd ed.
(Russian) MCNMO, Moskva, 2004.

[5] R.Bellman, Introduction to matrix analysis, McGraw-Hill, New York, 1960.
[6] M.Benson, S.S.-T.Yau, Equivalence between isolated hypersurface singularities, Math.

Ann. 287, 1990, 107-134.
[7] R.Block, Determination of the differentiably simple rings with a minimal ideal, Ann.

Math. 90, 1969, 433-459.
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